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Funnel control for overhead crane model
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We consider an overhead crane whose control variables are the length of the rope and force/velocity at the gantry. The output
consists of the position of the load. The objective is to design a closed-loop tracking controller which also takes into account
the transient behavior. First we show that this system has no well-defined relative degree, which unfortunately does not allow
to apply established methods for adaptive control to achieve the objective. To circumvent this problem, we design a dynamic
state feedback which results in a system with relative degree four. Thereafter, we apply a funnel controller to this feedback
system. We show that our approach can be used to move loads from one to another given position in the situation where there
are several obstacles which have to be circumnavigated.
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1 Introduction
In this paper, we develop a funnel controller for a simplified
model of an overhead crane which was discussed in [1]. The
model belongs to the class of nonlinear systems

ẋ = f (x)+
m

∑
i=1

gi(x)ui, y = h(x), i = 1, . . . ,m, (1.1)

where f ,gi ∈ C ∞(Rn → Rn),h = (h1, . . . ,hm)
⊤ ∈ C ∞(Rn →

Rm). We recall the concept of vector relative degree of (1.1)
from [2, Sec. 5.1]: The system (1.1) has vector relative de-
gree (r1,r2, · · · ,rm) at a point x0 ∈ Rn, if there exists an open
neighborhood U of x0 such that for all 1 ≤ i ≤ m, 1 ≤ j ≤ m
and 0 ≤ k ≤ ri−2 we have Lg j L

k−1
f hi(x) = 0 for all x ∈U , and

the matrix

Γ(x0) :=


Lg1Lr1−1

f h1(x0) · · · LgmLr1−1
f h1(x0)

...
...

Lg1Lrm−1
f hm(x0) · · · LgmLrm−1

f hm(x0)


is invertible. Furthermore, if r1 = · · · = rm = r, then the sys-
tem (1.1) is said to have strict relative degree r at x0.

The control objective is tracking of a reference trajec-
tory yref ∈ W r,∞(R≥0 → Rm) with prescribed performance,
i.e., we seek an output error derivative feedback such that
in the closed-loop system the tracking error e(t) = y(t)−
yref(t) evolves within a prescribed performance funnel, that
is φ(t)∥e(t)∥< 1 for all t ≥ 0, where φ belongs to

Φr :=

φ ∈ C r(R≥0 → R)

∣∣∣∣∣∣
φ , φ̇, . . . ,φ(r) are bounded,
φ(τ)> 0 for all τ > 0,
and liminfτ→∞ φ(τ)> 0

 .

Furthermore, the state x and the input u = (u1, . . . ,um) in (1.1)
should remain bounded. We follow the framework of Funnel
Control which was developed in [3]. The funnel controller is
an adaptive controller of high-gain type and thus inherently
robust. It has been successfully applied e.g. in control of in-
dustrial servo-systems [4] and voltage and current control of
electrical circuits [5].

In the recent work [6], a funnel controller has been devel-
oped which can be applied to a class of systems with arbitrary

relative degree. The controller has the form

e0(t) = e(t) = y(t)− yref(t),
e1(t) = ė0(t)+ k0(t)e0(t),
e2(t) = ė1(t)+ k1(t)e1(t),

...
er−1(t) = ėr−2(t)+ kr−2(t)er−2(t),

ki(t) = 1
1−φi(t)2∥ei(t)∥2 , i = 0, . . . ,r−1,

u(t) =−kr−1(t)er−1(t)

(1.2)

where the reference signal and funnel functions have the fol-
lowing properties:

yref ∈ W r,∞(R≥0 → Rp),
φ0 ∈ Φr, φ1 ∈ Φr−1, . . . , φr−1 ∈ Φ1.

(1.3)

Now we introduce the model that we want to consider.
The overhead crane model, which was introduced in [1], is
an overhead gantry crane with a trolley moving along a hori-
zontal axis. A suspended load is attached to the trolley by four
ropes, which are assumed to be rigid and massless. Moreover,
the winches on the trolley are synchronized which help con-
trolling the length of the ropes so that the attached load does
not rotate around itself. Therefore, this model can be repre-
sented by a point mass connected to the trolley by a single
rope as shown in Fig. 1.
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Fig. 1: Two dimensions crane model.

The equations of motion of the overhead crane model are

τs s̈+ ṡ = us

τl l̈ + l̇ = ul

cos(φ) s̈+ l φ̈ +2φ̇ l̇ =−gsin(φ),
(1.4)
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where s (in m) is the trolley position, l (in m) is the rope
length, and φ (in rad) is the swing angle. The velocity of the
trolley us (in m s−1) and the velocity of the rope ul (in m s−1)
serve as the system inputs, and τs (in second), τl (in second)
are time constants of trolley and winch actuator, resp., and g=
9.81m/s2 is the gravitational constant. The constants do not
depend on the trolley or load mass. As output of the model we
choose the position of the load (y1,y2) = (s+ l sinφ , l cosφ).
Now, we transform the equations of motion (1.4) into the
form (1.1). Denote x1 := s, x2 := ṡ, x3 := l, x4 := l̇, x5 := φ ,
x6 := φ̇ , u1 := us, u2 := ul , then we have

ẋ = f (x)+g1(x)u1 +g2(x)u2,

y = (x1 + x3 cosx5,x3 cosx5)
⊤ (1.5)

where x = (x1,x2, . . . ,x6)
⊤, f (x) =

(
x2,− x2

τs
,x4,− x4

τl
,x6,

x2 cosx5
x3τs

− 2x4x6+gsinx5
x3

)⊤
, g1(x) =

(
0, 1

τs
,0,0,0,− cosx5

x3τs

)⊤
,

g2(x) =
(

0,0,0, 1
τl
,0,0

)⊤
. It is easy to check that

Γ(x) =
[

Lg1(L f y1) Lg2(L f y1)
Lg1(L f y2) Lg2(L f y2)

]
=

[
sin2 x5

τs

sinx5
τl

sinx5 cosx5
τs

cosx5
τl

]
.

Observe that rankΓ(x) = 1 < 2 for all x ∈ R6, hence sys-
tem (1.5) does not have a well-defined vector relative degree.

To treat this problem we use the Dynamic Extension Algo-
rithm introduced in [2, Sec.5.4], applied to the system (1.5).
The dynamic extension leads to

ẋ7 = x8, ẋ8 = v2, u1 = v1,

u2 = x4 + x3x2
6τl +(x2 − v1)τl sinx5/τs

+(x7 −gsin2 x5)τl/cosx5,

(1.6)

and as a result we obtain the new system
˙̃x = f̃ (x̃)+ g̃1(x̃)v1 + g̃2(x̃)v2,

y = (x1 + x3 cosx5,x3 cosx5)
⊤ ,

(1.7)

where x̃ = (x1, . . . ,x8)
⊤, f̃ (x̃) =

(
x2,− x2

τs
,x3x2

6 +
x2 sinx5

τs

+ x7−gsin2 x5
cosx5

,− x4
τl
,x6,

x2 cosx5
x3τs

− 2x4x6+gsinx5
x3

,x8,0
)⊤

, g̃1(x̃) =(
0, 1

τs
,0,− sinx5

τs
,0,− cosx5

x3τs
,0,0

)⊤
, g̃2(x̃) = (0, . . . ,0,1)⊤.

Checking the relative degree of system (1.7) we find that

Γ(x̃) =

[
Lg̃1(L

3
f̃ y1) Lg̃2(L

3
f̃ y1)

Lg̃1(L
3
f̃ y2) Lg̃2(L

3
f̃ y2)

]
=

[
g−x7

x3τs cosx5

sinx5
cosx5

0 1

]
.

Γ(x̃) is invertible at any point of the extended state space
where x3 ̸= 0, cosx5 ̸= 0 and x7 ̸= g. Therefore, system (1.7)
has strict relative degree r = 4 at each of these points. Further-
more, since the system dimension is 8, the internal dynamics
of (1.7) are trivial. As a consequence, two crucial assump-
tions for feasibility of the funnel controller (1.2) are satisfied,
cf. [6]. However, the last crucial assumption, that the sym-
metric part of Γ(x̃) is positive definite everywhere, is not sat-
isfied. A feasibility proof for this case is not available yet, but
the simulations look promising. The final feedback controller,
consisting of the dynamic extension (1.6) and the funnel con-
troller (1.2) is depicted in Fig. 2.

..

u

.

y

.

System

.

v

.

Dyn. Ext.

. x.

Funnel Controller

.

e

.

yref

.

−

.

+

Fig. 2: Combination of funnel controller and dynamic extension.

2 Simulations
We choose the parameter values τs = 0.03s, τl = 0.02s, the
reference signal yref(t) =

(
3(t − sin t)m,(9+3cos t)m

)⊤ and
the funnel functions φ0(t) = 3, φ1(t) = (2e−2t + 0.05)−1,
φ2(t) = (4e−2t +0.1)−1, φ3(t) = (20e−2t +0.5)−1 resp. The
initial values are x̃0 = (0,0,12,0,0,0,0,0). The simulation
of the controller (1.2) applied to (1.7) over the time interval
[0,2π] has been performed in MATLAB (solver: ode45, rel.
tol: 10−14, abs. tol: 10−10) and is depicted in Figs. 3 and 4.
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Fig. 3: Load trajectories
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Fig. 4: Input functions
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