10. Übungsblatt zur "Analysis II"

Gruppenübungen

Aufgabe G28 (Normen auf dem \mathbb{R}^n)

Auf dem \mathbb{R}^n haben wir die Normen $\|\bullet\|_1$, $\|\bullet\|_2$ und $\|\bullet\|_{\infty}$ eingeführt. Zeigen Sie

- (a) $\|\bullet\|_{\infty} \le \|\bullet\|_1 \le n \cdot \|\bullet\|_{\infty}$
- (b) $\|\bullet\|_{\infty} \le \|\bullet\|_2 \le \sqrt{n} \cdot \|\bullet\|_{\infty}$

Aufgabe G29 (Kompakte Intervalle)

- (a) Sei $\emptyset \neq D \subseteq \mathbb{R}$ ein Intervall. Zeigen, Sie: Wenn D kompakt ist, so gilt D = [a, b] für gewisse $a, b \in D$.
- (b) Geben Sie eine offene Überdeckung von]0,1[an, die keine endliche Teilüberdeckung hat.

Aufgabe G30 (Die endliche Durchschnittseigenschaft)

Sei X ein hausdorffscher topologischer Raum. Man zeige, dass die folgenden Aussagen äquivalent sind:

- (a) X ist kompakt.
- (b) Ist $(A_j)_{j\in J}$ eine Familie abgeschlossener Teilmengen von X mit $J\neq\emptyset$ und $\bigcap_{j\in F}A_j\neq\emptyset$ für jede endliche Teilmenge $F\subseteq J$, so ist $\bigcap_{j\in J}A_j\neq\emptyset$.

Hausübungen

Aufgabe H28 (Die Abstandsfunktion; 5 Punkte)

Sei (X,d) ein metrischer Raum und $A\subseteq X$. Wir definieren die Abbildung

$$d_A: X \to [0, \infty[, x \mapsto \inf \{d(x, a) : a \in A\}]$$

- (a) Zeigen Sie, dass d_A Lipschitz-stetig mit Lipschitz-Konstante L=1 ist.
- (b) Sei nun A abgeschlossen. Zeigen Sie $A = \{x \in X : d_A(x) = 0\}.$

Aufgabe H29 (Kompaktheit und Vollständigkeit; 5 Punkte)

Sei (K, d) ein kompakter metrischer Raum. Zeigen Sie, dass K vollständig ist.

Aufgabe H30 (Distanz einer abgeschlossenen Menge; 5 Punkte)

Sei $\|\bullet\|$ eine Norm auf \mathbb{R}^n , $\emptyset \neq A \subseteq \mathbb{R}^n$ eine abgeschlossene Menge und $x \in \mathbb{R}^n$. Zeigen Sie, dass die Menge $\{\|x - y\| : y \in A\} \subseteq \mathbb{R}$ ein Minimum besitzt.