9. Übungsblatt zur "Höheren Analysis"

Gruppenübungen

Aufgabe G25 (Verschiedene Indexmengen)

Sei $\varphi \colon J \to I$ eine Bijektion zwischen zwei Mengen. Zeigen Sie, dass eine Familie $(x_i)_{i \in I}$ in einem Banachraum E genau dann summierbar ist wenn die Familie $(x_{\varphi(j)})_{j \in J}$ summierbar ist. Zeigen Sie, dass in dieser Situation auch $\sum_{i \in I} x_i = \sum_{j \in J} x_{\varphi(j)}$ gilt.

Lösung: Um dieses Lemma zu zeigen, reicht es natürlich nur eine Richtung zu zeigen. Sei also $(x_i)_{i\in I}$ in E summierbar. Sei $\varepsilon > 0$, dann finden wir $F_0 \subseteq I$ endlich, sodass

$$\left\| \sum_{i \in F} x_i \right\| < \varepsilon$$

für $F \subseteq I \setminus F_0$ endlich. Nun ist $\varphi^{-1}(F_0) \subseteq J$ endlich und ist $G \subseteq J \setminus \varphi^{-1}(F_0)$ endlich so ist $\varphi(G) \subseteq I \setminus F_0$ endlich und es gilt $\|\sum_{j \in G} x_{\varphi(j)}\| < \varepsilon$. Es folgt die erste Aussage des Lemmas. Die Familie $(x_{\varphi(j)})_{j \in J}$ ist summierbar. Sei $J_0 := \{j \in J : x_{\varphi(j)} \neq 0\}$ und $\iota : \mathbb{N} \to J_0$ eine Bijektion (oBdA nehemn wir $\#J_0 = \infty$ an). Definieren wir $I_0 := \{i \in I : x_i \neq 0\}$ so folgt $\varphi(J_0) = I_0$ und $\varphi \circ \iota : \mathbb{N} \to I_0$ ist eine Bijektion. Nun rechnen wir noch:

$$\sum_{j \in J} x_{\varphi(j)} = \sum_{n=1}^{\infty} x_{\varphi(\iota(n))} = \sum_{i \in I} x_i.$$

Aufgabe G26 (Summierbare Zahlenfolgen)

Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} . Zeigen Sie, dass $(x_n)_{n\in\mathbb{N}}$ genau dann summierbar ist, wenn die Reihe $\sum_{n=1}^{\infty} x_n$ absolut konvergent ist; in diesem Fall ist $\sum_{n\in\mathbb{N}} x_n = \sum_{n=1}^{\infty} x_n$.

Lösung:

• Sei $\varepsilon > 0$. Sei $N \in \mathbb{N}$ mit $\sum_{i=N}^{\infty} |x_i| < \varepsilon$, dann gilt

$$\left| \sum_{i \in G} x_i \right| \le \sum_{i \in G} |x_i| < \sum_{i = N}^{\infty} |x_i|$$

für alle $G \subseteq \mathbb{N}$ mit $\#G < \infty$ und $G \cap \{1, \dots, N\} = \emptyset$.

• Sei nun $(x_i)_{i\in\mathbb{N}}$ summierbar. Sei $(x_{i_k})_{k\in\mathbb{N}}$ die Teilfolge von $(x_i)_{i\in\mathbb{N}}$, sodass $x_{i_k} > 0$ für alle $k \in \mathbb{N}$ und $y_k := x_{i_k}$ für alle $k \in \mathbb{N}$. Zudem definieren wir die Injektion $\varphi \colon \mathbb{N} \to \mathbb{N}, \ k \mapsto i_k$. Des weiteren sei $(x_{i_l})_{l\in\mathbb{N}}$ die Teilfolge von $(x_i)_{i\in\mathbb{N}}$, sodass $x_{i_l} < 0$ für alle $l \in \mathbb{N}$ und $z_l := -x_{i_l}$ für alle $l \in \mathbb{N}$. Angenommen $\sum_{k=1}^{\infty} z_k < \infty$ und $\sum_{k=1}^{\infty} y_k < \infty$, dann gilt $\sum_{i=1}^{N} |x_i| < \sum_{i=1}^{N} y_i + z_i < \sum_{i=1}^{\infty} z_k + y_k < \infty$. Zeigen wir also, dass $\sum_{k=1}^{\infty} y_k = \sum_{k=1}^{\infty} x_{i_k} < \infty$. Sei $I := \{i \in \mathbb{N} : x_i \geq 0\} = \operatorname{im}(\varphi)$. Da $(x_i)_{i\in\mathbb{N}}$ summierbar ist, ist auch $(x_i)_{i\in I}$ summierbar. Es gilt

$$\infty > \sum_{i \in I} x_i = \sum_{k=1}^{\infty} x \varphi(k) = \sum_{k=1}^{\infty} y_k = \sum_{k=1}^{\infty} x_{i_k} < \infty.$$

 $\sum_{k=1}^{\infty} z_k < \infty$ zeigt man analog.

Aufgabe G27 (Summierbare Folgen von Vektoren)

Finden Sie einen Banachraum E und eine Folge in E, die summierbar ist, aber nicht absolut summierbar.

Lösung: Wir zeigen, dass $(\frac{1}{i}e_i)_{i\in\mathbb{N}}$ in ℓ^2 summierbar ist. Wir definieren $x^i:=\frac{1}{i}e_i$. Sei $\varepsilon>0$. Und $N\in\mathbb{N}$, sodass $\sum_{n=N}^{\infty}\frac{1}{n^2}<\varepsilon^2$. Ist nun $G\subseteq\mathbb{N}$ mit $G\cap\{1,\ldots,N\}=\emptyset$, dann gilt

$$\left\| \sum_{i \in G} x^i \right\|^2 = \sum_{i \in G} \left(\frac{1}{i} \right)^2 \le \varepsilon^2.$$

Offensichtlich ist $(\frac{1}{i}e_i)_{i\in\mathbb{N}}$ nicht absolut summierbar.