Seminar "Topologie und Reelle Analysis," WS 20/21

Prof. Dr. Helge Glöckner

Vorbesprechung am 12.8.2020

12. August 2020

Überblick

Das Seminar vertieft die (in der "Reellen Analysis" begonnene) Maß- und Integrationstheorie.

Im Hinblick darauf (und für die Allgemeinbildung) wird auch die Topologie etwas vertieft.

Es gibt vier Gruppen von je 3-4 Vorträgen:

Themenblöcke

- Vertiefung der Topologie (4 Vorträge)
- Maße auf lokal kompakten Räumen und der Rieszsche Darstellungssatz für positive Funktionale (3 Vorträge)
- Komplexe Maße und der Satz von Radon-Nikodym (4 Vorträge)
- Absolut stetige Funktionen, Hauptsatz der Integral- und Differentialrechnung (3 Vorträge)

Vertiefung der Topologie

Vortrag 1:

Konvergenz von Netzen und Filtern, initiale und finale Topologien, Quotiententopologie, induzierte Topologie, Produkttopologie; Trennungseigenschaften (Hausdorff-Eigenschaft, Regularität, Normalität, vollständige Regularität)

Vortrag 2:

Lokal kompakte Räume, Urysohnsches Lemma; σ -Kompaktheit, Partitionen der 1

Vortrag 3:

Parakompaktheit, lokale Endlichkeit, Partitionen der 1

Vortrag 4:

Kompakt-offene Topologie und deren Eigenschaften; Exponentialgesetz

Maße auf lokal kompakten Räumen, Rieszscher Darstellungssatz für positive Funktionale

Sei X ein lokal kompakter topologischer Raum, z.B. $X=\mathbb{R}^n$ (X is Hausdorffsch und jeder Punkt hat eine kompakte Umgebung). Sei $C_c(X)$ der Vektorraum der stetigen Funktionen $f:X\to\mathbb{R}$ mit kompaktem Träger.

Rieszscher Darstellungssatz

Sei $I: C_c(X) \to \mathbb{R}$ eine lineare Abbildung derart, dass $I(f) \geq 0$ für jedes $f \geq 0$. dann existiert genau ein von außen reguläres Borelmaß μ auf X derart, dass

$$I(f) = \int_X f \, d\mu$$
 für alle $f \in C_c(X)$.

Beispiel

 $X = \mathbb{R}$, $I(f) := \int_a^b f(x) dx$, wenn f außerhalb [a, b] verschwindet. Dann ist μ das Lebesgue-Borel-Maß (insb. existiert dieses).

Maße auf lokal kompakten Räumen und der Rieszsche Darstellungssatz für positive Funktionale

Vorträge 5-7:

Maße auf lokal kompakten Räumen Rieszscher Darstellungssatz für positive Funktionale Regularitätseigenschaften von Borel-Maßen Stetigkeits-Eigenschaften messbarer Funktionen

Literatur: W. Rudin, Real and Complex Analysis, McGraw-Hill (auch auf Deutsch: "Reelle und komplexe Analysis")

Komplexe Maße

Es sei S eine σ -Algebra auf einer Menge X. Eine Abbildung $\mu \colon S \to \mathbb{C}$ heißt komplexes MaB, wenn sie σ -additiv ist, also

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n=1}^{\infty}\mu(A_n)$$

in $\mathbb C$ für jede Folge $(A_n)_{n\in\mathbb N}$ paarweise disjunkter Mengen $A_n\in\mathcal S$.

Satz von Radon-Nikodym

Sei ν ein σ -endliches Maß auf (X, S) und μ ein komplexes Maß. Genau dann hat μ eine Dichte ρ bzgl. ν , also

$$\mu(A) = \int_A \rho \, d\nu$$
 für alle $A \in \mathcal{S}$,

wenn $\mu(A) = 0$ für alle $A \in \mathcal{S}$ mit $\nu(A) = 0$.

Komplexe Maße

Vortrag 8:

Komplexe Maße, Totalvariation, Jordan-Zerlegung

Vortrag 9:

Absolutstetigkeit von Maßen, Satz von Radon-Nikodym

Vortrag 10:

Anwendungen, insb. Hahn-Zerlegung, Polarzerlegung.

Vortrag 11:

Rieszscher Darstellungssatz für stetige lineare Funktionale

$$I: C_0(X) \to \mathbb{C}$$

Ziel: $I(f) = \int_X f \ d\mu$ mit komplexem Maß μ

Absolut stetige Funktionen und der Hauptsatz der Differential- und Integralrechnung

Definition

 $f: [a,b] \to \mathbb{C}$ heißt absolut stetig, wenn es zu jedem $\varepsilon > 0$ ein $\delta > 0$ gibt derart, dass $\sum^{n} |f(b_j) - f(a_j)| < \varepsilon$

für jedes $n \in \mathbb{N}$ und alle disjunkten Teilintervalle $[a_1, b_1], \ldots, [a_n, b_n]$ in [a, b] mit Gesamtlänge $< \delta$.

Satz

Genau dann ist $f:[a,b]\to\mathbb{C}$ absolut stetig, wenn es eine L^1 -Funktion $g: [a, b] \to \mathbb{C}$ gibt mit

$$f(t) = \int_a^t g(s) ds$$
 für alle $t \in [a, b]$.

Weiter ist f für fast alle $t \in [a, b]$ differenzierbar und f'(t) = g(t).

Absolut stetige Funktionen und der Hauptsatz der Differential- und Integralrechnung

Vorträge 12-14

Allgemeines zum Seminar

Für jeden Seminarteilnehmer/jede Teilnehmerin werden drei Vorbesprechungstermine (individuell oder für die Themengruppe) vereinbart.

Aktive Teilnahme an Vorbesprechungen = qualifizierte Teilnahme

Der Vortrag ist die Prüfungsleistung