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Let
Au = 0 (D)

be a (linear or non–linear) PDE on a Riemannian manifold (Mn, g), G the automorphism group
of (D), L the set of all possible solutions of (D), S the set of all solutions,

C = L/G

the configuration space,
M = S/G

the moduli space of (D).

The main task of global analysis consists in establishing S 6= ∅ and in ”calculating” the topology
and geometry of M.

Examples are Einstein equations

Ric (g) = κg, G = Diff (M),

equations of gauge theory
δRω = 0, G = gauge group.

To attack these problems, we need reasonable and natural topologies in L, G, C, S, M, in
particular G as a ”good” completed group, with a ”good” action and – if any possible – a slice.

For Mn compact, to introduce such topologies is not a serious problem. This has been done by
Eells/Palais already 40 years ago.

For Mn open, their approach fails, and the construction of Banach manifolds of maps was for
a long time an open problem.

We considered manifolds of bounded geometry and defined appropriate Sobolev uniform struc-
tures and by means of them completed spaces of maps

Ωp,r((M, g), (N, h)),

the components of which are Sobolev manifolds, for p = 2 even Hilbert manifolds.

In the case (N, h) = (M, g), we obtain by restriction completed diffeomorphism groups

Dp,r
ω (M, g, ω),

ω a symplectic or volume form, and other ones. The main problem is to establish the uniform
structure, i.e. to prove that the defined family of neighbourhoods of the diagonal is a basis for
a metrizable uniform structure. This amounts to Sobolev estimates of the derivatives of Jacobi
fields which are really very terrible.
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