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Cartan motion group

Riemm. symm. space G/K,
curvature < 0

@ G : real reductive group

@ K: maximal compact subgroup
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Cartan motion group

<D @ G : real reductive group

@ K: maximal compact subgroup

Riemm. symm. space G/K, @ g =t®yp: Cartan decomposition
curvature < 0

Tangent space
p = Tick(G/K)
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Cartan motion group

<D @ G : real reductive group

@ K: maximal compact subgroup

Riemm. symm. space G/K, @ g =t®yp: Cartan decomposition
curvature < 0

Cartan motion group:

G0=Kl><p

Tangent space
p = Tick(G/K) (isometry group of flat p)
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Deforming G to Gy

N y
< y

Riemm. symm. space G/K,

curvature < 0

p:Kxp—>G
(k,v) — exp(v)k,
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Deforming G to Gy

9 y
\.__ = ./

Riemm. symm. space G/K,

curvature < 0

p: Kxp—>G
(k,v) — exp(v)k,

3

!\. ! Gi/K

G/K

The family (G;):~0 :
For t > 0, use

v Kxp—>G
(k,v) — exp(tv)k,

to define

with underlying set K x p
G; = grou i k
product law making ¢, isom.
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A puzzle
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A puzzle, continued

Two problems:

Mackey, 1971-75 : there should exist a natural bijection

Gtemp < Go.

Connes & Higson, 1990-94 :

Group

Dual

space

GtzG

(t>0) GO
Gt Go
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A puzzle, continued

Two problems:

Mackey, 1971-75 : there should exist a natural bijection @temp > a).

Connes & Higson, 1990-94 : the Baum-Connes-Kasparov isomorphism,
between K(C*(Gp)) and K(C*(G)), should be a reflection of its properties.

Gt = G
Group =0 Go
Dual —~ —~
G G
space ( t)temp 0
Reduced o o
C*-algebra ¢ (Go) ¢ (Go)
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Constructing the (tempered) Mackey bijection

Go < Gtemp
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Unitary dual of Gy

Main tool: action of K on p*.

LFixxep* anduek;.}
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Unitary dual of Gy

Main tool: action of K on p*.

L Fix y € p* and € R; } @ Consider the centralizer

ZGO(X) = KX X p

@ Out of (x, p), build a representation of Zg, (x):
peex
© Form the induced representation

Mo(x, 1) = Ind? (1 ® €’X).

6/21



Unitary dual of Gy

Main tool: action of K on p*.

[ Fix y € p* and i € R; ] @ Consider the centralizer

ZGo(X) = KX X p

K Oy @ Out of (x, p), build a representation of Zg, (x):
A ,
p®ex

© Form the induced representation

Mo(x, 1) = Ind? (1 ® €’X).

Theorem (Mackey 1949):

All unitary irreducible representations of Gy have this form.

6/21



Unitary dual of Gy
G = SL(2,R)

actionof Konp «— SO(2) R

@ Fixxep and e i/(; form

Zg,(x) = Ky x p ::
@ Out of (x, ), build a rep. of Zg,(x): —/({M :: M‘”‘é/f%j[
1@ eix . : o i
%0
© Form the induced representation [ET
apyep ©

Mo(x, 1) = Tndg2 (1 ® ).
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What should a Mackey bijection look like?

| Rescaling maps in the dualsJ

for o > 0, RSO:EJ\OH/GB

@ Start with 7 € Z;B

*

@ Write it as Mo(x, ), where {X A
e Ky

< -000000
© -~000000

@ Send it to Mo (X, 1)
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What should a Mackey bijection look like?

L Rescaling maps in the duals]

Gy ~
for o > 0, Ratemp . Gtemp - Gtemp

@ Start with T € @temp

@ Write 7 as a submodule of Ind (0 ® /)

LN: cuspidal parabolic subgroup

L = MA: Langlands decomposition of L
o: discrete series representation of M
X € a*

|

@ Send 7 to the irreducible subrepresentation of
IndIC\;/IAN(U ® e’%)

that has the same restriction to K as . /21



What should a Mackey bijection look like?

| Rescaling-invariant representations]

@ For Gy: representations of the form Mg(0, ), with p € K.

copy of K

e For G: reps that occur in some Ind$,,y (0 ® €/©), o € Mpg:

Irreducible tempered reps of G with real infinitesimal character J

Any bijection that commutes with the rescaling maps
must induce a bijection between K and Ggric.
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Lowest K-types and a theorem of Vogan

@ Vogan introduces a positive-valued function ||z on K
@ For R > 0, there are only a finite number of A € K such that Nz < R.

@ Every representation in @adm has a finite number of lowest K-types.
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Lowest K-types and a theorem of Vogan

@ Vogan introduces a positive-valued function ||z on K
@ For R > 0, there are only a finite number of A € K such that Nz < R.

@ Every representation in Guqy, has a finite number of lowest K-types.

Theorem (Vogan 1981):

© If 7 has real infinitesimal character, then 7 has a unique lowest K-type.
@ Inequivalent 7 in @RIC have different lowest K-types.

© Every K-type occurs as the lowest K-type of a representation in @RIC.

So there exists a unique bijection
K — Gric
1= Ve (p)

that is compatible with lowest K-types.
8/21



What should a Mackey bijection EJB — @temp look like?

If it is compatible with rescaling maps and preserves lowest K-types,
then it must coincide with p+— Vg (u) on K.

Every representation in Go reads Mo (x, 1) for some (x, ).

Can we build a representation of G out of a pair (, 1) when x # 07
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Building a representation of G by a “Mackey recipe”

Main tool: action of K on p*.

[ Fix y € p* and i € R; ] @ Consider the centralizer

ZGo(X) = KX X p

K Oy @ Out of (x, p), build a representation of Zg, (x):
A ,
p®ex

© Form the induced representation

Mo(x, 1) = Ind? (1 ® €’X).

Theorem (Mackey 1949):

All unitary irreducible representations of Gy have this form.
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Building a representation of G by a “Mackey recipe”

@ Start with x in p* and p in f(;
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Building a representation of G by a “Mackey recipe”

@ Start with x in p* and p in f(;

@ Set .
Ly={ge G, Ad"(g)x = x}

= centralizer of x in G.

Then K, < L, and is a maximal compact subgroup there.
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Building a representation of G by a “Mackey recipe”

@ Start with x in p* and p in f(;

@ Set .
Ly={ge G, Ad"(g)x = x}

= centralizer of x in G.

Then K, < L, and is a maximal compact subgroup there.

@ Define '
o=V (1) ®e™,
a tempered irreducible representation of L.
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Building a representation of G by a “Mackey recipe”

L, = centralizer of x in G,

o Mackey datum (y, pt) v~ {J V. (1) ® eX
= Ly .

10/21



Building a representation of G by a “Mackey recipe”

= centralizer of x in G,
Vi, (1) ®e'x.

L
e Mackey datum (y, ) v { X

o
o Build

Py = LNy,

a parabolic subgroup with Levi factor L, (it contracts on K, x p).
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Building a representation of G by a “Mackey recipe”

= centralizer of x in G,
Vi, (1) ®e'x.

L
e Mackey datum (y, ) v { X

o
o Build

Py = LNy,

a parabolic subgroup with Levi factor L, (it contracts on K, x p).

o Inflate o to a representation of P,, and define

M(x, 1) = Indg_ (o).
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Building a representation of G by a “Mackey recipe”

centralizer of x in G,

L
e Mackey datum (x, ) v~ { X
o

o Build
'DX = LxNx»

a parabolic subgroup with Levi factor L, (it contracts on K, x p).

o Inflate o to a representation of P,, and define

M(x, 1) = Ind§, (o).

Theorem (~ 2016):

o M(x, p) is always irreducible ;
o The correspond®® (x, 1) — M(x, 1) induces a map Go — @temp;

e The correspondence is a bijection.
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The Mackey-Higson bijection: a few reasons to like it

{Indﬁixp (u ® eiX) - IndLGX,\,X (VLX (1) ® eiX) J

@ preserves lowest K-types and commutes with the rescaling maps
@ is a piecewise homeomorphism
— leads to a new proof of the Baum-Connes-Kasparov ‘conjecture’
@ is continuous from @tcmp to a) (joint work with A. M. Aubert)
— see recent work of Higson & Roman on C*-algebra embeddings
@ extends (easily) to a bijection between the admissible duals
— related to several results of Higson & Subag

— related to work of Bernstein, Higson & Subag on algebraic families
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Deformations of tempered representations

One representation at a time
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Pursuing contractions

Starting with (x, p),

@ View it as a Mackey datum for G ~~» construction of 7 & V

@ For t > 0, view it as a Mackey datum for G; v~ construction of 7, G V;
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Pursuing contractions

Starting with (x, p),

@ View it as a Mackey datum for G ~~» construction of 7 & V

@ For t > 0, view it as a Mackey datum for G; v~ construction of 7, G V;

@ As t — 0, is there a kind of convergence of V; to V; and 7; to mp?
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Pursuing contractions

Starting with (x, p),

@ View it as a Mackey datum for G ~~» construction of 7 & V
@ For t > 0, view it as a Mackey datum for G; v~ construction of 7, G V;
@ As t — 0, is there a kind of convergence of V; to V; and 7; to mp?

@ A way to give this a meaning:

o Embed all V;s in a common space E.
e This will determine evolution operators V — V.
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Pursuing contractions

Starting with (x, p),

@ View it as a Mackey datum for G ~~» construction of 7 & V

@ For t > 0, view it as a Mackey datum for G; v~ construction of 7, G V;

@ As t — 0, is there a kind of convergence of V; to V; and 7; to mp?

@ A way to give this a meaning:

o Embed all V;s in a common space E.
e This will determine evolution operators V — V.
e Could there be a topology on E for which “everything” converges?
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The discrete series

G: connected semisimple with rank(G) = rank(K). Fix 7 in @discrete series-

@ We want to see how 7 “contracts” onto its lowest K-type p.

@ Parthasarathy-Atiyah-Schmid :

7 ~ space of L? sol™ of a Dirac equation on G/K.

13/21



The discrete series
G: connected semisimple with rank(G) = rank(K). Fix 7 in Gaiscrete series.

@ We want to see how 7 “contracts” onto its lowest K-type p.
@ Parthasarathy-Atiyah-Schmid :

7 ~ space of L? sol™ of a Dirac equation on G/K.

For a special finite-dim. K-module U = v ® S that contains p exactly once,

e the equivariant bundle € = G xx U over G/K

e and the G-invariant Dirac operator D (acting on smooth sections of &)

satisfy:

Theorem (Atiyah-Schmid — 1977) :

1. The L? kernel of D carries an irreducible rep” of G with class 7.




The discrete series
G: connected semisimple with rank(G) = rank(K). Fix 7 in Gaiscrete series.

@ We want to see how 7 “contracts” onto its lowest K-type p.
@ Parthasarathy-Atiyah-Schmid :

7 ~ space of L? sol™ of a Dirac equation on G/K.

For a special finite-dim. K-module U = v ® S that contains p exactly once,

e the equivariant bundle € = G xx U over G/K

e and the G-invariant Dirac operator D (acting on smooth sections of &)

satisfy:

Theorem (Atiyah-Schmid — 1977) :

1. The L? kernel of D carries an irreducible rep” of G with class 7.

2. In fact, sections in the L? kernel of D explore the sub-bundle G x x W*.
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The discrete series

G: connected semisimple with rank(G) = rank(K). Fix 7 in @discrete series-

@ We want to see how 7 “contracts” onto its lowest K-type p.

@ Parthasarathy-Atiyah-Schmid :

7 ~ space of L? sol™ of a Dirac equation on G/K.

Transfer everything to p.
4
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The discrete series

G: connected semisimple with rank(G) = rank(K). Fix 7 in @discrete series-

@ We want to see how 7 “contracts” onto its lowest K-type p.

@ Parthasarathy-Atiyah-Schmid :

7 ~ space of L? sol™ of a Dirac equation on G/K.

Transfer everything to p.

e | v~ action of G; and G-inv. metric on p.

v~ Ge-invariant Dirac operator
b
D:cT(p, V¥ ®8).
Gi/K  Trivialize and project v~ diff’ operator

A, CC7(p, WH)

/ L? kernel H; carries irred. rep. ~ Vg, (11).
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The discrete series

G: connected semisimple with rank(G) = rank(K). Fix 7 in @discrete series-

@ We want to see how 7 “contracts” onto its lowest K-type p.

@ Parthasarathy-Atiyah-Schmid :

7 ~ space of L? sol™ of a Dirac equation on G/K.

Transfer everything to p. The dilation
€ Zeip—p
v v/t

intertwines the G- and G;- actions on p.

Gi/K @ Metrics n: and z{n; are proportional

G/K @ “Dirac” operators A; and A; are
conjugate (up to x constant)

-

/ . B yields a contraction H — H;.

/ @ The zooming-in operator f — f o z;
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The discrete series

G: connected semisimple with rank(G) = rank(K). Fix 7 in @discrete series-

@ We want to see how 7 “contracts” onto its lowest K-type L.

@ Parthasarathy-Atiyah-Schmid :

7 =~ space of L? sol™ of a Dirac equation on G/K.

The zooming-in operator f — f ozt

Transfer everything to p. defines a contraction H — H;.

E |

The K-equivariant zooming-in
eventually contracts H onto W*,
for the top&” of € (p, WH).

G/K

In the K-isotypical subspaces of H
/ for K-types other than u,
e all sections vanish at 1k.
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The spherical principal series
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The spherical principal series

Fix an Iwasawa decomposition G = KAN. For each y in a*,

Analogue of a plane wave on G/K :

G/K—-C
/ Horocycle wave e, ,, (Helgason)

(eigenvector for all. G-invariant diff. ops,
constant on the orbits of some N-conjugate.)

(2p, H) 1= tr ad|, (H)

Sum of all e, 55 as b varies:
spherical function ¢, (Harish-Chandra)

( K-invariant function,
eigenvector for all G-invariant diff.ops.)
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The spherical principal series

Start with regular x in a*. Both Mg(x, 1) and M(x, 1) can be realized either

@ on H = L2(K-orbit of y in p*), or

@ on a space of functions on p.

Helgason’s waves transferred to p.

L G/E G {J el ,F(b)db | F e LQ(B)}
G/K B

/
y
y
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The spherical principal series

Start with regular x in a*. Both Mg(x, 1) and M(x, 1) can be realized either
@ onH= LQ(K—orbit of x in p*), or

@ on a space of functions on p.

Helgason’s waves transferred to p.

. G: C {L et ,F(b)db | F e L2(B)}

—

6K
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The spherical principal series

Start with regular x in a*. Both Mg(x, 1) and M(x, 1) can be realized either
@ onH= LQ(K—orbit of x in p*), or

@ on a space of functions on p.

Helgason’s waves transferred to p.

G C et LF(b)db | F e L2(B)

d

Gi/K
/
/ e
-
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The spherical principal series

Start with regular x in a*. Both Mg(x, 1) and M(x, 1) can be realized either
@ on H = L2(K-orbit of y in p*), or

@ on a space of functions on p.

Helgason’s waves transferred to p.

¢

G XbF( b)db | FeLz(B)}

\
Gk > \
o
//ﬁ |
L= z
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The spherical principal series

Start with regular x in a*. Both Mg(x, 1) and M(x, 1) can be realized either
@ onH= LQ(K—orbit of x in p*), or

@ on a space of functions on p.

Helgason’s waves transferred to p.

£

G C UB et ,F(b)db | F e L2(B)}

\

0.125
X;b
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The spherical principal series

Start with regular x in a*. Both Mg(x, 1) and M(x, 1) can be realized either
@ on H = L2(K-orbit of y in p*), or

@ on a space of functions on p.

Helgason’s waves transferred to p.

N G C {L et ,F(b)db | F e L2(B)}

T

LI — I

0.0625
X;b

|

14 /21



Deforming representations: contractions in Fréchet spaces

Start with 7 € @temp.
@ Look for a Fréchet space E, and for each t > 0,

e a subspace V; c E
e amap 7 : K x p — End(V;) defining a rep” of G; on V,,
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Deforming representations: contractions in Fréchet spaces

Start with 7 € @temp.
@ Look for a Fréchet space E, and for each t > 0,

e a subspace V; c E
e amap 7 : K x p— End(V,) definirlg a rep” of G; on V;,

. . Gtemp —
o amap C; : Vi — V, intertwining Ry (1) and 7, 0 o7 L.
p g 1 Pt
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Deforming representations: contractions in Fréchet spaces

Start with 7 € @temp.
@ Look for a Fréchet space E, and for each t > 0,

e a subspace V; c E
e amap 7 : K x p— End(V,) definirlg a rep” of G; on V;,

e a map C;: V; — V, intertwining Rf‘“”"’ (m1) and 7 0 ;L
@ Try to arrange the choice of (E, (V¢)¢>0, (7¢)t=0) so that as t — 0,

e Vf € Vy, the vector f; := C;f goes to some limit fy,
o V(k,v)e K xp, m(k,v)[f] goes to some limit 7o (k, v)fy.

Then one obtains a representation (Vg, o) of Go.
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Deforming representations: contractions in Fréchet spaces

Start with 7 € @temp.
@ Look for a Fréchet space E, and for each t > 0,

e a subspace V; c E
e amap 7 : K xp— End(V,) defininAg a rep” of G; on V;,

e a map C;: V; — V, intertwining Rf‘e”‘p (m1) and 7 0 ;L
@ Try to arrange the choice of (E, (V¢)¢>0, (7¢)t=0) so that as t — 0,

e Vf € Vy, the vector f; := C;f goes to some limit fy,
o V(k,v) e K xp, m(k,v)[f;] goes to some limit mo(k, v)f.

Then one obtains a representation (Vg, o) of Go.

Theorem (2018-2020)

For every 7 € @temp, a choice (E, (Vt)¢=0, (7¢)t=0) can be made so that
the representation (Vo, mg) of G is irreducible
and corresponds to 7 in the Mackey bijection.

15 /21



Reduction to real infinitesimal character

@ We saw how to contract representations of the form
c .
Indpjap(e™)
where L = MA is minimal and x € a* is regular.
@ Every irreducible representation 7 € Giemp reads
G ix
IndMAN(T ® e )
where L = MA parabolic and 7 € Miemp has real infinitesimal character.

@ To contract arbitrary tempered representations, we can proceed in two steps:

@ find a contraction for real-infinitesimal-character representations;
@ use the previous ideas to reduce the general case to that one.

The second step is full of technicalities... | will now focus on the first.
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Real infinitesimal character: a strategy

Fix € @RIC- Work of Vogan-Zuckerman, Knapp-Vogan, Wong:

[ Realizing 7 in a Dolbeault cohomology space for an elliptic coadjoint orbit G/L]
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Real infinitesimal character: a strategy

Fix € @RIC- Work of Vogan-Zuckerman, Knapp-Vogan, Wong:

[ Realizing 7 in a Dolbeault cohomology space for an elliptic coadjoint orbit G/L]

There exists
@ a quasi-split Levi subgroup L < G
@ an irreducible representation (Vo) with real infinitesimal character,

@ and an infinite-rank bundle
4
vt G/L V*: V twisted by a character of L

such that

T o H(O’s)(G/L, VE) where s = dimc(K/(K n L)).
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Real infinitesimal character: a strategy, continued

[Realizing 7 in a Dolbeault cohomology space:}

T~ HO9(G/L, V),

L: a quasi-split Levi subgroup

s =dimc(K/(K n L))

V: an irreducible tempered representation of L with real infinitesimal character
V% a twist of V by a character of L

[A theorem of Mostow (1955) on the structure of G/L: ]

There exists a subspace s c g, stable under Ad(K n L), s.t. the Cartan map
Kxs—G
factors through the quotient (K x s) — (K x 5)/(K n L), and
G/L~ (K xs5)/(KnL).

18 /21



Contracting real-infinitesimal-character representations

Start with a real-infinitesimal-character representation m, realize it on

Hetarr = HOS(G/L, VF) s — dime(K/(K ~ L)),
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Contracting real-infinitesimal-character representations

Start with a real-infinitesimal-character representation m, realize it on

Hetarr = HOS(G/L, VF) s — dime(K/(K ~ L)),

1. Assume given a contraction of (V/, o) to its lowest (K n L)-type W

2. Use the Mostow map to “zoom-in on K/(K nL)", while contracting in V
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Contracting real-infinitesimal-character representations

Start with a real-infinitesimal-character representation 7, realize it on

Hetarr = HOS) (G/L, V) s — dime(K/(K ~ L)),

1. Assume given a contraction of (V/, o) to its lowest (K n L)-type W

2. Use the Mostow map to “zoom-in on K/(K nL)", while contracting in V

We can then associate to every element of Hgiart an element of

Heontracted = HOS (K /(K A L), Wh) oir s = dime(K/(K r L))

Theorem (2019) :

The K-module Hcontracted Yields a realization for the lowest K-type of .
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Quasi-split groups and fine K-types

Last case that remains to be settled:

@ G: quasi-split group

@ : real-infinitesimal-character irr. representation with a ‘fine’ K-type.

In that case
T — IndMAN(C)

where L = MA is minimal, M is abelian and ¢ is a character of M.
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Quasi-split groups and fine K-types

Last case that remains to be settled:

@ G: quasi-split group
@ : real-infinitesimal-character irr. representation with a ‘fine’ K-type.
In that case
™ — IndMAN(C)

where L = MA is minimal, M is abelian and ( is a character of M.

“Theorem” (2018-2020):

Can realize 7 on a space of sections of the bundle G xx V* over G/K

The construction mimics Helgason “waves”, in a rather unusual setting.

| will spare you the details...
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Three slogans

@ There is a simple and natural bijection between the irreducible
representations of G and those of Gg = K x p.

@ Realizing it as a deformation is possible, but (at the moment) uses the fine
details of available constructions.

@ Understanding it more conceptually seems to remain challenging.
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