Analysis 1

5. Übungsblatt – Ausgewählte Lösungen

Präsenzaufgabe 5.4 Sei $c \in \mathbb{R}_{>0}$ und sei $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto x^n - c$. Wir schreiben f' für die Abbildung $\mathbb{R} \to \mathbb{R}$, $x \mapsto nx^{n-1}$. Sei $x_0 = 1$ and definiere für $n \in \mathbb{N}$ rekursiv

$$x_k = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}.$$

- (d) Zeigen Sie, dass $x_k^n \ge c$ für alle $k \in \mathbb{N}$.
- (e) Zeigen Sie, dass $(x_k)_{k\in\mathbb{N}}$ monoton fallend ist.
- (f) Zeigen Sie, dass $(x_k)_{k\in\mathbb{N}}$ konvergent ist und $\lim_{k\to\infty} x_k = \sqrt[n]{c}$.

Lösung:

(d) Wir beweisen erst mit Induktion, dass $x_k > 0$ für alle $k \in \mathbb{N}_0$. Für k = 0 gilt $x_k = x_0 = 1 > 0$. Sei jetzt $k \in \mathbb{N}$ und nehme an, dass $x_{k-1} > 0$. Es gilt

$$x_k = x_{k-1} - \frac{x_{k-1}^n - c}{nx_{k-1}^{n-1}} = x_{k-1} \left(1 - \frac{x_{k-1}^n - c}{nx_{k-1}^n} \right)$$

Weil $x_{k-1} > 0$ und c > 0, gilt $x_{k-1}^n - c < x_{k-1}^n \le nx_{k-1}^n$. Darum $\frac{x_{k-1}^n - c}{nx_{k-1}^n} < 1$. Es folgt $x_k > 0$. Dies beweist, dass $x_k > 0$ für alle $k \in \mathbb{N}_0$.

Weil $x_{k-1} > 0$ und c > 0, gilt $\frac{c}{nx_{k-1}^n} > 0$ and damit $-\frac{1}{n} + \frac{c}{nx_{k-1}^n} \ge -\frac{1}{n} \ge -1$. Mit Hilfe der Bernoulli Ungleichung folgt

$$x_k^n = x_{k-1}^n \left(1 - \frac{1}{n} + \frac{c}{nx_{k-1}^n} \right)^n \ge x_{k-1}^n \left(1 + n \left(-\frac{1}{n} + \frac{c}{nx_{k-1}^n} \right) \right) = c.$$

(e) Für jede $k \in \mathbb{N}$ mit $k \geq 2$ gilt $x_{k-1}^n - c \geq 0$ und $x_{k-1}^{n-1} > 0$. Darum folgt

$$x_k = x_{k-1} - \frac{x_{k-1}^n - c}{nx_{k-1}^{n-1}} \le x_{k-1}.$$

(f) Weil $(x_k)_{k\in\mathbb{N}}$ monoton fallend ist und $x_{k-1}^n \geq c$, ist $(x_k)_{k\in\mathbb{N}}$ von unten beschränkt. Damit ist die Folge konvergent. Sei $x := \lim_{k\to\infty} x_k$. Weil $x_k - x_{k-1} + \frac{x_{k-1}^n - c}{nx_{k-1}^{n-1}} = 0$ für alle $k \in \mathbb{N}$, gilt

$$0 = \lim_{k \to \infty} \left(x_k - x_{k-1} + \frac{x_{k-1}^n - c}{n x_{k-1}^{n-1}} \right) = x - x + \frac{x^n - c}{n x^{n-1}} = \frac{x^n - c}{n x^{n-1}}$$

und damit $x^n = c$.

Hausaufgabe 5.1 Untersuchen Sie die Folge $(a_n)_{n\in\mathbb{N}}$, mit

$$a_n = n\left(\sqrt{1 + \frac{1}{n}} - 1\right),\,$$

auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert. Lösung: Es gilt

$$a_n = \frac{n\left(\sqrt{1 + \frac{1}{n}} - 1\right)\left(\sqrt{1 + \frac{1}{n}} + 1\right)}{\left(\sqrt{1 + \frac{1}{n}} + 1\right)} = \frac{1}{\left(\sqrt{1 + \frac{1}{n}} + 1\right)}$$

Dies zeigt, dass $(a_n)_{n\in\mathbb{N}}$ monoton steigend und nach oben beschränkt durch $a_n \leq \frac{1}{2}$ ist. Damit konvergiert die Folge. Die folge $(\sqrt{1+\frac{1}{n}})_{n\in\mathbb{N}}$ ist monoton fallend und beschränkt und ist damit konvergent. Das Quadrat des Grenzwerts ist gleich 1 und darum konvergiert $(\sqrt{1+\frac{1}{n}})_{n\in\mathbb{N}}$ gegen 1. Es folgt, dass a_n gegen $\frac{1}{2}$ konvergiert.

Hausaufgabe 5.2 Die *Fibonacci-Folge* (f_n) ist rekursiv definiert durch $f_0 := 0$, $f_1 := 1$ und $f_{n+1} := f_n + f_{n-1}$ für alle $n \in \mathbb{N}$.

(a) Zeige, dass für alle $n \in \mathbb{N}$ gilt

$$f_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$

(b) Zeige, dass die Folge $(g_n)_{n\in\mathbb{N}}, g_n:=\frac{f_{n+1}}{f_n}$ konvergiert. Zeige, dass

$$\lim_{n \to \infty} g_n = \frac{1 + \sqrt{5}}{2}.$$

Lösung:

(a) Die Aussage ist klar für n=0,1. Sei $m\in\mathbb{N}$ und nehme an, dass die Aussage wahr ist für $n\leq m.$ Es gilt

$$f_{m+1} = f_m + f_{m-1}$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^m - \left(\frac{1 - \sqrt{5}}{2} \right)^m \right] + \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{m-1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{m-1} \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^m \left(1 - \frac{1 - \sqrt{5}}{2} \right) - \left(\frac{1 - \sqrt{5}}{2} \right)^m \left(1 - \frac{1 + \sqrt{5}}{2} \right) \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{m+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{m+1} \right].$$

(b) Sei $x = \frac{1-\sqrt{5}}{1+\sqrt{5}}$. Bemerke, dass |x| < 1. Es gilt

$$g_n = \frac{\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]}{\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]} = \frac{\frac{1+\sqrt{5}}{2} - x^n \frac{1-\sqrt{5}}{2}}{1 - x^n}.$$

Weil $\lim_{n\to\infty} x^n = 0$, folgt $\lim_{n\to\infty} g_n = \frac{1+\sqrt{5}}{2}$.

Hausaufgabe 5.3 Sei (f_n) die Fibonacci-Folge. Für $n \in \mathbb{N}$, sei

$$s_n := \sum_{k=1}^n \frac{f_k}{2^k}.$$

Man zeige:

- (a) Es gilt $s_n < 2$ für alle $n \in \mathbb{N}$,
- (b) $\lim_{n\to\infty} s_n = 2$,
- (c) $\sup\{s_n : n \in \mathbb{N}\} = 2$.

Beweis:

(a) Es gilt

$$s_n = \frac{1}{2} + \sum_{k=2}^n \frac{f_{k-1}}{2^k} + \sum_{k=3}^n \frac{f_{k-2}}{2^k} = \frac{1}{2} \sum_{k=1}^{n-1} \frac{f_k}{2^k} + \frac{1}{4} \sum_{k=1}^{n-2} \frac{f_k}{2^k}$$
$$= \frac{1}{2} + \frac{1}{2} s_n - \frac{1}{2} \frac{f_n}{2^n} + \frac{1}{4} s_n - \frac{1}{4} \frac{f_{n-1}}{2^{n-1}} - \frac{1}{4} \frac{f_n}{2^n}$$

und damit

$$s_n = 2 - \frac{f_{n-1}}{2^{n-1}} - 3\frac{f_n}{2^n} < 2. (1)$$

- (b) Da alle f_n positiv sind, ist die Folge $(s_n)_{n\in\mathbb{N}}$ streng monoton wachsend. Da sie nach (a) auch nach oben beschränkt ist, ist sie also konvergent. Deshalb ist sie auch eine Cauchy-Folge, was insbesondere $s_{n+1} s_n = \frac{f_{n+1}}{2^{n+1}} \to 0$ nach sich zieht. Die Rechenregeln für Folgen ergeben somit aus (1) die Konvergenz von $(s_n)_{n\in\mathbb{N}}$ gegen 2.
- (c) Monoton wachsende und nach oben beschränkte Folgen konvergieren gegen das Supremum der Menge der Folgenglieder.

Hausaufgabe 5.4 Sei $m \in \mathbb{Z}$. Definiere die Relation \sim auf \mathbb{Z} durch

$$x \sim y \iff m|x-y.$$

Sei $\mathbb{Z}/m\mathbb{Z}$ die Menge von Äquivalenzklassen von \sim , dass heißt

$$\mathbb{Z}/m\mathbb{Z} = \{[x] : x \in \mathbb{Z}\} = \{[0], [1], [2], \dots, [m-1]\}.$$

Zeigen Sie, dass $\mathbb{Z}/m\mathbb{Z}$ genau dann ein Körper ist, wenn m eine Primzahl ist. Lösung: Wir zeigen hier nur, dass $\mathbb{Z}/m\mathbb{Z}$ kein Körper ist, wenn m keine Primzahl ist. Es gibt $p, q \in \mathbb{N}, p, q > 1$, sodass m = pq. Es gilt [p][q] = [pq] = [m] = [0]. Darum sind [p] und [q] Nullteiler. Ein Körper ist aber nullteilerfrei.