Analysis 1

7. Übungsblatt – Ausgewählte Lösungen

Präsenzaufgabe 7.2 Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen. Zeigen Sie:

- (a) Es gilt $\liminf_{n\to\infty} a_n = -\limsup_{n\to\infty} (-a_n)$.
- Lösung:
- (a) Wenn a ein Häufungspunkt von $(a_n)_{n\in\mathbb{N}}$ ist, so ist -a ein Häufungspunkt von $(-a_n)_{n\in\mathbb{N}}$. Denn für jede $\epsilon > 0$ und jede $N \in \mathbb{N}$ gibt es ein $n \in \mathbb{N}$ mit n > N und $|a a_n| < \epsilon$ un damit $|-a (-a_n)| = |a a_n| < \epsilon$. Sei \mathcal{H} die Menge der Häufungspunkte von $(a_n)_{n\in\mathbb{N}}$. Dann ist $-\mathcal{H}$ die Menge der Häufungspunkte von $(-a_n)_{n\in\mathbb{N}}$. Wenn a das kleinste Element in \mathcal{H} ist, dann ist -a das größte Element in $-\mathcal{H}$.

Präsenzaufgabe 7.4 Für $s \in \mathbb{C}$ und $z \in \mathbb{C}$ mit |z| < 1, sei $B_s(z)$ die Binomialreihe $B_s(z) = \sum_{k=0}^{\infty} \binom{s}{k} z^k$, wobei $\binom{s}{k} = \frac{s(s-1)(s-2)\dots(s-k+1)}{k!}$. Zeigen Sie, dass $B_s(x) > 0$ für alle $s \in \mathbb{R}$ und $x \in \mathbb{R}$ mit |x| < 1.

Lösung: Für alle $s, t \in \mathbb{C}$ und $z \in \mathbb{C}$ mit |z| < 1 gilt $B_s(z)B_t(z) = B_{s+t}(z)$ und $B_0(z) = 1$. Insbesondere gilt $B_s(z)B_{-s}(z) = 1$. Es folgt, dass $B_s(z) \neq 0$. Wenn $s \in \mathbb{R}$ und $x \in \mathbb{R}$, dann sieht man an die Potentzreihe von $B_{\frac{s}{2}}(x)$, dass $B_s(x) \in \mathbb{R}$. Weiter gilt, dass $B_s(x) = B_{\frac{s}{2}}(x)^2$. Es folgt, dass $B_s(x) \geq 0$. Weil $B_s(x) \neq 0$, gilt $B_s(x) > 0$.

Hausaufgabe 7.1 Untersuchen Sie die folgenden Reihen auf Konvergenz oder Divergenz:

(a)
$$\sum_{k=1}^{\infty} \frac{(k!)^2 2^k}{(2k)!}$$
, (b) $\sum_{k=1}^{\infty} \frac{(2k)!}{(2k)^k}$, (c) $\sum_{k=1}^{\infty} (\sqrt[k]{k} - 1)$.

Lösung:

- (a) Es gilt $\frac{((k+1)!)^2 2^{k+1}}{(2(k+1))!} \frac{(2k)!}{(k!)^2 2^k} = \frac{(k+1)^2 2}{(2k+2)(2k+1)} = \frac{k+1}{2k+1}$. Weil $\lim_{k\to\infty} \frac{k+1}{2k+1} = \frac{1}{2}$, ist die Reihe nach dem Quotientenkriterium konvergent.
- (b) Nach dem Bernoullische Ungleichung gilt $\frac{(2k+2)!}{(2k+2)^{k+1}} \frac{(2k)^k}{(2k)!} = (2k+1) \left(\frac{k}{k+1}\right)^k \ge (2k+1) \left(1-k\frac{1}{k+1}\right) = \frac{2k+1}{k+1}$. Weil $\lim_{k\to\infty} \frac{2k+1}{k+1} = 2$, ist die Reihe nach dem Quotientenkriterium divergent.
- (c) Für $k \geq 2$ gilt $(1 + \frac{1}{2k})^k 1 = \sum_{n=1}^k \binom{k}{n} (2k)^{-n} = \sum_{n=1}^k \frac{1}{n!} 2^{-n} \frac{k}{k} \frac{k-1}{k} \dots \frac{k-n+1}{k}$. Jedes Glied in diese Summe ist kleiner oder gleich an $\frac{1}{2}$. Es folgt, dass $(1 + \frac{1}{2k})^k \leq \frac{k}{2} + 1 \leq k$ und damit $\frac{1}{2k} \leq \sqrt[k]{k} 1$. Nach dem Minorantenkriterium ist die Reihe divergent.

Hausaufgabe 7.2 Sei I eine Menge und $(a_i)_{i\in I}$ eine Familie reeller Zahlen. Dann heisst die Familie summierbar, wenn es ein $a\in\mathbb{R}$ und für jede $\epsilon>0$ eine endliche Teilmenge $E\subseteq I$ gibt, sodass für jede endliche Teilmenge $F\subseteq I$ mit $E\subseteq F$ gilt

$$\left|a - \sum_{i \in F} a_i\right| < \epsilon.$$

In diesem Fall sagt man, dass $(a_i)_{i\in I}$ summierbar ist; man schreibt $\sum_{i\in I} a_i = a$. Zeigen Sie:

- (a) Ist $(a_i)_{i\in I}$ summierbar, so ist $I_0 := \{i \in I : a_i \neq 0\}$ abzählbar.
- (b) Sei $I = \mathbb{N}$. Dann ist $(a_i)_{i \in I}$ summierbar, genau dann wenn $\sum_{n \in \mathbb{N}} a_n$ absolut konvergent ist.

Lösung:

(a) Nehme an, dass $(a_i)_{i\in I}$ summierbar ist. Es gibt eine endliche Teilmenge E von I, sodass für jede endliche Teilmenge F von I mit $E\subseteq F$ gilt $\left|a-\sum_{i\in F}a_i\right|<\frac{1}{2}$. Für $n\in\mathbb{N}$ sei $I_{\pm,n}:=\{i\in I:\pm a_i>\frac{1}{n}\}$. Für jede endliche Menge F von $I_{+,n}$ gilt

$$a + \frac{1}{2} \ge \sum_{i \in F \cup E} a_i = \left(\sum_{i \in E} a_i\right) + \left(\sum_{j \in F \setminus E} a_j\right) \ge a - \frac{1}{2} + \frac{|F \setminus E|}{n}$$

Weil dies gilt für alle endliche Teilmengen F von $I_{+,n}$, folgt, dass $|I_{+,n} \setminus E|$ endlich ist und damit, weil E endlich ist, dass $I_{+,n}$ endlich ist. Auf ähnliche Weise folgt, dass $I_{-,n}$ endlich ist. Es gibt darum für jede $n \in \mathbb{N}$ nur endlich viele $i \in I$ mit $|a_i| > \frac{1}{n}$. Man kann jetzt einfach eine Bijektion $\phi: I_0 \to \mathbb{N}$ hinschreiben mit die Eigenschaft, dass $\phi(i) \geq \phi(j)$ wenn $|a_i| \leq |a_j|$. Es folgt, dass I_0 abzählbar ist.

(b) Nehme an, dass $(a_i)_{i\in\mathbb{N}}$ absolut konvergent ist und gegen $a\in\mathbb{R}$ konvergiert. Sei $\epsilon>0$. Es gibt ein $n\in\mathbb{N}$, sodass

$$\left|a - \sum_{i=1}^{n} a_i\right| < \frac{\epsilon}{2}$$
 und $\sum_{i=n+1}^{\infty} |a_i| < \frac{\epsilon}{2}$

Sei $E = \{1, ..., n\}$. Wenn $F \subseteq \mathbb{N}$ endlich ist und $E \subseteq F$, dann

$$\left| a - \sum_{i \in F} a_i \right| = \left| a - \sum_{i \in E} a_i + \sum_{i \in F \setminus E} a_i \right| \le \left| a - \sum_{i=1}^n a_i \right| + \sum_{i \in F \setminus E} |a_i| \le \left| a - \sum_{i=1}^n a_i \right| + \sum_{i=n+1}^{\infty} |a_i| < \epsilon.$$

Es folgt, dass $(a_i)_{i\in\mathbb{N}}$ summierbar ist.

Nehme jetzt an, dass $(a_i)_{i\in\mathbb{N}}$ summierbar ist. Sei $\epsilon > 0$. Es gibt eine $a \in \mathbb{R}$ und eine endliche Teilmene E von \mathbb{N} , sodass für alle endliche Teilmengen F von \mathbb{N} mit $E \subseteq F$ gilt

$$\left| a - \sum_{i \in F} a_i \right| < \epsilon.$$

Sei $N = \max(E)$. Für alle $n \ge N$ ist E enthalten in $\{1, \ldots, n\}$ und darum gilt

$$\left|a - \sum_{i=1}^{n} a_i\right| = \left|a - \sum_{i \in \{1, \dots, n\}} a_i\right| < \epsilon.$$

Dies beweist, dass die Reihe $\sum_{i=1}^{\infty} a_i$ gegen a konvergiert. Wenn die Reihe nicht absolut konvergent wäre, gibt es nach der Satz von Riemann (Satz 5.15) eine Bijektion $\phi: \mathbb{N} \to \mathbb{N}$, sodass $\sum_{i=1}^{\infty} a_{\phi(i)}$ gegen $a+2\epsilon$ konvergiert. Sei $N' = \max \phi^{-1}(E)$. Für jede n > N' gilt $E \subseteq \{\phi(i): 1 \le i \le n\}$ und damit

$$\sum_{i=1}^{n} a_{\phi(i)} < a + \epsilon < a + 2\epsilon.$$

Dies ist ein Widerspruch. Darum ist die Reihe absolut konvergent.

Hausaufgabe 7.3 Die Riemannsche ζ-Funktion ist für s > 1 definiert durch $\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$.

- (a) Zeigen Sie $\sum_{k=2}^{\infty} (\zeta(k) 1) = 1$.
- (b) Es sei $(p_k)_{k\in\mathbb{N}}$, $p_k < p_{k+1}$, die Folge der Primzahlen und J_N die Menge der natürlichen Zahlen, deren Primfaktoren zu $\{p_1,\ldots,p_N\}$ gehören. Zeigen Sie: Für jedes rationale s>0 ist die Familie $\left(\frac{1}{n^s}\right)_{n\in J_N}$ summierbar und hat die Summe

$$\sum_{n \in J_N} \frac{1}{n^s} = \prod_{k=1}^N \frac{1}{1 - p_k^{-s}} =: P_N.$$

(c) Im Falle s>1folgeren Sie die Eulersche Produktdarstellung der Riemannsche ζ -Funktion:

$$\zeta(s) = \prod_{k=1}^{\infty} \frac{1}{1 - p_k^{-s}} := \lim_{n \to \infty} P_N.$$

Lösung:

(a) Nach dem Doppeltreihensatz gilt $\sum_{k=2}^{\infty} (\zeta(k) - 1) = \sum_{k=2}^{\infty} \sum_{n=2}^{\infty} \frac{1}{n^k} = \sum_{n=2}^{\infty} \sum_{k=2}^{\infty} \frac{1}{n^k}$. Weil

$$\left(\frac{1}{n} - 1\right) \sum_{k=2}^{K} \frac{1}{n^k} = \left(\sum_{k=3}^{K+1} \frac{1}{n^k}\right) - \left(\sum_{k=2}^{K} \frac{1}{n^k}\right) = \frac{1}{n^{K+1}} - \frac{1}{n^2},$$

gilt

$$\sum_{k=2}^{\infty} \frac{1}{n^k} = \lim_{K \to \infty} \sum_{k=2}^{K} \frac{1}{n^k} = \lim_{K \to \infty} \frac{n^{-K-1} - n^{-2}}{n^{-1} - 1} = \frac{-n^{-2}}{n^{-1} - 1} = \frac{n}{n-1} - \frac{n+1}{n}$$

und damit

$$\sum_{n=2}^{\infty} \left(\frac{n}{n-1} - \frac{n+1}{n} \right) = \lim_{N \to \infty} \left(\left(\sum_{n=2}^{N} \frac{n}{n-1} \right) - \left(\sum_{n=3}^{N+1} \frac{n}{n-1} \right) \right)$$
$$= \lim_{N \to \infty} \left(2 - \frac{N+1}{N} \right) = 1.$$

(b) P_N wird gegeben durch (Geometrische Reihe)

$$P_N = \prod_{k=1}^N \frac{1}{1 - p_k^{-s}} = \prod_{k=1}^N \sum_{m=0}^\infty p_k^{-sm}.$$
 (1)

Zu jeder endlichen Teilmenge $J\subseteq J_N$ gibt es ein $M\in\mathbb{N}$ mit

$$\sum_{n \in J} \frac{1}{n^s} \le \prod_{k=1}^N \sum_{m=0}^M p_k^{-sm} < P_N.$$

Also ist die Menge der Partialsummen unserer Familie beschränkt, die Familie demnach summierbar. Ausmultiplizieren in (1) zeigt, dass jeder Summand in $\sum_{n \in J_N} \frac{1}{n^s}$ genau einmal auftritt. Da wir nun nicht mehr auf die Reihenfolge der Aufsummierung achten müssen ist die Behauptung bewiesen.

(c) Für s>1 existiert $\lim_{N\to\infty}\sum_{n\in J_N}\frac{1}{n^s}$ und is gleich an $\sum_{n=1}^\infty\frac{1}{n^s}$.