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Summary

This thesis comprises of the four articles

I. The infinitesimal characters of discrete series for real spherical spaces by B. Krötz,
J.J. Kuit, E.M. Opdam and H. Schlichtkrull, [9].

II. Ellipticity and discrete series by B. Krötz, J.J. Kuit, E.M. Opdam and H. Schlichtkrull,
[10].

III. On the little Weyl group of a real spherical space by J.J. Kuit and E. Sayag, [12].

IV. The most continuous part of the Plancherel decomposition for a real spherical space
by J.J. Kuit and E. Sayag, [13].

The central theme of these articles is harmonic analysis, and in particular Plancherel
theory, on real spherical spaces. In the following, we summarize the main results. The
articles themselves are reprinted in the Chapters I – IV. The notation used in the articles
is not fully consistent. The notation we use in this summary is therefore not in all cases
matching the one in the articles.

Real spherical homogeneous spaces. Let G be the group of real points of an algebraic
reductive group andH an algebraic subgroup ofG. The homogeneous spaceZ = G/H is
called real spherical if a minimal parabolic subgroup of G admits an open orbit in Z. The
class of real spherical homogeneous spaces is very rich. It includes the reductive groups
G (considered as homogeneous spaces for G × G), and reductive symmetric spaces.
Whereas for a reductive symmetric space the subgroup H is reductive, for real spherical
spaces H may be non-reductive. As an example one may consider G = SL(2,R) and
H a connected 1-dimensional subgroup of G. Up to conjugation H is equal to SO(2),
SO(1, 1)e or the unipotent subgroup of upper triangular matrices with diagonal entries
equal to 1. The corresponding homogeneous spaces, namely the Poincare upper half-
plane, the one sheeted hyperboloid and the punctured plane, are all real spherical. For the
first two examples H is reductive, for the third H is not reductive.

Although the class of real spherical homogeneous spaces is very rich, these spaces still
exhibit enough structure to develop interesting harmonic analysis on them. In particular it
is feasible to give a precise description of the Plancherel decomposition for real spherical
spaces. For reductive groups, and more generally for reductive symmetric spaces, such
precise descriptions of the Plancherel decomposition have been given in the past.

In recent years harmonic analysis, and in particular Plancherel theory on real spher-
ical homogeneous spaces has developed very rapidly. The methods differ substantially
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Summary

from those used previously for reductive groups and reductive symmetric spaces, and are
inspired by the work [15] of Sakellaridis and Venkatesh for p-adic spherical spaces.

Abstract Plancherel decomposition. From now on we assume that Z = G/H is a
homogeneous real spherical space that admits a non-zero G-invariant Radon measure.
The space L2(Z) of square integrable functions on Z carries a natural structure of a
unitary representation of G. The Plancherel decomposition for Z is a decomposition of
this representation into a direct integral of irreducible unitary representations. To be more
precise, L2(Z) decomposes G-equivariantly as

L2(Z) =

∫ ⊕

Ĝ

π ⊗Mπ dµZ(π),

where Ĝ is the unitary dual of G, and µZ is the Plancherel measure for Z, which is a
Radon measure on Ĝ. Further, Mπ is the multiplicity space for π ∈ Ĝ. An important
property of real spherical spaces is that the multiplicity spaces are finite dimensional, see
[8, Theorem C] and [11].

For general Z, the Plancherel decomposition neither has a purely discrete nature, as
for homogeneous spaces of a compact group, nor a purely continuous nature, as for real
vector spaces acting on themselves by translations. It is rather a mixture of discrete and
continuous components.

The irreducible subrepresentations of L2(Z) occur discretely in the Plancherel de-
composition and are therefore called discrete series representations. The other extreme is
called the most continuous part of the Plancherel decomposition; it consists of the largest
continuous families of representations.

Twisted discrete series representations. Not every real spherical homogeneous space
Z admits non-trivial discrete series representations. An important obstruction lies in the
normalizer of H . The normalizer NG(H) of a real spherical subgroup H has the property
that

NG(H)/H = M×A

with M a compact group and A ≃ Rn
>0 for some n ∈ N0. The natural right action of

NG(H)/H on Z commutes with the left action of G. If V is an irreducible subrepresen-
tation of L2(Z), then one can find an equivalent subrepresentation V ′ of L2(Z) so that A
acts from the right on the functions in V ′ by a character χ. By an application of Fubini’s
theorem it is easily seen that the non-zero functions in V ′ cannot be square integrable if A
is not trivial. However, there is a simple generalization of the discrete series that removes
at least this obstruction for the existence.

Given a unitary character λ of A, one may consider the space L2(Z, λ) of square inte-
grable sections of the line bundle over G/Ĥ defined by λ (up to a normalizing character
to make the right action of A unitary), where Ĥ is the inverse image of A under the pro-
jection NG(H) → NG(H)/H . The space L2(Z) then decomposes G-equivariantly as a
direct integral

L2(Z) ≃
∫ ⊕

Â
L2(Z, λ) dλ,
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where dλ is the Haar measure on the unitary character group Â of A. The irreducible
subrepresentations of L2(Z, λ) for some λ ∈ Â are said to belong to the twisted discrete
series of representations for Z. For the group case and more generally for symmetric
spaces full classifications of the (twisted) discrete series of representations exist. We
mention here the explicit parametrization of the discrete series for a reductive group by
Harish-Chandra [5] and the construction of all discrete series representations for reductive
symmetric spaces by Flensted-Jensen [4] and Matsuki and Oshima [14]. For general real
spherical spaces very little is known about the twisted discrete series of representations.

As an example of twisted discrete series representations we consider a minimal parabolic
subgroup P with Langlands decomposition P = MAN . Then Z = G/N is real spheri-
cal. In this case we may identify M with M and A with A. Now L2(G/N) decomposes
as

L2(G/N) ≃
∫ ⊕

Â

L2(G/AN, λ) dλ ≃
⊕̂
ξ∈M̂

∫ ⊕

Â

IndGP (ξ ⊗ λ⊗ 1) dχ.

The twisted discrete series of representations for G/N consists therefore of the unitary
minimal principal series representations.

Not every real spherical homogeneous Z = G/H space admits non-trivial twisted
discrete series representations. If for example G is a simple group of the non-compact
type and H = K is a maximal compact subgroup, then the L2(G/K) admits no non-
trivial irreducible subrepresentations, even though K is its own normalizer.

Infinitesimal characters of twisted discrete series representations. In the article [9]
the infinitesimal characters of twisted discrete series representations are studied.

Let P be a minimal parabolic subgroup and P = MAN a Langlands decomposition
of P . Denote by m and a the Lie algebras of M and A respectively. Choose a maximal
torus t ⊆ m and define c := a + it. Then cC is Cartan subalgebra of gC. Let Wc be the
Weyl group of the root system Σ(gC, c) of gC in c. For π ∈ Ĝ we denote by χπ ∈ c∗C/Wc

the infinitesimal character of π.

Theorem 1 ([9, Theorem 1.1]). There exists a Wc-invariant lattice ΛZ ⊆ c∗, rational
with respect to the root system in c, such that Reχπ ∈ ΛZ/Wc for every twisted discrete
series representation π for Z. Moreover, if π is a discrete series representation for Z,
then χπ is real, and hence χπ ∈ ΛZ/Wc.

Theorem 1 has the following corollary.

Corollary 2 ([9, Corollary 8.4]). Let K ⊆ G be a maximal compact subgroup and τ a
K-type. Further, let λ ∈ Â. Then there exist only finitely many twisted discrete series
representations (π, V ) for Z with A-character λ such that the τ -isotypical component
V [τ ] of π is non-zero.

Theorem 1 implies a spectral gap for twisted discrete series representations. This
is the important ingredient for the uniform constant term approximation for tempered
eigenfunctions in [3].
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Existence of twisted discrete series representations. For the group case the existence
of discrete series representations can be characterized geometrically by the following
theorem of Harish-Chandra.

Theorem 3 ([5, Theorem 13]). The existence of a compact Cartan subalgebra of G is a
necessary and sufficient condition for the existence of discrete series representations for
G.

For the more general class of reductive symmetric spaces Harish-Chandra’s rank con-
ditions generalizes: a reductive symmetric space Z = G/H admits discrete series repre-
sentations if and only if there exists a compact Cartan subspace in the Killing complement
h⊥ of h. Alternatively, this can be phrased as

Z admits discrete series representations ⇐⇒ int{X ∈ h⊥ | X elliptic} ≠ ∅ , (1)

where the interior int is taken in h⊥. The equivalence (1) is conjectured to hold true for all
algebraic homogeneous spaces Z. In [2] the existence of discrete series representations
for a real spherical space Z = G/H was proven under the condition that h⊥ contains a
relatively open subset of elliptic elements. This result was generalized in [6, Theorem
1.7] to general algebraic homogeneous spaces for G. The other implication is still an
open problem. The existence of twisted discrete series representations for a real spherical
spaces Z = G/H has been conjectured to be equivalent to

int{X ∈ Ng(h)
⊥ | X weakly elliptic} ≠ ∅,

where Ng(h) is the normalizer of h in g.
In [10] a new proof for the necessity in Theorem 3 is given. The proof is based on

Theorem 1, namely on the fact that infinitesimal characters of discrete series representa-
tions are real. The following is a brief sketch of this new proof.

Let c = a⊕it be as before. We show that the existence of a compact Cartan subalgebra
is equivalent to the occurrence of the map

θ : c = a⊕ it → c; X + iY 7→ −X + iY

in the Weyl group Wc of the root system of c in gC. By elementary means it is further
shown that if χ ∈ c∗/Wc and occurs as the infinitesimal character of a unitary representa-
tion, then it satisfies

θχ = χ. (2)

This holds in particular for the infinitesimal characters of discrete series representations.
From a given discrete series representation we construct by using Zuckerman’s translation
functor another discrete series representation, with an infinitesimal character χ ∈ c∗/Wc,
so that the stabilizer in the extended Weyl group ⟨Wc, θ⟩ of any point in the Wc-orbit χ is
trivial. It then follows from (2) that θ is contained in the Weyl group Wc. We expect that
this proof can be generalized to a proof of (1) for real spherical spaces.
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The little Weyl group. Let Gr(g, n) be the Grassmannian of n-dimensional subspaces
of g with n = dim(h). It is easy to see that each subspace in the closure of Ad(G)h in
Gr(g, n) is a Lie subalgebra of g. It is more surprising that each of these subalgebras is
again real spherical. If X ∈ g is an hyperbolic element and E ∈ Gr(g, n), then the limit

EX := lim
t→∞

Ad
(
exp(tX)

)
E

exists in Gr(g, n). For a point z ∈ Z we write hz for its stabilizer subalgebra. We fix a
minimal parabolic subgroup P of G and a Langlands decomposition P = MAN of P .
Given a direction X ∈ a := Lie(A) we consider the limit subalgebra

hz,X := lim
t→∞

Ad
(
exp(tX)

)
hz. (3)

These limit subalgebras play an important role in [9]. In [12] and [13] the limits are used
to analyse P -orbits in Z.

The goal of [12] is a new construction of an invariant of Z called the little Weyl group,
which for real spherical spaces was first defined in [7, Section 9]. Our construction is in
terms of the limit subalgebras hz,X .

If X is contained in the negative Weyl chamber with respect to P , then the limit hz,X
is up to M -conjugacy the same for all z ∈ Z so that P · z is open. This limit h∅ is called
the horospherical degeneration of hz. We denote the M -conjugacy class of a subalgebra
s of g by [s] and define ah := a ∩ h∅. We define the subgroup of G

N∅ := {v ∈ NG(a) : Ad(v)[h∅] = [h∅]}.

In fact, N∅ is a normal subgroup of NG(a) ∩NG(ah). For z ∈ Z we further define

Vz := {v ∈ NG(a) : [hz,X ] = Ad(v)[h∅] for some X ∈ a}.

This set is for suitable z ∈ Z a subset of NG(a) ∩NG(ah). For these z we set

Wz := Vz/N∅ ⊆
(
NG(a) ∩NG(ah)

)
/N∅.

The main result of the[12] is the following.

Theorem 4 ([12, Theorem 1.1]). For a suitable choice of z ∈ Z the set Wz is a subgroup
of

(
NG(a) ∩ NG(ah)

)
/N∅ and acts on a/ah as a finite crystallographic group. This

crystallographic group is naturally identified with the little Weyl group of Z as defined in
[7].

Plancherel decomposition in terms of Bernstein morphisms. In order to summarize
the contents of [13], we first recall the main result from [2].

Real spherical homogeneous spaces admit good compactifications. As one moves
to the boundary of Z in a compactification, the space Z deforms into a real spherical
homogeneous space ZI = G/HI . Such a space ZI is called a boundary degeneration
of Z. It may be viewed as the normal bundle of a G-orbit in the boundary of Z. The
least deformed boundary degeneration is Z itself. The other extreme, the most deformed
boundary degeneration is called the horospherical boundary degeneration Z∅.
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In [2] it is shown that the Plancherel decomposition of Z can be described in terms of
twisted discrete series of the boundary degenerations ZI . To be more precise, there exists
a canonical G-equivariant surjective map

B :
⊕
I

L2(ZI)tds → L2(Z), (4)

where L2(ZI)tds is the closed subspace of L2(ZI) that decomposes as a direct integral of
twisted discrete series representations for ZI . This map is called the Bernstein morphism.
The Bernstein morphism is a sum of partial isometries.

The most continuous part of L2(Z). For general I little is known about the twisted
discrete series for ZI , not even existence. This is different for the most degenerate of
the boundary degenerations, i.e., the boundary degeneration Z∅. For Z∅ the Plancherel
decomposition can be computed rather easily. There exists a parabolic subgroup Q and a
Langlands decomposition Q =MQAQNQ, so that

H∅ = (MQ ∩H)(AQ ∩H)NQ

and the homogeneous space MQ/(MQ ∩ H) is compact and aQ/aQ ∩ h ≃ a/ah. As a
consequence L2(Z∅) decomposes as

L2(Z∅) ≃
⊕̂
ξ∈M̂Q

∫ ⊕

i(a/ah)
∗
+

M∅,ξ ⊗ IndG
Q
(ξ ⊗ λ⊗ 1) dλ. (5)

Here dλ is the Lebesgue measure on i(a/ah)∗ and i(a/ah)∗+ is a fundamental domain for
the action of the stabilizer of ah in the Weyl group on i(a/ah)∗. The multiplicity spaces
M∅,ξ are independent of λ and can only be non-zero for finite dimensional unitary repre-
sentations ξ of MQ. All representations contributing to the Plancherel decomposition of
Z∅ belong to the twisted discrete series of representations for this space.

The closed subspace L2
mc(Z) := B(L2(Z∅)) of L2(Z) is called the most-continuous

part of L2(Z). The properties of the Bernstein morphism and the Plancherel decomposi-
tion (5) of L2(Z∅) guarantee that the most continuous part decomposes as

L2
mc(Z) ≃

⊕̂
ξ∈M̂Q,fu

∫ ⊕

i(a/ah)
∗
+

Mξ,λ ⊗ IndG
Q
(ξ ⊗ λ⊗ 1) dλ. (6)

Here M̂Q,fu denotes the set of equivalence classes of finite dimensional unitary represen-
tation of MQ and Mξ,λ is the multiplicity space for the representation IndG

Q
(ξ ⊗ λ⊗ 1).

In [13] the multiplicity spaces together with their inner products are determined, thus
making the unitary equivalence (6) precise.

For ξ ∈ M̂Q,fu and λ ∈ i(a/ah)
∗ let Hξ,λ be the space of smooth vectors of the

representation IndG
Q
(ξ⊗λ⊗1). Each multiplicity space Mξ,λ can naturally be viewed as a

subspace of the space (H′
ξ,λ)

H ofH-fixed functionals on Hξ,λ. We provide a construction
for all functionals in (H′

ξ,λ)
H for generic λ ∈ i(a/ah)

∗. The construction heavily relies on
the theory developed around the limit subalgebras (3) developed in [9] and [12]. We use
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the theory of the constant term developed in [3] to prove that for generic λ ∈ i(a/ah)
∗ all

H-fixed functionals on Hξ,λ are tempered. Moreover, the multiplicity spaces are in fact
given by

Mξ,λ = (H′
ξ,λ)

H .

Finally, we refine the Maaß-Selberg relations from [2, Theorem 9.6] to determine the
inner products induced by the Plancherel decomposition on (H′

ξ,λ)
H . Thus we give a pre-

cise description of the Plancherel decomposition of the most continuous part of L2
mc(Z).

Following Sakellaridis and Venkatesh [15] Delorme introduced scattering operators
for real spherical spaces Z = G/H with G split in [1]. Assuming a conjecture on the
nature of twisted discrete series representation, he shows that the scattering operators
determine the kernel of the Bernstein morphism (4). We give a concrete formula for the
scattering operators for the most continuous part, also for non-split G. In this case the
scattering operators form a representation of the little Weyl group.
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Zusammenfassung

Diese Habilitationsschrift besteht aus den vier Artikeln

I. The infinitesimal characters of discrete series for real spherical spaces von B. Krötz,
J.J. Kuit, E.M. Opdam und H. Schlichtkrull, [9].

II. Ellipticity and discrete series von B. Krötz, J.J. Kuit, E.M. Opdam und H. Schlicht-
krull, [10].

III. On the little Weyl group of a real spherical space von J.J. Kuit und E. Sayag, [12].

IV. The most continuous part of the Plancherel decomposition for a real spherical space
von J.J. Kuit und E. Sayag, [13].

Das zentrale Thema dieser Artikel ist die harmonische Analyse und insbesondere die
Planchereltheorie auf reell sphärischen Räumen. Im Folgenden fassen wir die wichtigsten
Ergebnisse zusammen. Die Artikel selbst sind in den Kapiteln I – IV aufgenommen. Die
in den Artikeln verwendete Notation ist nicht vollständig konsistent. Die Notation, die in
dieser Zusammenfassung verwendet wird, stimmt daher nicht in allen Fällen mit der in
den Artikeln überein.

Reell sphärische homogene Räume. Seien G die Gruppe der reellen Punkte einer alge-
braischen reduktiven Gruppe und H eine algebraische Untergruppe von G. Der homoge-
ne Raum Z = G/H heißt reell sphärisch, wenn eine minimale parabolische Untergruppe
vonG eine offene Bahn in Z zulässt. Die Klasse der reell sphärischen homogenen Räume
ist sehr groß. Sie umfasst die reduktiven Gruppen G (welche als homogene Räume für
die Gruppen G×G angesehen werden) und reduktive symmetrische Räume. Obwohl für
einen reduktiven symmetrischen Raum die Untergruppe H reduktiv ist, kann H für reelle
sphärische Räume nicht reduktiv sein. Ein Beispiel dafür ist G = SL(2,R) und H eine
zusammenhängende 1-dimensionale Untergruppe von G. Bis auf eine Konjugation ist H
gleich SO(2), SO(1, 1)e oder die unipotente Untergruppe der oberen Dreiecksmatrizen
mit diagonalen Einträgen gleich 1. Die entsprechenden homogenen Räume, nämlich die
obere Poincaré-Halbebene, das einschichtige Hyperboloid und die punktierte Ebene, sind
alle reell sphärisch. Für die ersten beiden Beispiele ist H reduktiv, für das dritte ist H
nicht reduktiv.

Obwohl die Klasse der reell sphärischen homogenen Räume sehr groß ist, weisen die-
se Räume immer noch genug Struktur auf, um interessante harmonische Analysis auf ih-
nen zu entwickeln. Insbesondere ist eine genaue Beschreibung der Plancherel-Zerlegung
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Zusammenfassung

für reell sphärische Räume möglich. Für reduktive Gruppen und allgemeiner für reduk-
tive symmetrische Räume wurden in der Vergangenheit solche genauen Beschreibungen
der Plancherel-Zerlegung gegeben.

In den letzten Jahren hat sich die harmonische Analyse und insbesondere die Plancherel-
Theorie reell sphärischer homogener Räume sehr schnell entwickelt. Die Methoden un-
terscheiden sich wesentlich von denen, die zuvor für reduktive Gruppen und reduktive
symmetrische Räume verwendet wurden, und sind inspiriert von der Arbeit [15] von Sa-
kellaridis und Venkatesh für p-adische sphärische Räume.

Abstrakte Plancherel-Zerlegung. Von nun an nehmen wir an, dass Z = G/H ein ho-
mogener reell spärischer Raum ist, der ein G-invariantes Radonmaß zulässt. Der Raum
L2(Z) der quadratisch integrierbarer Funktionen auf Z trägt eine natürliche Struktur ei-
ner unitären Darstellung vonG. Die Plancherel-Zerlegung für Z ist eine Zerlegung dieser
Darstellung in ein direktes Integral irreduzibler unitären Darstellungen. Genauer gesagt,
zerfällt L2(Z) G-äquivariant als

L2(Z) =

∫ ⊕

Ĝ

π ⊗Mπ dµZ(π),

wobei Ĝ das unitäre Dual von G und µZ das Plancherel-Maß für Z ist. Letzteres ist ein
Radon-Maß auf Ĝ. Außerdem ist Mπ der Multiplizitätsraum für π ∈ Ĝ. Eine wichtige
Eigenschaft reell sphärischer Räume ist, dass die Multiplizitätsräume endlichdimensional
sind, siehe [8, Theorem C] und [11].

Für allgemeine Z hat die Plancherel-Zerlegung weder einen rein diskreten Charakter,
wie für homogene Räume kompakter Gruppe, noch einen rein kontinuierlichen Charakter,
wie für reelle Vektorräume, die durch Translationen auf sich selbst wirken. Vielmehr
handelt es sich um eine Mischung aus diskreten und kontinuierlichen Komponenten.

Die irreduziblen Unterdarstellungen von L2(Z) treten diskret in der Plancherel-Zer-
legung auf und heißen daher Darstellungen der diskrete Reihe. Das andere Extrem wird
als der kontinuierlichste Teil der Plancherel-Zerlegung bezeichnet; sie besteht aus den
größten stetigen Familien von Darstellungen.

Darstellungen der getwisteten diskreten Reihe. Nicht jeder reell sphärische homogene
Raum Z lässt Darstellungen der diskreten Reihe zu. Eine wichtige Beschränkung liegt
im Normalisator von H . Der Normalisator NG(H) einer reell sphärischen Untergruppe
H hat die Eigenschaft, dass

NG(H)/H = M×A,

wobei M eine kompakte Gruppe und A ≃ Rn
>0 für ein n ∈ N0 ist. Die natürliche Rechts-

wirkung von NG(H)/H auf Z vertauscht mit der Linkswirkung von G. Wenn V eine
irreduzible Unterdarstellung von L2(Z) ist, dann gibt es eine zu V äquivalente Unter-
darstellung V ′ von L2(Z), sodass A von rechts auf die Funktionen in V ′ wirkt mittels
einem Charakter χ. Durch Anwendung des Satzes von Fubini sieht man leicht, dass die
von Null verschiedenen Funktionen in V ′ nicht quadratintegrierbar sein können, wenn A
nicht trivial ist. Es gibt jedoch eine einfache Verallgemeinerung der diskreten Reihe, die
zumindest diese Einschränkung für die Existenz beseitigt.
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Zusammenfassung

Für einen gegebenen Charakter λ von A kann man den Raum L2(Z, λ) von quadra-
tisch integrierbaren Schnitten des Geradenbündels überG/Ĥ definiert durch λ betrachten
(bis auf einen normalisierenden Charakter, um die Rechtswirkung von A unitär zu ma-
chen), wobei Ĥ das Urbild von A unter der Projektion NG(H) → NG(H)/H ist. Der
Raum L2(Z) zerlegt G-äquivariant als ein direktes Integral

L2(Z) ≃
∫ ⊕

Â
L2(Z, λ) dλ,

wobei dλ das Haar-Maß auf der unitären Charaktergruppe Â von A ist. Die Darstellun-
gen der getwisteten diskreten Reihe für Z sind die irreduziblen Unterdarstellungen von
L2(Z, λ) für einen Charakter λ ∈ Â. Für den Gruppenfall und allgemeiner für symme-
trische Räume gibt es vollständige Klassifikationen der Darstellungen der (getwisteten)
diskreten Reihe. Wir erwähnen hier die explizite Parametrisierung der diskreten Reihen
für eine reduktive Gruppe durch Harish-Chandra [5] und die Konstruktion aller Darstel-
lungen der diskreten Reihe für reduktive symmetrische Räume durch Flensted-Jensen [4]
und Matsuki und Oshima [14]. Für allgemeine reell sphärische Räume ist sehr wenig über
die Darstellungen der getwisteten diskreten Reihe bekannt.

Als Beispiel von Darstellungen der getwisteten diskreten Reihe betrachten wir eine
minimale parabolische Untergruppe P mit Langlands-Zerlegung P = MAN . Dann ist
Z = G/N reell sphärisch. In diesem Fall können wir M mit M und A mit A identifizie-
ren. Der Raum L2(G/N) zerfällt als

L2(B/N) ≃
∫ ⊕

Â

L2(G/AN, λ) dλ ≃
⊕̂
ξ∈M̂

∫ ⊕

Â

IndGP (ξ ⊗ λ⊗ 1) dχ.

Die Darstellungen der getwisteten diskreten Reihe für G/N sind also die unitären mini-
malen Hauptreihendarstellungen.

Nicht jeder reell sphärische homogene Raum Z = G/H lässt Darstellungen der get-
wisteten diskreten Reihe zu. Wenn beispielsweise G eine einfache Gruppe vom nicht-
kompakten Typ undH = K eine maximal kompakte Untergruppe ist, dann hat L2(G/K)
keine nicht-trivialen irreduziblen Unterdarstellungen, obwohl K sein eigener Normalisa-
tor ist.

Infinitesimale Charaktere von Darstellungen der getwisteten diskreten Reihe. Im
Artikel [9] werden die infinitesimalen Charaktere von Darstellungen der getwisteten dis-
kreten Reihe untersucht.

Seien P eine minimale parabolische Untergruppe und P = MAN eine Langlands-
Zerlegung von P . Wir bezeichnen mit m und a die Lie-Algebren vonM beziehungsweise
A. Weiter wählen wir einen maximalen Torus t ⊆ m und definieren c := a+ it. Dann ist
cC eine Cartan-Unteralgebra von gC. Sei Wc die Weylgruppe des Wurzelsystems Σ(gC, c)
von gC in c. Für π ∈ Ĝ bezeichnen wir mit χπ ∈ c∗C/Wc den infinitesimalen Charakter
von π.

Satz 1 ([9, Theorem 1.1]). Es gibt ein Wc-invariantes Gitter ΛZ ⊆ c∗, welches rational
bezüglich des Wurzelsystems in c ist, sodass Reχπ ∈ ΛZ/Wc für jede Darstellung π der
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getwisteten diskreten Reihe für Z gilt. Wenn außerdem π eine Darstellung der diskrete
Reihe für Z ist, dann ist χπ reell und damit χπ ∈ ΛZ/Wc.

Satz 1 hat das folgende Korollar.

Korollar 2 ([9, Corollary 8.4]). Seien K ⊆ G eine maximal kompakte Untergruppe
und τ ein K-Typ. Weiterhin sei λ ∈ Â. Dann gibt es nur endlich viele Darstellungen
(π, V ) der getwisteten diskreten Reihe für Z mit A-Charakter λ, sodass die τ -isotypische
Komponente V [τ ] von π nicht null ist.

Satz 1 impliziert die Existenz einer spektralen Lücke für Darstellungen der getwiste-
ten diskreten Reihe. Dies ist ein wichtiger Bestandteil für die gleichmäßige Abschätzung
für den Rest in der konstanten Term-Approximierung für temperierte Eigenfunktionen in
[3].

Existenz von Darstellungen der getwisteten diskreten Reihe für Z. Für den Gruppen-
fall lässt sich die Existenz von Darstellungen der diskreten Reihe durch den folgenden
Satz von Harish-Chandra geometrisch charakterisieren.

Satz 3 ([5, Theorem 13]). Die Existenz einer kompakten Cartan-Unteralgebra von G
ist eine notwendige und hinreichende Bedingung für die Existenz von Darstellungen der
diskreten Reihe für G.

Für die allgemeinere Klasse der reduktiven symmetrischen Räume verallgemeinern
die Rangbedingungen von Harish-Chandra: Für einen reduktiven symmetrischen Raum
Z = G/H existieren genau dann Darstellungen der diskreten Reihe, wenn es einen kom-
pakten Cartan-Unterraum im Killing-Komplement h⊥ von h gibt. Alternativ kann dies
auch so formuliert werden:

Es existieren Darstellungen der diskrete Reihe für Z (7)

⇐⇒ int{X ∈ h⊥ | X elliptisch} ≠ ∅ ,

wobei das innere int in h⊥ genommen wird. Es wird vermutet, dass die Äquivalenz (7)
für alle algebraischen homogenen Räume Z gilt. In [2] wurde die Existenz von Dar-
stellungen der diskreten Reihe für einen reell sphärischen Raum Z = G/H unter der
Bedingung bewiesen, dass int{X ∈ h⊥ | X elliptisch} ̸= ∅. Dieses Ergebnis wurde in
[6, Theorem 1.7] auf allgemeine algebraische homogene Räume für G verallgemeinert.
Die andere Implikation ist noch ein offenes Problem. Es wird vermutet, dass die Existenz
von Darstellungen der getwisteten diskreten Reihe für reell sphärische Räume Z = G/H
äquivalent zu

int{X ∈ Ng(h)
⊥ | X schwach elliptisch} ≠ ∅

ist, wobei Ng(h) der Normalisator von h in g ist.
In [10] wird ein neuer Beweis für die Notwendigkeit der Existenz einer kompakten

Cartan-Untergruppe in Satz 3 gegeben. Der Beweis basiert auf Theorem 1, nämlich dar-
auf, dass infinitesimale Charaktere von Darstellungen der diskreten Reihe reell sind. Das
Folgende ist eine kurze Skizze dieses neuen Beweises.
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Sei c = a ⊕ it wie zuvor. Wir zeigen, dass die Existenz einer kompakten Cartan-
Unteralgebra dazu äquivalent ist, dass die Abbildung

θ : c = a⊕ it → c; X + iY 7→ −X + iY

in der Weyl-Gruppe Wc des Wurzelsystems von c in gC erhalten ist. Mit elementaren
Mitteln zeigen wir weiter, dass wenn χ ∈ c∗/Wc reell ist und als infinitesimaler Charakter
einer unitären Darstellung auftritt, der Parameter χ die Gleichung

θχ = χ (8)

erfüllt. Dies gilt insbesondere für die infinitesimalen Charaktere von Darstellungen der
diskreten Reihe. Aus einer gegebenen Darstellung der diskreten Reihe konstruieren wir
unter Verwendung des Zuckerman’schen Verschiebungsfunktor eine weitere Darstellung
der diskrete Reihe mit einem infinitesimalen Charakter χ ∈ c∗/Wc, so dass der Stabili-
sator in der erweiterten Weyl-Gruppe ⟨Wc, θ⟩ von jedem Punkt in den Wc-Orbit χ trivial
ist.

Aus einer gegebenen Darstellung der diskreten Reihe konstruieren wir unter Verwen-
dung des Zuckerman’schen Verschiebungsfunktors eine weitere Darstellung der diskreten
Reihe mit einem infinitesimalen Charakter χ ∈ c∗/Wc, sodass sein Stabilisator in der er-
weiterten Weyl-Gruppe ⟨Wc, θ⟩ trivial ist. Aus (8) folgt dann, dass θ in der Weylgruppe
Wc enthalten ist. Wir erwarten, dass dieser Beweis zu einem Beweis von (7) für reell
sphärischen Räume verallgemeinert werden kann.

Die kleine Weyl-Gruppe. Sei Gr(g, n) die Graßmann-Mannigfaltigkeit von Unterräumen
von g der Dimension n. Es ist leicht zu sehen, dass jeder Unterraum im Abschluss von
Ad(G)h in Gr(g, n) eine Lie-Unteralgebra von g ist. Überraschender ist, dass jede dieser
Unteralgebren wieder reell sphärisch ist. Wenn X ∈ g ein hyperbolisches Element und
E ∈ Gr(g, n) ist, dann existiert der Limes

EX := lim
t→∞

Ad
(
exp(tX)

)
E

in Gr(g, n). Für einen Punkt z ∈ Z schreiben wir hz für seine Stabilisator-Unteralgebra.
Seien P eine minimale parabolische Untergruppe vonG und P =MAN eine Langlands-
Zerlegung von P . Bei gegebener Richtung X ∈ a := Lie(A) betrachten wir die Limes-
unteralgebra

hz,X := lim
t→∞

Ad
(
exp(tX)

)
hz. (9)

Diese Limesunteralgebren spielen eine wichtige Rolle in [9]. In [12] und [13] werden die
Limes verwendet, um P -Orbiten in Z zu analysieren.

Das Ziel von [12] ist eine neue Konstruktion einer Invarianten von Z, nämlich die
kleine Weyl-Gruppe, die erstmals in [7, Section 9] für reell sphärische Räume definiert
wurde. Unsere Beschreibung der kleinen Weyl-Gruppe basiert auf den Limesunteralge-
bren hz,X .

Wenn X in der negativen Weyl-Kammer (bezüglich P ) enthalten ist, dann ist der
Limes hz,X bis auf M -Konjugation gleich für alle z ∈ Z für die P · z offen ist. Dieser
Limes h∅ wird die horosphärische Entartung von hz genannt. Wir schreiben [s] für die
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M -Konjugationsklasse einer Unteralgebra s von g und definieren ah := a ∩ h∅. Weiter
definieren wir die Untergruppe N∅ von G als

N∅ := {v ∈ NG(a) : Ad(v)[h∅] = [h∅]}.

Dann ist N∅ ein Normalteiler von NG(a) ∩NG(ah). Für z ∈ Z definieren wir

Vz := {v ∈ NG(a) : [hz,X ] = Ad(v)[h∅] für einige X ∈ a}.

Für geeignete z ∈ Z is diese Menge eine Teilmenge von NG(a) ∩ NG(ah). Für diese z
definieren wir abschließend

Wz := Vz/N∅ ⊆
(
NG(a) ∩NG(ah)

)
/N∅.

Das Hauptergebnis von [12] ist das Folgende.

Satz 4 ([12, Theorem 1.1]). Bei geeigneter Wahl von z ∈ Z ist Wz eine Untergruppe
von

(
NG(a) ∩ NG(ah)

)
/N∅ und wirkt als eine endliche kristallographische Gruppe auf

a/ah. Diese kristallographische Gruppe ist auf natürliche Weise isomorph zu der kleinen
Weyl-Gruppe von Z aus [7].

Bernstein-Morphismen. Um den Inhalt von [13] zusammenzufassen, schauen wir uns
zunächst das Hauptergebnis aus [2] an.

Reell sphärische homogene Räume lassen gute Kompaktifizierungen zu. Bewegt man
sich in einer Kompaktifizierung zum Rand von Z, verformt sich der Raum Z zu einem
reell sphärischen homogenen Raum ZI = G/HI . Einen solchen Raum ZI nennt man eine
Randentartung von Z. Eine Randentartung kann als Normalenbündel eines G-Orbits im
Rand von Z angesehen werden. Die am wenigsten entartete Randentartung ist Z selbst.
Das andere Extrem, die am stärksten entartete Randentartung wird als horosphärische
Randentartung Z∅ bezeichnet.

In [2] wird gezeigt, dass die Plancherel-Zerlegung von Z mit Darstellungen der get-
wisteten diskreten Reihe der RandentartungZI beschrieben werden kann. Genauer gesagt
gibt es eine kanonische G-äquivariante surjektive Abbildung

B :
⊕
I

L2(ZI)tds → L2(Z), (10)

wobei L2(ZI)tds der geschlossene Unterraum von L2(ZI) ist, der sich als direktes Integral
von Darstellungen der getwisteten diskreten Reihe für ZI zerlegt. Diese Abbildung wird
als Bernstein-Morphismus bezeichnet. Der Bernstein-Morphismus ist eine Summe von
partiellen Isometrien.

Das kontinuierlichste Teil von L2(Z). Für allgemeine I ist wenig über die getwistete
diskrete Reihe für ZI bekannt, nicht einmal die Existenz von Darstellungen der getwiste-
ten diskreten Reihe. Anders ist dies bei der am weitesten entarteten Randentartung, der
Randentartung Z∅. Für diesen Raum kann die Plancherel-Zerlegung ziemlich einfach be-
rechnet werden. Es gibt eine parabolische Untergruppe Q und eine Langlands-Zerlegung
Q =MQAQNQ, sodass

H∅ = (MQ ∩H)(AQ ∩H)NQ.
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Der homogene RaumMQ/(MQ∩H) ist kompakt und aQ/aQ∩h ≃ a/ah. Folglich zerfällt
L2(Z∅) als

L2(Z∅) ≃
⊕̂
ξ∈M̂Q

∫ ⊕

i(a/ah)
∗
+

M∅,ξ ⊗ IndG
Q
(ξ ⊗ λ⊗ 1) dλ. (11)

Hier ist dλ das Lebesgue-Maß auf i(a/ah)∗ und ia/ah)
∗
+ ist ein Fundamentalbereich

für die Wirkung des Stabilisators von ah in der Weylgruppe auf i(a/ah)∗. Die Multi-
plizitätsräume M∅,ξ sind unabhängig von λ und können nur für die endlichdimensio-
nale unitäre Darstellungen ξ von MQ ungleich Null sein. Alle Darstellungen, die zur
Plancherel-Zerlegung von Z∅ beitragen, gehören zu der getwisteten diskreten Reihe von
Darstellungen für diesen Raum.

Der abgeschlossene Unterraum L2
mc(Z) := B(L2(Z∅)) von L2(Z) wird das kontinu-

ierlichste Teil von L2(Z) genannt. Die Eigenschaften des Bernstein-Morphismus und der
Plancherel-Zerlegung (11) von L2(Z∅) garantieren, dass der stetigste Teil zerfällt wie

L2
mc(Z) ≃

⊕̂
ξ∈M̂Q,fu

∫ ⊕

i(a/ah)
∗
+

Mξ,λ ⊗ IndG
Q
(ξ ⊗ λ⊗ 1) dλ. (12)

Dabei bezeichnet M̂Q,fu die Menge der Äquivalenzklassen der endlichdimensionalen uni-
tären Darstellungen von MQ und Mξ,λ ist der Multiplizitätsraum für die Darstellung
IndG

Q
(ξ⊗λ⊗1). In [13] werden die Multiplizitätsräume zusammen mit ihren Skalarpro-

dukten bestimmt, womit die unitäre (12) Äquivalenz präzise gemacht wird.
Für ξ ∈ M̂Q,fu und λ ∈ i(a/ah)

∗ sei Hξ,λ der Raum glatter Vektoren der Darstellung
IndG

Q
(ξ ⊗ λ ⊗ 1). Jeder Multiplizitätsraum Mξ,λ kann auf natürliche Weise als Unter-

raum des Raumes (H′
ξ,λ)

H von H-festen Funktionalen auf Hξ,λ gesehen werden. Wir
geben eine Konstruktion für alle Funktionale in (H′

ξ,λ)
H für generisches λ ∈ i(a/ah)

∗ .
Die Konstruktion basiert stark auf der in [9] und [12] entwickelten Theorie für Limes-
unteralgebren (9). Wir verwenden die in [3] entwickelte Theorie des konstanten Terms,
um zu beweisen, dass für generische λ ∈ i(a/ah)

∗ alle H-festen Funktionale auf Hξ,λ

temperiert sind und die Multiplizitätsräume gegeben werden durch

Mξ,λ = (H′
ξ,λ)

H .

Zum Schluß verfeinern wir die Maaß-Selberg-Relationen aus [2, Theorem 9.6], um die
durch die Plancherel-Zerlegung auf (H′

ξ,λ)
H induzierten Skalarprodukte zu bestimmen.

Damit geben wir eine genaue Beschreibung der Plancherel-Zerlegung des kontinuierlich-
sten Teils von L2

mc(Z).
Nach Sakellaridis und Venkatesh [15] führte Delorme in [1] Streuoperatoren für reell

sphärische Räume Z = G/H ein, unter der Annahme, dass G spaltend ist. Unter einer
weiteren Annahme einer Vermutung über die Natur der Darstellungen der getwisteten
diskreten Reihe zeigt er, dass die Streuoperatoren den Kern des Bernstein-Morphismus
(10) bestimmen. Wir geben, auch für nicht spaltende Gruppen G, eine konkrete Formel
für die Streuoperatoren für den stetigsten Teil. In diesem Fall bilden die Streuoperatoren
eine Darstellung der kleinen Weyl-Gruppe.
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The infinitesimal characters of discrete
series for real spherical spaces †

Joint with Bernhard Krötz, Eric Opdam and Henrik Schlichtkrull.

Abstract

Let Z = G/H be the homogeneous space of a real reductive group and a
unimodular real spherical subgroup, and consider the regular representation
of G on L2(Z). It is shown that all representations of the discrete series, that
is, the irreducible subrepresentations of L2(Z), have infinitesimal characters
which are real and belong to a lattice. Moreover, letK be a maximal compact
subgroup of G. Then each irreducible representation of K occurs in a finite
set of such discrete series representations only. Similar results are obtained
for the twisted discrete series, that is, the discrete components of the space
of square integrable sections of a line bundle, given by a unitary character on
an abelian extension of H .

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Notions and Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Spherical roots and the compression cone . . . . . . . . . . . . . . . . . . 8
2.2 The normalizer of a real spherical subalgebra . . . . . . . . . . . . . . . . 9
3 Twisted discrete series as quotients of principal series . . . . . . . . . . . . . 9
3.1 The spherical subrepresentation theorem . . . . . . . . . . . . . . . . . . . 9
3.2 Discrete series and twisted discrete series . . . . . . . . . . . . . . . . . . 11
3.3 Quotient morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Generalized volume growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Limiting subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Volume-weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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1 Introduction

Let Z = G/H be a homogeneous space attached to a real reductive group G and a closed
subgroup H . A principal objective in the harmonic analysis of Z is the understanding of
the G-equivariant spectral decomposition of the space L2(Z) of square integrable half-
densities. The irreducible components of L2(Z) are of particular interest, they comprise
the discrete series for Z. We will assume that Z is unimodular, that is, it carries a positive
G-invariant Radon measure. Then L2(Z) is identified as the space of square integrable
functions with respect to this measure.

Later on we shall restrict ourselves to the case where Z is real spherical, that is, the
action of a minimal parabolic subgroup P ⊆ G on Z admits an open orbit. Symmetric
spaces are real spherical, as well as real forms of complex spherical spaces. We men-
tion that a classification of real spherical spaces G/H with H reductive became recently
available, see [20] and [21].

For symmetric spaces it is known (see [5], [2]) that the spectral components of L2(Z)
are built by means of induction from certain parabolic subgroups of G. The inducing
representations belong to the discrete series of a symmetric space of the Levi subgroup,
twisted by unitary characters on its center. For real spherical spaces the results on tem-
pered representations obtained in [25] suggest similarly that the spectral decomposition
of L2(Z) will be built from the twisted discrete spectrum of a certain finite set of satellites
ZI = G/HI of Z, which are again unimodular real spherical spaces. A first step towards
obtaining a spectral decomposition is then to obtain key properties of the twisted discrete
series for all unimodular real spherical spaces.

As usual we write Ĝ for the unitary dual of G and disregard the distinction between
equivalence classes [π] ∈ Ĝ and their representatives π. Representations π ∈ Ĝ which
occur in L2(Z) discretely will be called representations of the discrete series for Z. This
notion distinguishes a subset of Ĝwhich we denote by ĜH,d. We write Ĝd for the discrete
series of G, i.e., Ĝd = Ĝ{e},d. Note that in general there is no relation between the sets
Ĝd and ĜH,d if H is non-trivial.

To explain the notion of being twisted we recall the automorphism group NG(H)/H
of Z, where NG(H) denotes the normalizer of H . It gives rise to a right action of
NG(H)/H on L2(Z) commuting with the left regular action of G. For a real spheri-
cal space NG(H)/H is fairly well behaved: NG(H)/H is a product of a compact group
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1. Introduction

and a non-compact torus [24]. It is easy to see that in this case there exists no dis-
crete spectrum unless NG(H)/H is compact. Let A be a maximal non-compact torus in
NG(H)/H . Hence if A is non-trivial, there exist no discrete series representations for Z.
In this case we generalize the notion of discrete series as follows. We have an equivariant
disintegration into G-modules

L2(Z) ≃
∫ ⊕

Â
L2(Z;χ) dχ .

Here Â denotes the set of unitary characters χ of A, and L2(Z;χ) denotes the space
of functions on Z, which transform by χ (times a modular character) and are square
integrable modulo A (as half-densities, since in general G/NG(H) is not unimodular).
The set of representations π ∈ Ĝ which are in the discrete spectrum of L2(Z;χ) is called
the χ-twisted discrete series and is denoted ĜH,χ. The union ĜH,td of these sets over all
χ ∈ Â is referred to as the twisted discrete series for Z.

Let P = MAN be a Langlands decomposition of the minimal parabolic subgroup
P . Denote by m and a the Lie algebras of M and A respectively. Choose a maximal
torus t ⊆ m and set c := a + it. We note that cC is Cartan subalgebra of gC and denote
by Wc the Weyl group of the root system Σ(gC, c) ⊆ c∗. For every π ∈ Ĝ we denote
by χπ ∈ c∗C/Wc its infinitesimal character and recall a theorem of Harish-Chandra ([10,
Thm. 7]), which asserts that the map

X : Ĝ→ c∗C/Wc, π 7→ χπ (1.1)

has uniformly finite fibers. Note that X is continuous if Ĝ is endowed with the Fell
topology.

A priori it is not clear that X(ĜH,d) or X(ĜH,χ) is a discrete subset of c∗C/Wc. How-
ever, we believe this to be true for general real algebraic homogeneous spaces Z. For real
spherical spaces Z it is a consequence of the main theorem, Theorem 8.3 below, which
slightly simplified can be phrased as follows.

Theorem 1.1. Let Z = G/H be a unimodular real spherical space. Assume that the pair
(G,H) is real algebraic. Then there exists a Wc-invariant lattice ΛZ ⊆ c∗, rational with
respect to the root system in c, such that:

(i) X(ĜH,d) ⊆ ΛZ/Wc,

(ii) ReX(ĜH,td) ⊆ ΛZ/Wc.

A few remarks related to this theorem are in order.

Remark 1.2.

(1) The statement in (i) implies that the infinitesimal characters χπ are real and discrete
for π ∈ ĜH,d. Furthermore (see Corollary 8.4 below), these properties of χπ lead
to the following. Let K ⊆ G be a maximal compact subgroup. For all τ ∈ K̂ and
χ ∈ Â the set

{π ∈ ĜH,χ | HomK(π
∣∣
K
, τ) ̸= 0}
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I. The infinitesimal characters of discrete series for real spherical spaces

is finite. In other words, there are only finitely many χ-twisted discrete series repre-
sentations containing a given K-type. For p-adic spherical spaces of wavefront type
this was shown by Sakellaridis and Venkatesh in [37, Theorem 9.2.1].

(2) There is a simple relation between the leading exponents of generalized matrix coeffi-
cients attached to π ∈ ĜH,td and the infinitesimal character χπ of π (cf. Lemma 3.4).
Further, twisted discrete series can be described by inequalities satisfied by the lead-
ing exponents (cf. [25] or (3.3)-(3.4) below). The inclusion ReX(ĜH,td) ⊆ ΛZ/Wc

then implies that all real parts of leading exponents are uniformly bounded away from
”rho”. Phrased differently, Theorem 1.1(ii) implies a spectral gap for twisted discrete
series. In [37], Prop. 9.4.8, this is called ”uniform boundedness of exponents” and
is a key fact for establishing the Plancherel formula for p-adic spherical spaces of
wavefront type.

(3) The lattice ΛZ can be taken of the form 1
N
Σ(gC, c), where N is an integer which only

depends on g. (We may use the integer N from Theorem 8.3, which is the product
of the integers from Theorem 7.4 and Proposition B.1. The latter two integers only
depend on g.)

Theorem 1.1 is the crucial ingredient for the uniform constant term approximation
for tempered eigenfunctions in [7]. Thus it lies at the heart of the Plancherel theorem
for L2(Z) in terms of Bernstein-morphisms, established in [6] and motivated by [37],
Section 11. Notice that the strategy of proof designed in [37] for the Plancherel theorem
differs from the earlier approach where the discrete spectrum is classified first (see [11]
for groups and [2], [5] for symmetric spaces). In [37] the discrete series is taken as
a black box which features a spectral gap, and the Plancherel theorem is established
without knowing the discrete spectrum explicitly.

For reductive groups an explicit parametrization of the discrete series Ĝd was obtained
by Harish-Chandra [12]. More generally, for symmetric spaces G/H discrete series were
constructed by Flensted-Jensen [8], and his work was completed by Matsuki and Oshima
[35] to a full classification of ĜH,d. For a general real spherical space such an explicit
parameter description appears currently to be out of reach and for non-symmetric spaces
the existence or non-existence of discrete series is known only in a few cases. See [26,
Corollary 5.6] and in [15, Corollary 4.5].

More importantly, the existence of discrete series can be characterized geometrically
by the existence of a compact Cartan subalgebra in the group case, and of a compact
Cartan subspace in h⊥ in the more general case of symmetric spaces. One can phrase this
uniformly as:

ĜH,d ̸= ∅ ⇐⇒ int{X ∈ h⊥ | X elliptic} ≠ ∅ , (1.2)

where the interior int is taken in h⊥. We expect that (1.2) is true for all algebraic homoge-
neous spaces Z. A geometric characterization for the existence of twisted discrete series
is less clear; in the real spherical case we expect

ĜH,td ̸= ∅ ⇐⇒ int{X ∈ Ng(h)
⊥ | X weakly elliptic} ≠ ∅ (1.3)

with Ng(h) the normalizer of h in g.
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1. Introduction

A combination of the Bernstein decomposition of L2(Z) in [6] with soft techniques
from microlocal analysis [13] yields the implication ”⇐” in (1.2), see [6, Th. 12.1].
Developing the techniques in [13] a bit further would yield the more general implication
”⇐” in 1.3. Let us point out that we consider the implication ”⇒” in 1.3 as one of the
most interesting current problems in this area.

Representations of the discrete series feature interesting additional structures. For
instance, for a reductive group Schmid realized the discrete spectrum in L2-Dolbeault
cohomology [38]. This was the first of series of realizations of the discrete series rep-
resentations for reductive Lie groups. Vogan established that the representations of the
discrete series on a symmetric space are cohomologically induced [41]. It would be
interesting to know for non-symmetric spaces to which extent ĜH,d consists of cohomo-
logically induced representations.

1.1 Methods
We first describe the idea of proof for Theorem 1.1 in the case Z = G is a semisimple
group. Let π ∈ Ĝd be a discrete series. Let σ ∈ M̂ and λ ∈ a∗C be such that there is a
quotient

πλ,σ = IndGP (λ⊗ σ) ↠ π

of the principal series representation IndGP (λ⊗σ). Here induction is normalized and from
the left. Such a quotient exists for every irreducible representation π by the subrepresen-
tation theorem of Casselman.

Let now v ∈ π∞
λ,σ be a smooth vector and let v be its image in π∞. Further let η be

any smooth vector in (π∨)∞ where π∨ is the dual representation of π. We view η as an
element of (π∨

λ,σ)
∞ = π∞

−λ,σ∨ , denote it then by η, and record the relation

mv,η(g) := ⟨η, π(g)−1v⟩ = ⟨η, πλ,σ(g−1)v⟩ =: mv,η(g) (g ∈ G) .

We now use the non-compact model for πλ,σ, i.e. σ-valued functions on N (the opposite
of N ), and let v be a σ-valued a test function on N . Let g = a ∈ A. As v is compactly
supported on N , the functions n 7→ a−2ρv(ana−1) form a Dirac sequence on N for
a ∈ A− tending to infinity along a regular ray, and a partial Dirac sequence in case of
a semi-regular ray. Here A− = exp(a−) with a− ⊆ a the closure of the negative Weyl
chamber determined by N . Dirac approximation and appropriate choices of v and η then
give a constant c = c(v, η) ̸= 0 and the asymptotic behavior:

mv,η(a) ∼ c · a−λ+ρ (a ∈ A−, a→ ∞) . (1.4)

Strictly speaking, the constant c above also depends on the ray along which we go to
infinity, in case it is not regular. The asymptotics (1.4) are motivated by a lemma of
Langlands [33, Lemma 3.12] which is at the core of the Langlands classification. This
lemma asserts forK-finite vectors v and η, and for λ in the range of absolute convergence
of the long intertwining operator, say I , that

c(v, η) = ⟨I(v)(e), η(e)⟩σ .
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I. The infinitesimal characters of discrete series for real spherical spaces

As our v is compactly supported on N the integral defining I(v) is in fact absolutely
convergent for every parameter λ.

As π belongs to the discrete series, mv,η is square integrable on G. One then derives
from (1.4) and the integral formula for the Cartan decomposition G = KA−K that the
parameter λ has to satisfy the strict inequality

Reλ
∣∣
a−\{0} > 0 . (1.5)

There exists a number N(G) ∈ N such that every rank one standard intertwiner

Iα : IndGP (sαλ⊗ sασ) → IndGP (λ⊗ σ)

is an isomorphism for λ(α∨) ̸∈ 1
N(G)

Z (see Proposition B.1 below). Suppose that λ(α∨) ̸∈
1

N(G)
Z for some simple root α ∈ Σ(n, a). Then we obtain an additional quotient mor-

phism πsαλ,sασ ↠ π. As above this implies

Re sαλ
∣∣
a−\{0} > 0 . (1.6)

Motivated by (1.6) we define an equivalence relation on a∗C in Section 7.1 as follows:
λ ∼ µ provided µ is obtained from λ by a sequence λ = µ0, µ1, . . . , µl = µ such that

(a) µi+1 = si(µi) for si = sαi
a simple reflection,

(b) µi(α∨
i ) /∈ 1

N(G)
Z.

The equivalence class of λ ∈ a∗C is denoted [λ] and (by slight abuse of terminology
introduced in Section 7.2) we say that λ is strictly integral-negative provided all elements
of [λ] satisfy (1.6). In particular we see that any parameter λ, for which there exists a
discrete series representation (π, V ) and a quotient πλ,σ ↠ V , is strictly integral-negative.

Using the geometry of the Euclidean apartment of the Weyl group we show in Section
7 (Corollary 7.5) that there exists an N = N(g) ∈ N such that for strictly integral-
negative parameters λ ∈ a∗C one has

λ(α∨) ∈ 1

N
Z (α ∈ Σ) .

In particular strictly integral-negative parameters are real and discrete.
For a general real spherical space Z = G/H we start with a twisted discrete series

representation π and consider it as a quotient πλ,σ = IndGP (λ ⊗ σ) ↠ π of a principal
series representation. The role of η ∈ (π∨)∞ above is now played by an element η ∈
(π−∞)H where π−∞ refers to the dual of π∞. We let η be the lift of η to an element of
(π−∞

λ,σ )
H .

The function

mv,η(g) := η(π(g−1)v) = η(πλ,σ(g
−1)v) =: mv,η(g)

descends to a smooth function on Z = G/H and is referred to as a generalized matrix
coefficient.
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2. Notions and Generalities

Now η is supported on various H-orbits on P\G and we pick one with maximal
dimension, say PxH for some x ∈ G. Here one meets the first serious technical obstruc-
tion: Unlike in the symmetric case (Matsuki [34], Rossmann [36]), there is no explicit
description of the P × H double cosets, but merely the information that the number of
double cosets is finite [29]. However, for computational purposes related to asymptotic
analysis it turns out that one can replace the unknown isotropy algebra hx := Ad(x)h by
its deformation

hx,X := lim
t→∞

et adXhx (X ∈ a− regular) .

There are only finitely many of those for regular X and they are all a-stable, i.e. nicely
lined up for arguments related to Dirac-compression. One is then interested in the asymp-
totics of t 7→ mv,η(exp(tX)x) for appropriately compactly supported v. The main tech-
nical result of this paper is a generalization of (1.4) in terms of natural geometric data
related to hx,X , see Theorem 5.1 and Corollary 5.3. As above it leads to a variant of (1.5)
in Corollary 6.2 and the final conclusion is derived via our Weyl group techniques from
Section 7.

Acknowledgement: We would like to thank Patrick Delorme for posing the question
about the spectral gap for twisted discrete series representations, and for explaining to us
how to adapt the work of Sakellaridis and Venkatesh for p-adic spherical spaces to real
spherical spaces.

2 Notions and Generalities

We write N = {1, 2, 3 . . .} for the set of natural numbers and put N0 := N∪{0}. Through-
out this paper we use upper case Latin letters A,B,C . . . to denote Lie groups and write
a, b, c, . . . for their corresponding Lie algebras. If A,B ⊆ G are Lie groups, then we
write NA(B) := {a ∈ A | aBa−1 = B} for the normalizer of B in A and likewise we
denote by ZA(B) the centralizer of B in A. Correspondingly if a, b ⊆ g are subalgebras,
then we write Na(b) for the normalizer of b in a.

For a real vector space V we write VC for the complexification V ⊗ C of V .
IfL is a real reductive Lie group, then we denote byLn the normal subgroup generated

by all unipotent elements of L, or, phrased equivalently, Ln is the connected subgroup
with Lie algebra equal to the direct sum of all non-compact simple ideals of l.

Let G be an open subgroup of the real points G(R) of a reductive algebraic group G
defined over R. Let H be an algebraic subgroup of G defined over R and let H be an
open subgroup of H(R)∩G. Define the homogeneous space Z := G/H . We assume that
Z is unimodular, i.e., carries a G-invariant positive Radon measure. Let z0 := e ·H ∈ Z
be the standard base point.

Let P ⊆ G be a minimal parabolic subgroup. We assume that Z is real spherical,
that is, the action of P on Z admits an open orbit. After replacing P by a conjugate we
will assume that P · z0 is open in Z. The local structure theorem (see [24]) asserts the
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I. The infinitesimal characters of discrete series for real spherical spaces

existence of a parabolic subgroupQ ⊇ P with Levi-decompositionQ = L⋉U such that:

P · z0 = Q · z0 ,
Q ∩H = L ∩H, (2.1)

Ln ⊆ L ∩H .

We emphasize that the choice of L has to be taken in accordance with the local structure
theorem, see [6, Remark 2.2].

Let now L = KLANL be any Iwasawa-decomposition of L and set AH := A ∩ H
and AZ := A/AH . We note that AH is connected. The number rankR Z := dimAZ is an
invariant of Z and referred to as the real rank of Z.

We inflate KL to a maximal compact subgroup K ⊆ G and set M := ZK(a). We
denote by θ the Cartan involution on g defined by K and set u := θ(u). We may and will
assume that A ⊆ P . Let P = MAN be the corresponding Langlands decomposition of
P and define n := θ(n).

2.1 Spherical roots and the compression cone

Let Σ = Σ(g, a) be the restricted root system for the pair (g, a) and

g = a⊕m⊕
⊕
α∈Σ

gα

be the attached root space decomposition. Write (l ∩ h)⊥l ⊆ l for the orthogonal com-
plement of l∩ h in l with respect to a non-degenerate Ad(G)-invariant bilinear form on g
restricted to l. From g = q+h = u⊕(l∩h)⊥l⊕h and g = q⊕u we infer the existence of a
linear map T : u → u⊕(l∩h)⊥l such that h = l∩h⊕G(T ) with G(T ) ⊆ u⊕u⊕(l∩h)⊥l

the graph of T .
Set Σu := Σ(u, a) ⊆ Σ. For α ∈ Σu and β ∈ Σu ∪{0} we denote by Tα,β : g−α → gβ

the map obtained by restriction of T to g−α and projection to gβ . Then

T
∣∣
g−α =

∑
β∈Σu∪{0}

Tα,β .

Let M ⊆ a∗\{0} be the additive semi-group generated by

{α + β | α ∈ Σu, β ∈ Σu ∪ {0} such that Tα,β ̸= 0} .

We recall from [19], Cor. 12.5 and Cor. 10.9, that the cone generated by M is simplicial.
We fix a set of generators S of this cone with the property M ⊆ N0[S] and refer to S as
a set of (real) spherical roots. Note that all elements of M vanish on aH so that we can
view M and S as subsets of a∗Z .

We define the compression cone by

a−Z := {X ∈ aZ | (∀α ∈ S)α(X) ≤ 0}
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3. Twisted discrete series as quotients of principal series

and write aZ,E := a−Z ∩ (−a−Z) for its edge. We note that

#S = dim aZ/aZ,E .

For an a-fixed subspace s of g, we define

ρ(s)(X) :=
1

2
tr(ad(X)

∣∣
s
) (X ∈ a) .

We write ρP for ρ(p) and ρQ for ρ(q). Recall that the unimodularity of Z implies that
ρQ|aH = 0, see [23, Lemma 4.2].

Let Π ⊆ Σ+ be the set of simple roots. We let

a± := {X ∈ a | (∀α ∈ Π) ± α(X) ≥ 0}

and write a−− for the interior (Weyl chamber) of a−.
We write p : a → aZ for the projection and set aE := p−1(aZ,E) and AE = exp(aE).

Set Ĥ = HAE and note that Ĥ normalizes H . Obviously Ĥ is real spherical as well.
Finally, we define Ẑ := G/Ĥ .

2.2 The normalizer of a real spherical subalgebra
Lemma 2.1. Let h ⊆ g be a real spherical subalgebra. Then the following assertions
hold:

(i) Ng(h) = ĥ+ m̂ with m̂ ⊆ m, the sum not necessarily being direct.

(ii) ̂̂
h = ĥ.

(iii) [Ng(h)]n = hn, i.e. every adg-nilpotent element in Ng(h) is contained in h.

Proof. For (i) see [22, (5.10)]. Lemma 4.1 in [24] implies (ii). Finally, (iii) follows from
(i).

3 Twisted discrete series as quotients of principal series

3.1 The spherical subrepresentation theorem
For a Harish-Chandra module V , we denote by V ∞ the unique smooth moderate growth
Fréchet globalization and by V −∞ the continuous dual of V ∞. If η ∈ (V −∞)H \ {0},
then the pair (V, η) is called a spherical pair.

For a Harish-Chandra module V we denote by Ṽ its contragredient or dual Harish-
Chandra module, that is, Ṽ consist of the K-finite vectors in the algebraic dual V ∗ of
V . Further we denote by V the conjugate Harish-Chandra module, that is, V = V as
R-vector space but with the conjugate complex multiplication. We recall that Ṽ = V in
case V is unitarizable. In particular if (V, η) is a spherical pair with V unitarizable, then
so is (V , η) with η(v) := η(v).

9



I. The infinitesimal characters of discrete series for real spherical spaces

Associated to η ∈ (V −∞)H and v ∈ V ∞ we find the generalized matrix coefficient
on Z

mv,η(z) := η(g−1v) (z = gH ∈ Z) ,

which defines a smooth function on Z. If v ∈ V then mv,η admits a convergent power
series expansion (cf. [25], Sect. 6):

mv,η(ma · z0) =
∑
µ∈E

∑
α∈N0[S]

cαµ,v(m; log a)aµ+α (a ∈ A−
Z ,m ∈M) .

Here E ⊆ a∗Z,C is a finite set of leading exponents only depending on (V, η); the term
”leading” refers to the following relation: for all µ, µ′ ∈ E , µ ̸= µ′ one has µ ̸∈ µ′+N0[S].
Further, for each µ ∈ E , α ∈ N0[S] and v ∈ V , the assignment

cαµ,v :M × aZ → C, (m,X) → cαµ,v(m;X)

is polynomial inX andM -finite. Moreover, for each µ ∈ E there exists a v ∈ V such that
c0µ,v ̸= 0. TheM -types which can occur are those obtained from branching theK-module
spanC{K · v} to M . The degrees of the polynomials are uniformly bounded and we set
dµ := maxv∈V deg c0µ,v ∈ N0.

Let us set AL := Z(L) ∩ A. Then L = MLAL for a complementary reductive
subgroup ML ⊆ L. For a unitary representation (σ, Vσ) of ML and λ ∈ a∗L,C we denote
by IndG

Q
(λ ⊗ σ) the normalized left induced representation. Note that the elements v ∈

IndG
Q
(λ⊗ σ) are K-finite functions v : G→ Vσ which satisfy

v(umag) = aλ−ρQσ(m)v(g)

for all g ∈ G, a ∈ AL, u ∈ U and m ∈ML.
Note that ALAH = A and that therefore there exists a natural inclusion a∗Z ↪→ a∗L.

The representations IndG
Q
(λ⊗σ) are related to spherical representation theory as follows.

Lemma 3.1. Let (V, η) be a spherical pair with V irreducible and µ ∈ a∗Z ⊆ a∗L a leading
exponent. Then there exist an irreducible finite dimensional representation σ of ML with
a (ML ∩H)-fixed vector, and an embedding of Harish-Chandra modules:

V ↪→ IndG
Q
((−µ+ ρQ)⊗ σ) . (3.1)

Proof. This is implicitly contained in [29], Section 4. We confine ourselves with a sketch
of the argument.

Recall dµ and fix a basis X1, . . . , Xn of aZ . For m ∈ Nn
0 , X =

∑n
j=1 xjXj ∈ aZ we

set Xm := xm1
1 · . . . · xmn

n . Then

c0µ,v(m;X) =
∑

|m|≤dµ

cmµ,v(m)Xm (m ∈M)

where cmµ,v is an M -finite function. Fix now σ ∈ M̂ and m ∈ Nn
0 with |m| = dµ such that

the σ-isotypical part of cmµ,v(m) is non-zero. This gives rise to a non-trivialM -equivariant
map

V → Vσ, v 7→ cmµ,v[σ] .
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3. Twisted discrete series as quotients of principal series

It is easy to see that (l ∩ h + u)V is in the kernel of this map. Note that M ∩ ML,n

is a normal subgroup of M that is contained in M ∩ H . From the fact that σ admits a
non-zero M ∩ H-fixed vector it follows that σ

∣∣
M∩ML,n

is trivial. We may thus extend σ

to a representation of ML ≃ M ⋉
M∩ML,n

ML,n by setting σ
∣∣
ML,n

= 1. The assertion now

follows from Frobenius reciprocity.

3.2 Discrete series and twisted discrete series
For χ ∈ (ĥ/h)∗C ≃ a∗Z,E,C we define the space of functions

Cc(Ẑ;χ) :=
{
ϕ ∈ Cc(G) : ϕ( ·ha) = a−χϕ for all a ∈ AE, h ∈ H

}
.

We call χ ∈ (ĥ/h)∗C normalized unitary if

Reχ
∣∣
aE

= −ρQ
∣∣
aE
.

Let ∆Ẑ be the modular function of Ẑ. By [25, Lemma 8.4] we have

∆Ẑ(ha) = a−2ρQ (h ∈ H, a ∈ AE) . (3.2)

For g ∈ G, let lg denote left multiplication by g. Let Ω ∈
∧dimZ(g/h)∗ \ {0}. If

χ ∈ (ĥ/h)∗C is normalized unitary, then it follows that for all ϕ, ψ ∈ Cc(Ẑ;χ) the density

|Ω|ϕ,ψ : G ∋ g 7→ ϕ(g)ψ(g)
(
Tglg−1

)∗|Ω|
factors to a smooth density on Ẑ, and the bilinear form

Cc(Ẑ;χ)× Cc(Ẑ;χ) → C; (ϕ, ψ) 7→
∫
Ẑ

|Ω|ϕ,ψ

is an inner product. We write L2(Ẑ;χ) for the Hilbert completion of Cc(Ẑ;χ) with
respect to this inner product. Note that the inner product is invariant under the left regular
action of G and thus L2(Ẑ;χ) equipped with the left-regular representation is a unitary
representation of G.

Definition 3.2. If χ ∈ (ĥ/h)∗C is normalized unitary, then we say that the spherical
pair (V, η) belongs to the χ-twisted discrete series for Z provided that V is irreducible,
π∨(Y )η = −χ(Y )η for all Y ∈ ĥ, and mv,η ∈ L2(Ẑ;χ) for all v ∈ V ∞. Furthermore,
we say that (V, η) belongs to the twisted discrete series for Z if (V, η) belongs to the
χ-twisted discrete series for some normalized unitary χ. Finally we say that (V, η) be-
longs to the discrete series for Z provided that V is irreducible and mv,η ∈ L2(Z) for all
v ∈ V ∞.

Lemma 3.3. If there exits a spherical pair (V, η) belonging to the discrete series for Z,
then H = Ĥ = HAE . Hence ĥ/h = 0 and therefore the discrete series for Z coincide
with the 0-twisted discrete series for Z.
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I. The infinitesimal characters of discrete series for real spherical spaces

Proof. Let (V, η) be a spherical pair belonging to the discrete series for Z. The right-
action of AE commutes with the left-action of G on L2(Z), and thus induces a natural
action of AE on (V −∞)H . By [27] and [30] the space (V −∞)H is finite dimensional.
We may therefore assume that η is a joint-eigenvector for the right-action of AE , i.e., the
generalized matrix coefficients of V satisfy

mv,η(gha) = a−χmv,η(g) (g ∈ G, h ∈ H, a ∈ AE)

for some normalized unitary χ ∈ (ĥ/h)∗C. LetA0 be a subgroup ofA such thatA0×AE ≃
A. If g ∈ G and mv,η(g · z0) ̸= 0, then, if the Haar measures are properly normalized,∫
Z

|mv,η(z)|2 dz ≥
∫
gQ·z0

|mv,η(z)|2 dz

=

∫
U

∫
M

∫
A0

∫
AE/(A∩H)

(a0aE)
−2ρQ |mv,η(gnma0aE)|2 daE da0 dmdn

=

∫
U

∫
M

∫
A0

∫
AE/(A∩H)

a
−2ρQ
0 |mv,η(gnma0)|2 daE da0 dmdn .

Clearly the last repeated integral can only be absolutely convergent if AE/(A ∩ H) has
finite volume, or equivalently if AE = A ∩H .

We recall from Section 8 in [25] that (V, η) belongs to the twisted discrete series for
Z only if the conditions

(Reµ− ρQ)|a−Z\aZ,E
< 0 , (3.3)

(Reµ− ρQ)|aZ,E
= 0 (3.4)

hold for all leading exponents µ. Moreover,

µ|aZ,E
= −χ (3.5)

when (V, η) belongs to the χ-twisted discrete series. Note that (3.3) implies (3.4) unless
aZ,E = aZ .

3.3 Quotient morphisms

It is technically easier to work with representations induced from the minimal parabolic
P . Set ρQP = ρP − ρQ and observe that there is a natural inclusion

IndG
Q
(λ⊗ σ) → IndG

P
((λ+ ρQP )⊗ σ|M) .

In particular (3.1) yields
V ↪→ IndG

P
((−µ+ ρP )⊗ σ) , (3.6)

where we allowed ourselves to write σ for σ|M .

12



4. Generalized volume growth

For general IndG
P
(λ⊗σ) we record that its dual representation is IndG

P
(−λ⊗σ∨). The

natural pairing between these two representations is given as follows in the non-compact
picture:

v∨(v) =

∫
N

v∨(n)
(
v(n)

)
dn

for v∨ ∈ IndG
P
(−λ⊗ σ∨) and v ∈ IndG

P
(λ⊗ σ).

Let now (V, η) be an irreducible spherical pair belonging to the twisted discrete series.
Then µ is a leading exponent for the dual pair (V , η). By applying (3.6) to V we embed

V ↪→ IndG
P
((−µ+ ρP )⊗ σ∨) .

Dualizing this inclusion we obtain the quotient morphism

IndG
P
((µ− ρP )⊗ σ) ↠ V . (3.7)

In view of the P ×H-geometry of G it is a bit inconvenient to work with representa-
tions induced from the left by the opposite parabolic P . We can correct this by employing
the long Weyl group element w0 ∈ W = W (g, a), which maps P to P . This gives us for
every λ ∈ a∗C and σ ∈ M̂ an isomorphism

IndGP (λ⊗ σ) → IndG
P
(w0λ⊗ w0σ); v 7→ v(w0 · ) , (3.8)

where w0σ := σ ◦ w0 ∈ M̂ . With proper choices of λ and σ we obtain from (3.8) and
(3.7) a quotient morphism of IndGP (λ⊗ σ) onto V .

We write now πλ,σ for IndGP (λ ⊗ σ) and record that functions v ∈ πλ,σ feature the
transformation property

v(mang) = aλ+ρPσ(m)v(g) . (3.9)

To summarize our discussion so far:

Lemma 3.4. Let (V, η) be a twisted discrete series representation for Z and µ ∈ a∗C
a leading exponent. Then there exists a σ ∈ M̂ and a surjective quotient morphism
πλ,σ ↠ V with λ = w0µ+ ρP .

We write π∞
λ,σ for the smooth Fréchet globalization of moderate growth. In the sequel

we will model π∞
λ,σ on all smooth functions which satisfy (3.9).

4 Generalized volume growth

4.1 Limiting subalgebras
Define order-regular elements in a−− by

a−−
o−reg := {X ∈ a−− | α(X) ̸= β(X), α, β ∈ Σ, α ̸= β} .

In this and the next section we will make heavy use of certain limits of subspaces of g
in the Grassmannian. In the following lemma we collect the important properties of such
limits.

13



I. The infinitesimal characters of discrete series for real spherical spaces

Lemma 4.1. Let E be a subspace of g and let X ∈ a. Then the limit

EX := lim
t→∞

Ad
(
exp(tX)

)
E ,

exists in the Grassmannian. If λ1 < λ2 < · · · < λn are the eigenvalues and p1, . . . , pn
the corresponding projections onto the eigenspaces Vi of ad(X), then EX is given by

EX =
n⊕
i=1

pi
(
E ∩

i⊕
j=1

Vj
)
. (4.1)

The following hold.

(i) If E is a Lie subalgebra of g, then EX is a Lie subalgebra of g.

(ii) If X ∈ a−−, then
(
Ad(man)E

)
X

= Ad(ma)
(
EX

)
for all m ∈ M , a ∈ A and

n ∈ N . Moreover, if X is order-regular, then EX is A-stable.

(iii) Let C be a connected component of a−−
o−reg. Then

(
EX

)
Y
= EY for all X ∈ C and

Y ∈ C. In particular, if X, Y ∈ C, then EX = EY .

(iv) If X,X ′ ∈ a−−, then a ∩ EX = a ∩ EX′ .

Proof. Let k = dim(E) and let ι : Gr(g, k) ↪→ P(
∧k g) be the Plücker embedding, i.e.,

ι is the map given by

ι
(
span(v1, . . . , vk)

)
= R(v1 ∧ · · · ∧ vk). (4.2)

The map ι is a diffeomorphism onto a compact submanifold of P(
∧k g). The map ad(X)

acts diagonalizably on
∧k g, say with eigenvalues µ1 < µ2 < · · · < µm. Let ξ ∈∧k g \ {0} be so that ι(E) = Rξ. We decompose ξ into eigenvectors for ad(X) as

ξ =
m∑
i=1

ξi ,

where ξi is an eigenvector of ad(X) with eigenvalue µi. Now

Ad
(
exp(tX)

)
(Rξ) = R

( m∑
i=1

etµiξi
)
.

Let 1 ≤ k ≤ m be the largest number so that ξk ̸= 0. Then Ad
(
exp(tX)

)
(Rξ) converges

for t → ∞ to Rξk. Let EX = ι−1(Rξk). Since ι is a diffeomorphism, Ad
(
exp(tX)

)
E

converges to EX for t→ ∞.
We move on to prove (4.1). For 1 ≤ i ≤ n we define

Ei := E ∩
i⊕

j=1

Vj .
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4. Generalized volume growth

We will prove with induction that for every 1 ≤ i ≤ n

(
Ei

)
X
=

i⊕
j=1

pj
(
Ej

)
. (4.3)

Clearly E1 = E ∩ V1 is stable under the adjoint action of X , and hence (E1)X = E1.
This proves (4.3) for i = 1. Assume that (4.3) holds for some i. We claim that

i+1⊕
j=1

pj
(
Ej

)
⊆

(
Ei+1

)
X
. (4.4)

In view of the induction hypothesis it suffices to prove that pi+1(Y ) ∈
(
Ei+1

)
X

for every
Y ∈ Ei+1 \ Ei. We decompose Y as

Y =
i+1∑
j=1

pj(Y ) .

Then pi+1(Y ) ̸= 0 and thus

(RY )X = lim
t→∞

R
( i+1∑
j=1

etλipj(Y )
)
= Rpi+1(Y ) .

This shows that pi+1(Y ) ∈ (Ei+1)X . Therefore, the inclusion (4.4) holds. In fact, equality
holds because the dimensions agree. This proves (4.1).

Observe that [E,E] ⊆ E is a closed condition in the Grassmannian. Therefore, the
set of Lie subalgebras in the Grassmannian is a closed set. It follows that EX is a Lie
subalgebra if E is a Lie subalgebra. This proves (i).

Assume that X ∈ a−−. If n ∈ N , then exp(tX)n exp(tX)−1 converges to e for
t→ ∞. Now(

Ad(man)E
)
X
= lim

t→∞
Ad(ma)Ad

(
exp(tX)n exp(tX)−1

)
Ad

(
exp(tX)

)
E

= Ad(ma)
(
EX

)
.

If X ∈ a−−
o−reg, then the eigenvalues {α(X) : α ∈ Σ∪{0}} of ad(X) are in bijection with

Σ∪{0}. Therefore, all projections pi in (4.1) are projections onto a-eigenspaces, namely
the root spaces and m⊕ a. This implies that EX is A-stable. This proves (ii).

We move on to prove (iii). It follows from (4.1) that for every X ∈ a− the limit
EX is spanned by the limits LX of the lines L in E. Hence we may assume that E
is 1-dimensional. Let X ∈ C and Y ∈ C. For α ∈ Σ ∪ {0} we define pα to be the
projection g → gα along the root space decomposition. Let α0 ∈ Σ ∪ {0} be so that
α0(Y ) is maximal among the numbers α(Y ) with α ∈ Σ ∪ {0} for which pα(E) ̸= {0}.
By (4.1) we have EY = pα0(E). Since Y ∈ C and X ∈ C we have α(X) ≥ β(X) if
α(Y ) > β(Y ). In particular the largest eigenvalue of ad(X) that appears in E is equal to
α0(X). The projection onto the eigenspace of ad(X) with eigenvalue α0(X) is given by∑

α∈Σ∪{0}
α(X)=α0(X)

pα .
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I. The infinitesimal characters of discrete series for real spherical spaces

Therefore,
EX =

( ∑
α∈Σ∪{0}

α(X)=α0(X)

pα

)
(E) ,

and hence

(EX)Y = pα0

(( ∑
α∈Σ∪{0}

α(X)=α0(X)

pα

)
(E)

)
= pα0(E) = EY .

If X, Y ∈ C, then by (ii) the space EX is a-stable and therefore (EX)Y = EX . This
proves (iii).

Finally we prove (iv). Let X ∈ a−−. Let pm, pa be the projections g → m and g → a,
respectively, along the Bruhat decomposition. Since X is regular, it follows from (4.1)
that

(m⊕ a) ∩ EX = (pm + pa)
(
(m⊕ a⊕ n) ∩ E

)
.

Clearly pa
(
(a⊕ n)∩E

)
⊆ a∩EX . Moreover, if Y ∈ a∩EX and Y ′ ∈ (m⊕ a⊕ n)∩E

is so that (pm + pa)(Y
′) = Y , then pm(Y ′) = 0. Hence Y ∈ pa

(
(a⊕ n) ∩ E

)
. It follows

that
pa
(
(a⊕ n) ∩ E

)
= a ∩ EX .

The left-hand side is independent of X .

Let C be a connected component of a−−
o−reg. If X ∈ C, then in view of (iii) in Lemma

4.1 the space EX does not depend on the specific choice of X . Therefore for every
subspace E of g we may define

EC := EX (X ∈ C) .

Let x ∈ G. We define the following spaces. First set

hC,x :=
(
Ad(x)h

)
C .

Observe that by (ii) in Lemma 4.1

hC,manxh = Ad(m)hC,x
(
m ∈M,a ∈ A, n ∈ N, h ∈ H) . (4.5)

We define
ax := hC,x ∩ a .

In view of Lemma 4.1(iv) this space does not depend on C. Note that (4.5) implies that
ax only depends on the double coset PxH ∈ P\G/H , not on the representative x ∈ G
for that coset. We further define the a-stable subalgebras

nC,x := hC,x ∩ n, uC,x := hC,x ∩ n .

Since hC,x is a-stable, it follows that

hC,x = nC,x ⊕
(
(m⊕ a) ∩ hC,x

)
⊕ uC,x . (4.6)

Finally we choose nxC and uxC to be a-stable complementary subspaces to nC,x in n and uC,x
in n, respectively, so that

n = nC,x ⊕ nxC, n = uC,x ⊕ uxC . (4.7)
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Lemma 4.2. For every x ∈ G

g = (Ad(x)h+ p)⊕ nxC .

Proof. Let X ∈ C. In view of (4.7) and (4.6) we have

g = nC,x ⊕ p⊕ nxC = (hC,x + p)⊕ nxC . (4.8)

If g ̸= (Ad(x)h+ p) + nxC , then also

g ̸= Ad(a)
(
Ad(x)h+ p+ nxC

)
= (Ad(ax)h+ p) + nxC

for every a ∈ A. This would imply that the limit of (Ad(exp(tX)x)h + p) + nxC for
t → ∞ is a proper subspace of g. This in turn would contradict (4.8). Therefore, g =
(Ad(x)h + p) + nxC . Moreover, it follows from (4.1) that p ∩ hC,x = p ∩ Ad(x)h, and
hence

dim(hC,x + p) = dim(Ad(x)h+ p) .

Therefore, by comparing with (4.8) we see that the sum (Ad(x)h+ p) + nxC is direct.

4.2 Volume-weights
We recall the volume-weight function on Z

v(z) := volZ(Bz) (z ∈ Z) ,

where B is some compact neighborhood of e in G. We refer to Appendix A for the
properties of volume-weights. The volume weight naturally shows up in the treatment of
twisted discrete series representations.

The following proposition is a direct corollary of the invariant Sobolev lemma in
Appendix A.

Proposition 4.3. Let (V, η) be a spherical pair corresponding to a twisted discrete series
representation. Then

sup
z∈Z

|mv,η(z)|v(z)
1
2 <∞ . (4.9)

Moreover, if (zn)n∈N is a sequence in Z such that its image in Ẑ tends to infinity, then

lim
n→∞

|mv,η(zn)|v(zn)
1
2 = 0 . (4.10)

The basic asymptotic behavior of v on the compression cone is

v(a · z0) ≍ a−2ρQ (a ∈ A−
Z) . (4.11)

See [23, Proposition 4.3]. We investigate now the growth of v with the base point z0
shifted by an element x ∈ G, i.e., we investigate how v(ax · z0) grows for a ∈ A−.

Recall the parabolic subgroup Q = LU from (2.1). For x = e, we have hC,e =
(l ∩ h)⊕ u, and thus

ρ(hC,e) = −ρQ .
Hence the following proposition is a partial generalization of the lower bound in (4.11)
for shifted base points.
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I. The infinitesimal characters of discrete series for real spherical spaces

Proposition 4.4. Let x ∈ G and X ∈ a−. Let C be a connected component of a−−
o−reg such

that X ∈ C. Then there exists a C > 0 such that

v(exp(tX)x · z0) ≥ Ce2tρ(hC,x)(X) (t ≥ 0) .

Proof. Set N
x
= exp(nxC). Since exp : n → N is a polynomial isomorphism the group

N
x

is an affine subvariety of N . Define an affine subvariety of N by Ux := exp(uxC).
Let ax be the orthogonal complement of ax in a and set Ax := exp(ax). Further let
X1, . . . , Xk be a basis of a subspace in m which is complementary to pm(hC,x) in m,
where pm is the projection g → m along the Bruhat decomposition. We may assume in
addition that the Xj are so that Mj := exp(RXj) ≃ R/Z. Now

a⊕m =
(
(m⊕ a) ∩ hC,x

)
⊕ ax ⊕

k⊕
j=1

RXj .

Further, we define the affine variety M :=M1× . . .×Mk. For m = (m1, . . . ,mk) ∈ M
we set ϕ(m) := m1 · . . . ·mk ∈M .

For t ∈ R define at := exp(tX) and consider the algebraic map

Φt : U
x ×N

x × Ax ×M×H → G; (u, n, a,m, h) 7→ unaϕ(m)atxh .

We have

g = uxC ⊕ nxC ⊕ ax ⊕
k⊕
j=1

RXj ⊕ hC,x .

Note that if Ad(ax)h would not be transversal to V := uxC ⊕ nxC ⊕ ax ⊕
⊕k

j=1 RXj for
some a ∈ A, then it would not be transversal for any a ∈ A since V is A-invariant. This
would contradict the fact that hC,x is transversal to V . We thus conclude that for every
a ∈ A

g = uxC ⊕ nxC ⊕ ax ⊕
k⊕
j=1

RXj ⊕ Ad(ax)h .

In particular this holds for a = at. This implies for generic t, and hence in particular for
t ≫ 0, that the map Φt is dominant and as such has generically finite fibers, with a fiber
bound independent of t. See [9, Prop. 15.5.1(i)].

Let Ux
B, N

x

B, AxB, MB and HB be relatively compact, open neighborhoods of e in
Ux, N

x
, Ax, ϕ(M) and H respectively. We choose these sets small enough so that

Ux
BN

x

BA
x
BMB ⊆ B. Then

v(atx · z0) ≥
∫
Z

1Ux
BN

x
BA

x
BMBatx·z0(z) dz . (4.12)

For y ∈ G, let Fy be the projection onto H of Φ−1
t ({y}). If yh ∈ Ux

BN
x

BA
x
BMBatxHB

then y ∈ Ux
BN

x

BA
x
BMBatxHBh

−1. Hence HBh
−1 contains an element from Fy and h

belongs to (Fy)
−1HB. Therefore,∫

H

1Ux
BN

x
BA

x
BMBatxHB

(yh) dh ≤
∫
H

1(Fy)−1HB
(h)dh1Ux

BN
x
BA

x
BMBatx·z0(y · z0)

≤ #Φ−1
t ({y}) volH(HB)1Ux

BN
x
BA

x
BMBatx·z0(y · z0) .
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4. Generalized volume growth

Let c =
(
n volH(HB)

)−1, where n is the generic fiber bound. Then for generic y ∈ G we
have

1Ux
BN

x
BA

x
BMBatx·z0(y · z0) ≥ c

∫
H

1Ux
BN

x
BA

x
BMBatxHB

(yh) dh.

By inserting this inequality into (4.12) we obtain

v(atx · z0) ≥
∫
Z

c

∫
H

1Ux
BN

x
BA

x
BMBatxHB

(yh) dh dyH

= c

∫
G

1Ux
BN

x
BA

x
BMBatxHB

(y) dy

= c

∫
G

1Ux
BN

x
BA

x
BMBatxHBx−1a−t

(y) dy .

For the last equality we used the invariance of the Haar measure on G.
We define Ξ := Ux

BN
x

BA
x
BMB and set

Ψt : Ξ× xHBx
−1 → G; (ξ, y) 7→ ξatya−t .

The fibers of Ψt are bounded by the fibers of Φt, and hence are generically finite with fiber
bound independent of t for t≫ 0. Let ωG be the section of

∧dimG T ∗G corresponding to
the Haar measure on G. Then

v(atx · z0) ≥
c

k

∫
Ξ

∫
xHBx−1

Ψ∗
tωG ,

where k is the fiber bound of Ψt.
We finish the proof by estimating Ψ∗

tωG. For g ∈ G, let lg : G → G and rg : G → G
be left and right-multiplication by g, respectively. Let

ξ ∈ Ξ, y ∈ xHBx
−1, Y1 ∈ TξΞ and Y2 ∈ Ty(xHx

−1) .

Let γ : R → ξ−1Ξ and δ : R → xHBx
−1y−1 be smooth paths so that

γ(0) = δ(0) = e, γ′(0) = (Telξ)
−1Y1 and δ′(0) = Tyry−1Y2 .

Then

d

ds
γ(s)atδ(s)a−t

∣∣
s=0

= γ′(0) + Ad(at)δ
′(0) = (Telξ)

−1Y1 +Ad(at)
(
Tyry−1Y2

)
.

Now ξγ is a smooth path in Ξ with (ξγ)(0) = ξ and (ξγ)′(0) = Y1. Likewise, δy is a
smooth path in xHBx

−1 satisfying (δy)(0) = y and (δy)′(0) = Y2.
The tangent map of Ψt is determined by the following identity of elements in TξG

T(ξ,y)
(
raty−1a−t

◦Ψt

)(
Y1, Y2

)
=

d

ds
Ψt

(
ξγ(s), δ(s)y

)
aty

−1a−t
∣∣
s=0

=
d

ds
ξγ(s)atδ(s)a−t

∣∣
s=0

= Telξ

( d

ds
γ(s)atδ(s)a−t

∣∣
s=0

)
= Y1 + Telξ Ad(at)

(
Tyry−1Y2

)
. (4.13)
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I. The infinitesimal characters of discrete series for real spherical spaces

We write hX,x for the limit for t→ ∞ of Ad(at)Ad(x)h in the Grassmannian. Let Y
be a non-zero eigenvector of ad(X) in hX,x and let α ∈ Σ∪ {0} be such that α(X) is the
eigenvalue. It follows from (4.1) with E = Ad(x)h, that there exists an element

Y ′ ∈
(
Y +

∑
β∈Σ∪{0}
β(X)<α(X)

gβ
)
∩ Ad(x)h.

Let Ỹ be a right-invariant vector field on xHx−1 such that Ỹ (e) = Y ′. Then

lim
t→∞

e−tα(X)T(ξ,y)
(
raty−1a−t

◦Ψt

)(
0, Ỹ (y)

)
= lim

t→∞
e−tα(X)

(
Telξ ◦ Ad(at)

)(
Tyry−1Ỹ (y)

)
= lim

t→∞
e−tα(X)

(
Telξ ◦ Ad(at)

)
(Y ′).

For β ∈ Σ ∪ {0} with β(X) < α(X), let Y ′
β ∈ gβ be so that

Y ′ = Y +
∑

β∈Σ∪{0}
β(X)<α(X)

Y ′
β.

Then
e−tα(X) Ad(at)Y

′ = Y +
∑

β∈Σ∪{0}
β(X)<α(X)

aβ−αt Y ′
β.

Therefore,

lim
t→∞

e−tα(X)T(ξ,y)
(
raty−1a−t

◦Ψt

)(
0, Ỹ (y)

)
= TelξY + lim

t→∞

∑
β∈Σ∪{0}
β(X)<α(X)

aβ−αt TelξY
′
β = TelξY .

The convergence is uniform in y and uniform on compact sets in ξ. Combining this with
(4.13) yields that for every Y1 ∈ TξΞ and Y as before we have

lim
t→∞

e−tα(X)T(ξ,y)
(
raty−1a−t

◦Ψt

)(
Y1, Ỹ (y)

)
= Y1 + TelξY ,

where again the convergence is uniform in y and uniform on compact sets in ξ. Define
ρX,x :=

1
2
tr
(
ad(X)

∣∣
hX,x

)
. It follows that

e−2tρX,xΨ∗
tωG = e−2tρX,x

(
raty−1a−t

◦Ψt

)∗
ωG

converges for t → ∞ to a nowhere vanishing continuous section of the vector bundle∧dimG T ∗(Ξ×xHBx
−1
)
. The proposition now follows from the facts that Ξ and xHBx

−1

are relatively compact and that ρ(hC,x)(X) = ρX,x.
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4.3 Escaping to infinity on Ẑ

Recall ĥ = h + aE . For a connected component C of a−−
o−reg and Y ∈ C, define ĥC,x =

limt→∞Ad(exp(tY )x)ĥ. Obviously we have hC,x ◁ ĥC,x and that ĥC,x is a-invariant. We
define

aEx := ĥC,x ∩ a ⊇ ax .

It follows from Lemma 4.1(iv) that the space aEx does not depend on the connected com-
ponent C of a−−

o−reg. Furthermore, it is independent of the representative x ∈ G of the
double coset PxH ∈ P\G/H , cf. (4.5). Note that aEe = aE .

Proposition 4.5. Let X ∈ a− \ aEx . Then {exp(tX)xĤ | t ≥ 0} is unbounded in Ẑ.

Proof. Set at := exp(tX). We argue by contradiction and assume that {atxĤ | t ≥ 0}
is relatively compact in Ẑ. Then there exists a compact set C ⊆ G such that

atx ∈ CxĤ (t ≥ 0) . (4.14)

Let
ĥ1 :=

(
Ad(x)ĥ

)
X
.

With d̂ := dim ĥ we notice that the natural map

Ẑ → Grd̂(g), gĤ 7→ Ad(g)ĥ

is continuous and thus (4.14) implies that there exists a c ∈ C such that ĥ1 = Ad(cx)ĥ.
Since Ad(at)ĥ

1 = ĥ1 for all t ∈ R we thus obtain that Ad(c−1atcx)ĥ = Ad(x)ĥ and in
particular Ad(c)−1X ∈ Ng(Ad(x)ĥ) = Ad(x)Ng(ĥ). Recall from Lemma 2.1 (i, ii) that
Ng(ĥ) = ĥ+ m̂ for some subalgebra m̂ ⊆ m. Hence it follows that

X ∈ ĥ1 +Ad(cx)m̂ =: h̃1 . (4.15)

We claim that X ∈ ĥ1. To see this, assume that X /∈ ĥ1. Since X is hyperbolic and
the elements in Ad(cx)m̂ are elliptic, X /∈ Ad(cx)m̂. Let Xm ∈ Ad(cx)m̂ be so that
X ∈ ĥ1 + Xm. Let H̃1 and Ĥ1 be the connected algebraic subgroups with Lie algebra
equal to h̃1 and ĥ1, respectively. The map RX → RXm; tX 7→ tXm induces a non-
trivial algebraic homomorphism from R× to the compact group H̃1/Ĥ1. This leads to a
contradiction as such algebraic homomorphisms do not exist. This proves the claim.

Let C be a connected component of a−−
o−reg so that X ∈ C and let Y ∈ C. Then by

Lemma 4.1 (iii)
(ĥ1)Y = (Ad(x)ĥ)Y = ĥC,x.

Therefore,
X ∈ ĥ1 ∩ a =

(
ĥ1 ∩ a

)
Y
⊆ (ĥ1)Y ∩ a = ĥC,x ∩ a = aEx ,

which is the desired contradiction.
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I. The infinitesimal characters of discrete series for real spherical spaces

5 Principal asymptotics

In this section we analyze the asymptotic behavior of generalized matrix coefficientsmv,η

where η ∈ (π−∞
λ,σ )

H . Before we state the main theorem, we introduce some notation.

Let σ ∈ M̂ and λ ∈ a∗C. We identify π∞
λ,σ with the space of smooth sections of the

vector-bundle Vσ ⊗Cλ×P G→ P\G. The support of a section or a functional is defined
in the usual way as a closed subset of P\G. For an open subset U of P\G we define
π∞
λ,σ(U) to be the space of all v ∈ π∞

λ,σ with compact support contained in U . We write
π−∞
λ,σ (U) for the continuous dual of π∞

λ,σ(U).
For x ∈ G we define [x] ∈ P\G to be the coset Px.
It follows from Lemma 2.1(iii) that ĥ ∩ Ad(x−1)n ⊆ h. Moreover, for every Y ∈ aEx

there exists a Yn ∈ n such that Y + Yn ∈ Ad(x)ĥ. (See equation (4.1) in Lemma 4.1.)
Therefore for χ ∈ (ĥ/h)∗C and x ∈ G we may define χx ∈ (aEx )

∗
C to be given by the

singleton

{χx(Y )} = χ
(
[Ad(x−1)(Y + n)] ∩ ĥ

)
(Y ∈ aEx ) . (5.1)

Note that χx
∣∣
ax

= 0 and that χx only depends on the H-orbit P\PxH , not on the repre-
sentative x ∈ G of the orbit.

Theorem 5.1. Let η ∈ (π−∞
λ,σ )

H and let x ∈ G. Assume that there exists an open neigh-
borhood Υ of [x] in P\G such that

supp η ∩Υ = P\PxH ∩Υ . (5.2)

Let C be a connected component of a−−
o−reg. For every X ∈ C there exists a neighborhood

Ω of [e] in Υx−1 and a unique pair of a constant rX ≥ 0 and a non-zero functional
ηX,x ∈ π−∞

λ,σ (Ω), satisfying

lim
t→∞

et
(
λ(X)+ρP (X)+2ρ(nC,x)(X)−rX

)
π∨
λ,σ

(
exp(tX)x

)
η = ηX,x . (5.3)

Here the limit is with respect to weak-∗ topology on π−∞
λ,σ (Ω).

For X ∈ C outside of a finite set of hyperplanes HC , there exists a ω ∈ −N0[Π], so
that ω(X) = rX , and so that ηX,x satisfies

π∨
λ,σ(hC,x)ηX,x = {0} , (5.4)

π∨
λ,σ(Y )ηX,x =

(
− λ− ρP − 2ρ(nC,x) + ω

)
(Y )ηX,x (Y ∈ a) . (5.5)

Moreover, if χ ∈ (ĥ/h)∗C and η satisfy

π∨
λ,σ(Y )η = −χ(Y )η (Y ∈ ĥ) , (5.6)

then
π∨
λ,σ(Y )ηX,x = −χx(Y )ηX,x (Y ∈ aEx ) . (5.7)
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Remark 5.2. For every non-zero H-invariant functional η ∈ π−∞
λ,σ there exist an x ∈ G

and an open neighborhood Υ of [x] in P\G such that (5.2) holds. Indeed, let O0 be an
H-orbit in supp(η) of maximal dimension and let x ∈ O0. The action of H on P\G
admits finitely many orbits. (See [4] and [29].) Since H is a real algebraic group, and
P\G is a real algebraic variety, and the action of H on P\G is real algebraic, the closure
of any H-orbit O in P\G consists of O and H-orbits of strictly smaller dimension. See
[16, Proposition 8.3]. Therefore,

Υ := O0 ∪
⋃

O∈P\G/H
dim(O)>dim(O0)

O .

is an open neighborhood of [x] and supp(η) ∩Υ = O0.

Before we prove the theorem we list some direct implications, which will be crucial
in the following sections.

Corollary 5.3. Let η ∈
(
π−∞
λ,σ

)H and let x ∈ G. Assume that there exists an open
neighborhood Υ of [x] in P\G such that (5.2) holds. Let C be a connected component of
a−−
o−reg.

(i) For every X ∈ C there exists a rX ≥ 0 and a v ∈ π∞
λ,σ such that

mv,η

(
exp(tX)x · z0

)
∼ et

(
−λ(X)−ρP (X)−2ρ(nC,x)(X)+rX

)
(t→ ∞) .

(ii) There exists a ω ∈ −N0[Π] such that

λ
∣∣
ax

=
(
− ρP − 2ρ(nC,x) + ω

)∣∣
ax
.

(iii) Let χ ∈ (ĥ/h)∗C and assume that (5.6) is satisfied. Then there exists a ω ∈ −N0[Π]
such that

λ
∣∣
aEx

=
(
− ρP − 2ρ(nC,x) + ω

)∣∣
aEx

+ χx .

Here χx is given by (5.1).

Proof. Ad (i): The functional ηX,x is non-zero, hence there exists a v ∈ π∞
λ,σ(Ω) for which

ηX,x(v) = 1. The claim now follows from (5.3).
Ad (iii): Let X ∈ C \ HC . Since aEx = ĥC,x ∩ a, the identity follows from (5.5) and (5.7).
Ad (ii): The identity follows from (iii) since χx

∣∣
ax

= 0.

In the remainder of this section we give the proof of Theorem 5.1.

We fix an element x ∈ G and a connected component C of a−−
o−reg. Recall that nxC ⊆ n

is an a-invariant vector complement of nC,x, so that n = nC,x ⊕ nxC . By Lemma 4.2 we
have

g = (Ad(x)h+ p)⊕ nxC .
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I. The infinitesimal characters of discrete series for real spherical spaces

Choose a subspace p′ of p so that g = Ad(x)h⊕ nxC ⊕ p′. Let

ψ : nC,x → nxC + p

be minus the restriction of the projection g → nxC ⊕ p′ along this decomposition. Then

Y + ψ(Y ) ∈ Ad(x)h (Y ∈ nC,x) .

For every Y ∈ nC,x

Y = (1 + ψ)(Y )− ψ(Y ) ∈ Im(1 + ψ) + nxC + p.

Combining this with a dimension count yields

g = Im(1 + ψ)⊕ nxC ⊕ p. (5.8)

For the proof of Theorem 5.1 we need the following lemma.

Lemma 5.4. Let X ∈ C and let ψ : nC,x → nxC + p as above. The limit

ψX := lim
t→∞

Ad
(
exp(tX)

)
◦ ψ ◦ Ad

(
exp(−tX)

)
exists in the space of linear maps nC,x → nxC + p. Moreover, if X ∈ C, then ψX = 0.

Proof. Let X0 ∈ C. If E is a line in the set Ad(x)h \ (Ad(x)h ∩ p), then in view of (4.1)
in Lemma 4.1, the limit EX0 is a line in n. Since this limit is also contained in hC,x, it is
in fact contained in hC,x ∩ n = nC,x. In particular, if Y ∈ nC,x \ {0}, then Y + ψ(Y ) ∈
Ad(x)h \ (Ad(x)h ∩ p) by (5.8), and hence the limit of Ad

(
exp(tX0)

)
R
(
Y + ψ(Y )

)
is a line in nC,x. Since nxC ⊕ p is stable under the adjoint action of A, the eigenvalues of
ad(X0) occurring in the decomposition of ψ(Y ) into eigenvectors must be smaller than
the largest eigenvalue occurring in the decomposition of Y into eigenvectors. Therefore,
it follows that

lim
t→∞

∥Ad
(
exp(tX0)

)
ψ(Y )∥

∥Ad
(
exp(tX0)

)
Y ∥

= 0 (Y ∈ nC,x \ {0}) . (5.9)

For α ∈ Σ ∪ {0} let pα be the projection onto gα with respect to the root space
decomposition. Here g0 = m ⊕ a. Let α, β ∈ Σ ∪ {0}. It follows from (5.9) that
pβ ◦ ψ ◦ pα ̸= 0 implies that α(X0) − β(X0) > 0. Since this holds for every X0 ∈ C, it
follows that

ψ =
∑

α,β∈Σ∪{0}
(α−β)|C>0

pβ ◦ ψ ◦ pα .

Now

Ad
(
exp(tX)

)
◦ ψ ◦ Ad

(
exp(−tX)

)
=

∑
α,β∈Σ∪{0}
(α−β)|C>0

et
(
β(X)−α(X)

)
pβ ◦ ψ ◦ pα
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5. Principal asymptotics

If X ∈ C, then (α− β)
∣∣
C > 0 implies that α(X) ≥ β(X). Therefore,

lim
t→∞

Ad
(
exp(tX)

)
◦ ψ ◦ Ad

(
exp(−tX)

)
=

∑
α,β∈Σ∪{0}
(α−β)|C>0
α(X)=β(X)

pβ ◦ ψ ◦ pα .

The first claim in the lemma now follows with

ψX =
∑

α,β∈Σ∪{0}
(α−β)|C>0
α(X)=β(X)

pβ ◦ ψ ◦ pα . (5.10)

If X ∈ C then the sum in (5.10) is over the empty set, and hence ψX = 0. This proves
the second assertion in the lemma.

It follows from (5.8) and the inverse function theorem that for sufficiently small neigh-
borhoods V1 of 0 in nC,x and V2 of 0 in nxC , the map

Φ : V1 × V2 → P\G; (Y1, Y2) 7→ P exp(Y2) exp
(
Y1 + ψ(Y1)

)
x

is a diffeomorphism onto an open neighborhood of [x]. Moreover,

V1 ∋ Y 7→ Φ(Y, 0)

is a diffeomorphism onto a submanifold of P\G contained in P\PxH . Because the
dimension of the image equals the dimension of P\PxH , it in fact covers an open neigh-
borhood of [x] in P\PxH .

We view π∞
−λ,σ∨ and C∞(V1 × V2, Vσ) as spaces of smooth sections of vector-bundles

and write Φ∗ for the pull-back along Φ, i.e., Φ∗ is the map π∞
−λ,σ∨ → C∞(V1 × V2, V

∗
σ )

given by Φ∗v = v ◦ Φ. This map has a continuous extension to a map

Φ∗ : π−∞
λ,σ → D′(V1 × V2)⊗ V ∗

σ .

Similarly we have a pull-back map π∞
λ,σ → C∞(V1 × V2, Vσ) which we also denote by

Φ∗. We note that there exists a strictly positive smooth function J on V1 × V2 such that

φ(ϕ) = Φ∗φ(JΦ∗ϕ) (5.11)

for every φ ∈ π−∞
λ,σ and ϕ ∈ π∞

λ,σ with suppϕ ⊆ Φ(V1 × V2).
Let n = dim(V2) and let e1, . . . , en a basis of nxC of joint eigenvectors for the action

of ad(a). We write ∂i for the partial derivative in the direction ei, and whenever µ is an
n-dimensional multi-index we write ∂µ for ∂µ11 . . . ∂µnn .

Now Φ∗η is a V ∗
σ -valued distribution on V1 × V2. From the condition (5.2) on the

support of η it follows that the support of Φ∗η is contained in V1 × {0}. It follows from
[39, p. 102] that there exist a minimal k ∈ N and for every multi-index µ with |µ| ≤ k a
V ∗
σ -valued distribution ηµ on V1 such that

Φ∗η =
∑
|µ|≤k

ηµ ⊗ ∂µδ . (5.12)

Here δ is the Dirac delta distribution at 0 on nxC . Note that this decomposition of Φ∗η is
unique.
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Lemma 5.5.

(i) For each multi-index µ, the distribution ηµ is given by a real analytic function

fµ : V1 → V ∗
σ ,

i.e. ηµ = fµ dY1 where dY1 is the Lebesgue measure on V1.

(ii) For each Y1 ∈ V1 there exists a µ of length |µ| = k so that fµ(Y1) ̸= 0.

Proof. In the first part of the proof we follow the analysis of Bruhat as it is described in
[42, Section 5.2.3]. For h ∈ H we write Uh = Φ−1

(
Φ(V1 × V2)h

−1
)

and define the real
analytic map

ρh : Uh → V1 × V2; v 7→ Φ−1
(
Φ(v)h

)
.

Note that ρh maps Uh ∩ (V1 × {0}) to V1 × {0}. We further write

Uh,1 := {v ∈ V1 : (v, 0) ∈ Uh}

and we define the map ξh : Uh,1 → V1 to be given by ρh(v, 0) = (ξh(v), 0) for v ∈ V1.
For all multi-indices µ and ν with |µ|, |ν| ≤ k there exists a real analytic function

λµ,ν : {(h, v) ∈ H × V1 : v ∈ Uh,1} → R

such that
ρ∗h
(
1V1 ⊗ ∂µδ

)
=

∑
|ν|≤k

λν,µ(h, · )⊗ ∂νδ (h ∈ H) .

(The domain of definition of λµ,ν is equal to the inverse image of Φ(V1, V2) under the
smooth map V1 × H → P\G; (v, h) 7→ Φ(v, 0)h−1, and hence it is open.) Note that
pulling back along ρh does not increase the order of the transversal derivatives, hence
λν,µ = 0 whenever |ν| > |µ|. We apply this identity to (5.12) and obtain

ρ∗h(Φ
∗η) =

∑
|µ|≤k

∑
|ν|≤|µ|

λν,µ(h, · )ξ∗hηµ ⊗ ∂νδ

=
∑
|µ|≤k

( ∑
k≥|ν|≥|µ|

λµ,ν(h, · )ξ∗hην
)
⊗ ∂µδ .

Since η is an H-invariant functional we have ρ∗h(Φ
∗η) = Φ∗η on Uh. Together with the

uniqueness of the decomposition (5.12) this implies for each µ that

ηµ
∣∣
Uh,1

=
∑

|ν|≥|µ|

λµ,ν(h, · )ξ∗hην (h ∈ H) .

We now apply the pull-back along ξh to this identity with h replaced by h−1 and thus
obtain

ξ∗hηµ =
∑

|ν|≥|µ|

λµ,ν
(
h−1, ξh( · )

)
ην
∣∣
Uh,1

. (5.13)
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Here we used that ξ−1
h (Uh−1,1) = Uh,1.

Let n = dim(nxC) and let S be the set of multi-indices µ ∈ Nn
0 with |µ| ≤ k. We write

pµ for the projection of (V ∗
σ )

S onto the µth component and define ζ to be the (V ∗
σ )

S-valued
distribution on V1 which for a multi-index µ is given by

pµζ = ηµ .

For h ∈ H and v ∈ Uh,1, let Λ(h, v) ∈ End
(
(V ∗

σ )
S
)

be given by

pµ ◦ Λ(h, v) ◦ pν = λµ,ν
(
h−1, ξh(v)

)
.

Then
ξ∗hζ = Λ(h, · )ζ

∣∣
Uh,1

.

We will finish the proof of the lemma by invoking the elliptic regularity theorem to
show that ζ is locally given by a real analytic (V ∗

σ )
S-valued function. To this end, let D

be a real analytic elliptic differential operator of order d > 0 on the trivial vector bundle
V1× (V ∗

σ )
S → V1. (Such differential operators exist, e.g. ∆⊗1 where ∆ is the Laplacian

on V1 and 1 the identity operator on (V ∗
σ )

S .) Let u1, . . . , ul be a basis of Ud(h). Since H
acts transitively on P\PxH , there exist real analytic functions cj : V1 → End

(
(V ∗

σ )
S
)

such that for ϕ ∈ C∞(
V1, (V

∗
σ )

S
)

Dϕ(v) =
l∑

j=1

cj(v)uj(ξ
∗
hϕ)(v)

∣∣
h=e

(v ∈ V1) .

Let v0 ∈ V1. Since D is elliptic of order d > 0, there exists a neighborhood U of v0 such
that the operator D′, which for ϕ ∈ C∞(

U, (V ∗
σ )

S
)

is given by

D′ϕ(v) =
l∑

j=1

cj(v0)uj
(
ξ∗hϕ− Λ(h, · )ϕ

)
(v)

∣∣
h=e

(v ∈ U) ,

is a real analytic elliptic differential operator on the vector bundle U × (V ∗
σ )

S → U . Note
that D′ζ = 0 on U . By the elliptic regularity theorem, there exists a real analytic function
f : U → (V ∗

σ )
s such that ζ = f dY1 on U . (See for example [43, Theorem IV.4.9] for

the smoothness of the solutions and [17, p. 144] for the analyticity.) Since v0 was chosen
arbitrarily, it follows that f extends to an analytic function on V1 and that ζ = f dY1 on
V1. Let fµ = pµf . Then fµ is real analytic and ηµ = fµdY1. This proves (i).

By (5.13) we have for every µ of length |µ| = k

fµ
(
ξh(Y1)

)
=

∑
|ν|=k

λµ,ν
(
h−1, ξh(Y1)

)
fν(Y1) (h ∈ H, Y1 ∈ Uh,1).

Let Y1 ∈ V1 be such that fν(Y1) = 0 for all ν of length |ν| = k, then the right-hand side
vanishes at the point Y1 for all h ∈ H such that Y1 ∈ Uh,1. This implies that the left-hand
side vanishes on an open neighborhood of Y1. Since the fµ are analytic, it follows that all
fµ for µ of length |µ| = k vanish on V1. Assertion (ii) now follows from the definition of
k.
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Proof of Theorem 5.1. Let Φ be as before. Recall that π∞
λ,σ

(
Im(Φ)

)
is the space of all

v ∈ π∞
λ,σ with compact support contained in the image Im(Φ) of Φ. Let v ∈ π∞

λ,σ

(
Im(Φ)

)
.

It follows from (5.11), (5.12) and Lemma 5.5(i) that

η(v) = Φ∗η
(
JΦ∗(v)

)
=

∑
|µ|≤k

(−1)|µ|
∫
V1

∂µY2

[
J(Y1, Y2)fµ(Y1)

(
v
(
exp(Y2) exp

(
Y1 + ψ(Y1)

)
x
))] ∣∣∣

Y2=0
dY1 .

By the Leibniz rule the integrand on the right-hand side is equal to∑
ν≤µ

(
µ

ν

)[
∂µ−νY2

J(Y1, Y2)
]∣∣∣
Y2=0

fµ(Y1)
[
∂νY2v

(
exp(Y2) exp

(
Y1 + ψ(Y1)

)
x
)]∣∣∣

Y2=0
.

Note that the Jacobian J is a real analytic function. By Lemma 5.5(i) also the func-
tions fµ are real analytic. Let ϵ1, . . . , ϵm be a basis of nC,x consisting of joint eigenvectors
for the action of ad(a) on nC,x. For a multi-index κ and Y ∈ nC,x define Y κ ∈ R in
the usual manner with respect to the basis ϵ1, . . . , ϵm. By shrinking V1 and V2 we may
assume that the Taylor series of J and the fµ are absolutely convergent on V1 × V2 and
V1, respectively. Let

(−1)|µ|
(
µ

ν

)[
∂µ−νY2

J(Y1, Y2)
]∣∣
Y2=0

fµ(Y1) =
∑
κ

Y κ
1 c

κ
µ,ν (5.14)

be the Taylor expansion of the function on the left-hand side. Here for every multi-index
κ the coefficient cκµ,ν is an element of V ∗

σ . Since the series on the right-hand side of (5.14)
is absolutely convergent on V1 and since v has compact support in Im(Φ), we can apply
Lebesgue’s dominated convergence theorem to interchange the integral and the sums, and
obtain

η(v) =
∑
|ν|≤k

∑
κ

∫
V1

Y κ
1 C

κ
ν

[
∂νY2v

(
exp(Y2) exp

(
Y1 + ψ(Y1)

)
x
)]∣∣∣

Y2=0
dY1 , (5.15)

where
Cκ
ν :=

∑
|µ|≤k,µ≥ν

cκµ,ν ∈ V ∗
σ .

Recall that e1, . . . , en is a basis of nxC consisting of joint eigenvectors for the action of
ad(a) on nxC . For a multi-index ν, let ω2,ν ∈ −N0[Π] be the a-weight of eν11 · · · eνnn ∈ U(n),
where U(n) denotes the universal enveloping algebra of n. Further, for a multi-index κ
we define ω1,κ ∈ −N0[Π] to be the a-weight of ϵκ11 · · · ϵκnm ∈ U(n). Define

Ξ := {(ν, κ) : Cκ
ν ̸= 0} .

Let X ∈ C be fixed. The set {ω2,ν(X)−ω1,κ(X) : (ν, κ) ∈ Ξ} is discrete. Moreover, it is
bounded from above as there exists only finitely many multi-indices ν of length at most
k and ω1,κ(X) ≥ 0 for every κ. Define

rX := max{ω2,ν(X)− ω1,κ(X) : (ν, κ) ∈ Ξ} (5.16)
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and
ΞX := {(ν, κ) ∈ Ξ : ω2,ν(X)− ω1,κ(X) = rX} .

By Lemma 5.5(ii) there exists a multi-index µ0 of length k such that fµ0(0) ̸= 0. If we
take µ = ν = µ0 then the left-hand side of (5.14) is non-zero in Y1 = 0. Therefore,
the coefficient C0

µ0
= c0µ0,µ0 ̸= 0, and hence (µ0, 0) ∈ Ξ. Since ω1,0 = 0, we have

rX ≥ ω2,µ0(X) ≥ 0.
We will now specify the domain Ω that appears in the theorem. For this we first

introduce a family of diffeomorphisms. For t ∈ R, let at := exp(tX). We define

Ψt : Ad(at)V1 ×Ad(at)V2 → P\G; (Y1, Y2) 7→ Φ
(
Ad(a−1

t )Y1,Ad(a
−1
t )Y2

)
x−1a−1

t .

Observe that Ψt is a diffeomorphism onto its image for every t ∈ R. For every (Y1, Y2) ∈
Ad(at)V1 × Ad(at)V2 we have

Ψt(Y1, Y2) = P exp
(
Ad(a−1

t )Y2

)
exp

(
Ad(a−1

t )Y1 + ψ
(
Ad(a−1

t )Y1
))
a−1
t

= P exp(Y2) exp
(
Y1 +Ad(at)ψ

(
Ad(a−1

t )Y1
))
.

Let GX be the graph of ψX . Then g = p ⊕ GX ⊕ nxC , and thus there exist open
neighborhoods W1 and W2 of 0 in nC,x and nxC respectively such that the map

Ψ∞ : W1 ×W2 → P\G ,

given by
Ψ∞(Y1, Y2) = P exp(Y2) exp

(
Y1 + ψX(Y1)

)
,

is a diffeomorphism onto an open neighborhood of [e] in P\G. The map Ψ∞ is a limit of
the maps Ψt in the following sense. Since Ad(at) acts with eigenvalues larger or equal
than 1 on nC,x and nxC , there exist bounded open neighborhoods U1 and U2 of 0 in nC,x and
nxC , respectively, satisfying

U1 ⊆ W1 ∩
⋂
t≥0

Ad(at)V1 and U2 ⊆ W2 ∩
⋂
t≥0

Ad(at)V2 .

It follows from Lemma 5.4 that

lim
t→∞

Ψt(Y1, Y2) = Ψ∞(Y1, Y2)
(
(Y1, Y2) ∈ U1 × U2

)
, (5.17)

where the limit takes place in the space of smooth maps U1 ×U2 → P\G. We claim that
for sufficiently large R > 0 there exists an open neighborhood Ω of [e] in P\G such that

Ω ⊆ Ψ∞(U1 × U2) ∩
⋂
t>R

Ψt(U1 × U2) . (5.18)

Indeed, the constructive proof of the inverse function theorem (see for example Lemma
1.3 in [32]) gives a lower bound on the size of the open neighborhood of [e] ∈ P\G
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that is contained in Ψt(U1 × U2) in terms of the tangent map of Ψt at (0, 0). The claim
therefore follows immediately from (5.17).

For (ν, κ) ∈ Ξ, let ην,κX ∈ π−∞
λ,σ (Ω) be the functional which for v ∈ π∞

λ,σ(Ω) is given
by

ην,κX (v) :=

∫
U1

Y κ
1 C

κ
ν

[
∂νY2v

(
exp(Y2) exp

(
Y1 + ψX(Y1)

))]∣∣∣
Y2=0

dY1 . (5.19)

We claim that (5.3) holds with rX given by (5.16) and ηX,x by the sum

ηX,x :=
∑

(ν,κ)∈ΞX

ην,κX , (5.20)

where the sum is convergent in π−∞
λ,σ (Ω) with respect to the weak-∗-topology.

To prove the claim, let t > R and consider v ∈ π∞
λ,σ(Ω). For every Y2 ∈ nxC and

Y ∈ g.

[πλ,σ(x
−1a−1

t )v]
(
exp(Y2) exp(Y )x

)
= a−λ−ρPt v

(
exp

(
Ad(at)Y2

)
exp

(
Ad(at)Y

))
.

From (5.15) it follows that

aλ+ρPt η
(
πλ,σ(x

−1a−1
t )v

)
(5.21)

=
∑
|ν|≤k

∑
κ

∫
U1

Y κ
1 C

κ
ν

[
∂νY2v

(
exp

(
Ad(at)Y2

)
exp

(
Ad(at)

(
Y1 + ψ(Y1)

)))]∣∣∣
Y2=0

dY1 .

If 1 ≤ i ≤ n and α is the root so that ei ∈ gα, then Ad(at)ei = aαt ei, and hence

d

ds
v
(
exp

(
Ad(at)(sei)

)
exp

(
Ad(at)Y

))
= aαt

d

ds
v
(
exp(sei) exp

(
Ad(at)Y

))
.

Applying the previous identity repeatedly yields

∂νY2v
(
exp

(
Ad(at)Y2

)
exp

(
Ad(at)Y

))∣∣
Y2=0

= a
ω2,ν

t ∂νY2v
(
exp(Y2) exp

(
Ad(at)Y

))∣∣
Y2=0

.

Combining this identity with (5.21), we obtain

aλ+ρPt η
(
πλ,σ(x

−1a−1
t )v

)
=

∑
|ν|≤k

∑
κ

a
ω2,ν

t

∫
U1

Y κ
1 C

κ
ν

[
∂νY2v

(
exp(Y2) exp

(
Ad(at)

(
Y1 + ψ(Y1)

)))]∣∣∣
Y2=0

dY1 .

By definition of ω1,κ (
Ad(a−1

t )Y1
)κ

= a
−ω1,κ

t Y κ
1 (Y1 ∈ nC,x) .
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We now perform a substitution of variables and obtain that∫
U1

Y κ
1 C

κ
ν

[
∂νY2v

(
exp(Y2) exp

(
Ad(at)

(
Y1 + ψ(Y1)

)))]∣∣∣
Y2=0

dY1

= a
−2ρ(nC,x)−ω1,κ

t

∫
Ad(at)U1

Y κ
1 C

κ
ν

[
vν,t(Y1)

]
dY1 ,

where

vν,t(Y1) := ∂νY2v
(
exp(Y2) exp

(
Y1 +Ad(at)ψ

(
Ad(a−1

t )Y1
)))∣∣∣

Y2=0

for Y1 ∈ Ad(at)U1. It follows from (5.18) and the fact that v is supported in Ω, that

supp(vν,t) ⊆ U1.

Now

et
(
λ(X)+ρP (X)+2ρ(nC,x)(X)−rX

)
η
(
πλ,σ(x

−1a−1
t )v

)
=

∑
|ν|≤k

∑
κ

et
(
ω2,ν(X)−ω1,κ(X)−rX

) ∫
U1

Y κ
1 C

κ
ν [vν,t(Y1)] dY1 . (5.22)

Since U1 is bounded, the support of the functions vν,t is bounded uniformly in t > 0.
Therefore, vν,t converges for t→ ∞ in the space C∞

c (U1, Vσ) to the function

Y1 7→ ∂νY2v
(
exp(Y2) exp

(
Y1 + ψX(Y1)

))∣∣∣
Y2=0

,

and thus we obtain,

lim
t→∞

∫
U1

Y κ
1 C

κ
ν [vν,t(Y1)] dY1

=

∫
U1

Y κ
1 C

κ
ν

[
∂νY2v

(
exp(Y2) exp

(
Y1 + ψX(Y1)

))]∣∣∣
Y2=0

dY1 = ην,κX (v) .

For the last equality we used (5.19).
Let r = supY1∈U1

∥Y1∥. Since U1 is bounded, we have r < ∞. Moreover, since
U1 ⊆ V1, we also have that r is strictly smaller than the convergency radius of the Taylor
series in (5.14), and hence ∑

κ

r|κ|∥Cκ
ν ∥ <∞ . (5.23)

As vν,t is bounded uniformly in t > 0 and ν, and et
(
ω2,ν(X)−ω1,κ(X)−rX

)
≤ 1 for

all t > 0 and (ν, κ) ∈ Ξ, it follows from (5.23) that the series in (5.22) is absolutely
convergent uniformly in t > 0. Therefore,

lim
t→∞

et
(
λ(X)+ρP (X)+2ρ(nC,x)(X)−rX

)
η
(
πλ,σ(x

−1a−1
t )v

)
=

∑
|ν|≤k

∑
κ

lim
t→∞

(
et
(
ω2,ν(X)−ω1,κ(X)−rX

) ∫
U1

Y κ
1 C

κ
ν [vν,t(Y1)] dY1

)
=

∑
(ν,κ)∈ΞX

ην,κX (v) .
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This proves the claim that (5.3) holds with rX given by (5.16) and ηX,x by the convergent
sum (5.20).

We claim that ηX,x ̸= 0. Let v ∈ π∞
λ,σ(Ω). Since v is compactly supported, it follows

from (5.23) and Lebesgue’s dominated convergence theorem, that we may interchange
the sum and the integral, so that

ηX,x(v) =
∑

(ν,κ)∈ΞX

∫
U1

Y κ
1 C

κ
ν

[
∂νY2v

(
exp(Y2) exp

(
Y1 + ψX(Y1)

))]∣∣∣
Y2=0

dY1

=
∑
|ν|≤k

∫
U1

Fν,X(Y1)
[
∂νY2v

(
exp(Y2) exp

(
Y1 + ψX(Y1)

))]∣∣∣
Y2=0

dY1 , (5.24)

where Fν,X : U1 → V ∗
σ is given by the absolutely convergent series

Fν,X(Y1) :=
∑

{κ:(ν,κ)∈ΞX}

Y κ
1 C

κ
ν . (5.25)

If {κ : (ν, κ) ∈ ΞX} ≠ ∅, then Fν,X is not identically equal to 0 since it is given by an
absolutely convergent power series with at least one non-zero coefficient. Since ΞX ̸= ∅
there exists at least one multi-index ν0 so that Fν0,X is not identically equal to 0.

Let vσ ∈ Vσ and let ϕ1 ∈ C∞
c (U1) and ϕ2 ∈ C∞

c (U2). We now take v to be the
element of π∞

λ,σ(Ω) that is determined by

v
(
exp(Y2) exp

(
Y1 + ψX(Y1)

))
= ϕ1(Y1)ϕ2(Y2)vσ (Y1 ∈ U1, Y2 ∈ U2) .

(Recall that Ψ∞ is a diffeomorphism, and hence v is well defined.) Then

ηX,x(v) =
∑
|ν|<k

∂νϕ2(0)

∫
U1

(
Fν,X(Y1)(vσ)

)
ϕ1(Y1) dY1 .

We assume that vσ, ϕ1 and ϕ2 satisfy

(a) ∂ν0ϕ2(0) = 1,

(b) If ν ̸= ν0, then ∂νϕ2(0) = 0,

(c) Y1 7→ Fν0,X(Y1)(vσ) is not identically equal to 0,

(d)
∫
U1

(
Fν,X(Y1)(vσ)

)
ϕ1(Y1) dY1 = 1.

Under these assumptions we have ηX,x(v) = 1, and hence ηX,x ̸= 0.

We move on to show (5.4) for X ∈ C. Let α ∈ Σ∪{0} and let Y ∈ (hC,x ∩ gα) \ {0}.
For Y ′ ∈ g, we write

Ad(x)Y ′ =
∑

β∈Σ∪{0}

Y ′
x,β ,
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with Y ′
x,β ∈ gβ for every β ∈ Σ ∪ {0}. In view of (4.1) in Lemma 4.1 there exists an

element Y ′ ∈ h such that Y ′
x,α = Y and α is the unique element of Σ ∪ {0} satisfying

α(X) = max{β(X) : β ∈ Σ ∪ {0}, Y ′
x,β ̸= 0} .

For every v ∈ π∞
λ,σ we have

e−tα(X)et(λ+ρP+2ρ(nC,x)−ωX)(X)π∨
λ,σ

(
exp(tX)x

)
π∨
λ,σ(Y

′)η

=
∑

β∈Σ∪{0}

et(β−α)(X)π∨
λ,σ(Y

′
x,β)

[
et(λ+ρP+2ρ(nC,x)−ωX)(X)π∨

λ,σ

(
exp(tX)x

)
η
]

−→ π∨
λ,σ(Y

′
x,α)ηX,x = π∨

λ,σ(Y )ηX,x (t→ ∞) .

Here the limit is taken with respect to the weak-∗ topology. Since Y ′ ∈ h, we have
π∨
λ,σ(Y

′)η = 0, hence π∨
λ,σ(Y )ηX,x = 0. This proves (5.4).

For X ∈ C, we have ψX = 0 by Lemma 5.4. Let NC,x be the connected subgroup of
G with Lie algebra nC,x and let dn denote the Haar measure onNC,x. Then the expression
(5.24) for ηX,x simplifies to

ηX,x(v) =
∑
|ν|≤k

∫
nC,x

Fν,X(Y1)
[
∂νY2v

(
exp(Y2) exp(Y1)

)]∣∣∣
Y2=0

dY1

=
∑
|ν|≤k

∫
NC,x

Fν,X
(
log(n)

)[
∂νY2v

(
exp(Y2)n

)]∣∣∣
Y2=0

dn
(
v ∈ π∞

λ,σ(Ω)
)
.

Since nC,x ⊆ hC,x, it follows from (5.4) that π∨
λ,σ(nC,x)ηX,x = {0}. Because of the

invariance of the Haar measure on NC,x, this implies that Fν,X is constant for every ν.
Therefore, only terms with κ = 0 can contribute to Fν,X in the series in (5.25). In
particular it follows that (ν, κ) ∈ ΞX implies that κ = 0. Moreover, rX in (5.16) is equal
to ω2,µ0(X) for some multi-index µ0 with the property that fµ0(0) ̸= 0 and fµ(0) = 0
for every µ > µ0. Let ω := ω2,µ0 ∈ −N0[Π]. Then ΞX consists of pairs (ν, 0) with
ω2,ν(X) = ω(X). The formula for ηX,x simplifies further to

ηX,x(v) =
∑
|µ|≤k

ω2,µ(X)=ω(X)

∫
NC,x

cµ

[
∂µY2v

(
exp(Y2)n

)]∣∣∣
Y2=0

dn,
(
v ∈ π∞

λ,σ(Ω)
)
,

(5.26)
with cµ := (−1)|µ|J(0, 0)fµ(0) ∈ V ∗

σ \ {0}.
If we further impose on X ∈ C the condition that χ(X) ̸= χ′(X) whenever χ, χ′ ∈

−N0[Π] are two different elements, each of which being a sum of at most k roots in −Σ,
then ω2,µ(X) = ω(X) if and only if ω2,µ = ω. Equation (5.5) then follows directly from
(5.26).

It remains to prove that (5.6) implies (5.7). Let Y ∈ aEx . Then Ad(x−1)(Y + n) ∩ ĥ

is non-empty, see (4.1) in Lemma 4.1. Let Y ′ ∈ Ad(x−1)(Y + n) ∩ ĥ. Then for every
v ∈ π∞

λ,σ

et(λ+ρP+2ρ(nC,x)−ωX)(X)π∨
λ,σ

(
exp(tX)x

)
π∨
λ,σ(Y

′)η

= et(λ+ρP+2ρ(nC,x)−ωX)(X)π∨
λ,σ

(
Ad(exp(tX)x)Y ′)π∨

λ,σ

(
exp(tX)x

)
η
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converges to π∨
λ,σ(Y )ηX,x for t → ∞. Moreover, it follows from (5.6) that it also con-

verges to −χ(Y ′)ηX,x for t → ∞. Here again the limits are taken with respect to the
weak-∗ topology. It thus follows that

π∨
λ,σ(Y )ηX,x = −χ(Y ′)ηX,x .

Now (5.7) follows as χ(Y ′) = χx(Y ).

6 Integrality and negativity conditions
Let us denote by (·, ·) the Euclidean structure on a∗. For α ∈ a∗\{0} we define α∨ ∈ a

by α∨ := 2 (·,α)
(α,α)

∈ (a∗)∗ = a. Recall that if α ∈ Σ then α∨ is called the co-root of α and
Σ∨ := {α∨ | α ∈ Σ} is a root system on a, called the dual root system.

For a connected component C of a−−
o−reg and x ∈ G, define lC,x := hC,x ∩ θhC,x. Note

that lC,x is a reductive a-stable subalgebra of hC,x and lC,x ∩ a = ax. Moreover, it follows
from (4.5) that lC,manxh = Ad(m)lC,x for m ∈M , a ∈ A, n ∈ N and h ∈ H . For λ ∈ a∗C
we set

Σ(λ) := {α ∈ Σ|λ(α∨) ∈ Z} .

Lemma 6.1. Let (V, η) be a spherical pair belonging to the twisted discrete series and
assume that there is a quotient πλ,σ ↠ V . Consider η as an H-fixed element of π−∞

λ,σ

and let x ∈ G satisfy the support condition (5.2). (See Remark 5.2.) Then the following
assertions hold.

(i) λ
∣∣
ax

∈ (−ρP + Z[Π])
∣∣
ax

.

(ii) Let χ ∈ (ĥ/h)∗C be normalized unitary. If (V, η) belongs to the χ-twisted discrete
series, then

λ
∣∣
aEx

∈ 1

2
Z[Π]

∣∣
aEx

+ i Imχx .

Let C be a connected component of a−−
o−reg. Then the following hold.

(iii) Σ(a, lC,x) ⊆ Σ(λ).

(iv) Reλ(X) ≤ 2ρ(lC,x ∩ n)(X) for all X ∈ −C ⊆ a+. The inequality is strict for
X ∈ −C \ aEx .

Proof. Assertion (i) is immediate from Corollary 5.3(ii) for any choice of C. We move
on to (ii). By (3.2) we have

| detAd(ha)
∣∣
g/h

| = a2ρQ (h ∈ H, a ∈ AZ,E) .

We thus see that Reχ(Y ′) = −1
2
tr ad(Y ′)

∣∣
g/h

for every Y ′ ∈ ĥ. Let Y ∈ aEx . It follows

from (4.1) in Lemma 4.1 that there exists an element Y ′ in Ad(x−1)(Y + n) ∩ ĥ. Now

Reχx(Y ) = Reχ(Y ′) = −1

2
tr ad(Y ′)

∣∣
g/h

∈ 1

2
Zspec

(
ad(Y ′)

)
.
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The eigenvalues of ad(Y ′) are equal to the eigenvalues of ad(Y ). Therefore,

Reχx ∈
1

2
Z[Π]

∣∣
aEx
.

Since (V, η) is χ-twisted, assertion (ii) now follows from Corollary 5.3(iii) for any choice
of C.

Assertion (iii) is a consequence of (i) since lC,x ∩ a = ax and hence α∨ ∈ ax for all
α ∈ Σ(a, lC,x).

Moving on to (iv) we first observe that if (V, η) is a spherical pair of the twisted
discrete series and πλ,σ ↠ V , then Corollary 5.3 (i) combined with the bound (4.9) and
Proposition 4.4 results for X ∈ −C ⊆ a+ in the inequality(

− Reλ− ρP − 2ρ(nC,x)
)
(−X) + r−X ≤ −ρ(hC,x)(−X) .

Hence
(−Reλ)(X) ≥

(
ρP + 2ρ(nC,x)− ρ(hC,x)

)
(X) (6.1)

for all X ∈ −C. If X ∈ −C \ aEx , then instead of (4.9) we may use (4.10) in conjunction
with Proposition 4.5 and conclude that in that case the inequality is strict.

Let vC,x be an a-stable complement of lC,x in hC,x. Note that

2ρ(nC,x)− ρ(hC,x) = −2ρ(lC,x ∩ n) + ρ(vC,x ∩ n)− ρ(vC,x ∩ n) .

Since vC,x ∩ θ(vC,x) = 0, it follows that

ρP + 2ρ(nC,x)− ρ(hC,x) ∈ −2ρ(lC,x ∩ n) +
1

2
N0[Σ

+] .

Now (iv) follows from (6.1).

Corollary 6.2.

(i) Let χ ∈ (ĥ/h)∗C be normalized unitary. There exists a finite set Sχ of pairs (b, ν),
where b is a subspace of a and ν ∈ b∗, with the following property. If (V, η) is
a spherical pair belonging to the χ-twisted discrete series of representations, and
there is a quotient πλ,σ ↠ V , then there exists an ω ∈ spanR

(
Σ(λ)

)
and a pair

(b, ν) ∈ Sχ such that

λ
∣∣
b
∈ 1

2
Z[Π]

∣∣
b
+ iν ,

Reλ(X) ≤ ω(X) (X ∈ a+) ,

Reλ(X) < ω(X) (X ∈ a+ \ b) .

(ii) If (V, η) is a spherical pair belonging to the discrete series of representations, and
there is a quotient πλ,σ ↠ V , then there exists an ω ∈ spanR

(
Σ(λ)

)
and a subspace

b of a such that

λ
∣∣
b
∈ (−ρP + Z[Π])

∣∣
b
⊆ 1

2
Z[Π]

∣∣
b
,

Reλ(X) ≤ ω(X) (X ∈ a+) ,

Reλ(X) < ω(X) (X ∈ a+ \ b) .
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Proof. Ad (i): Let Sχ be the set of pairs (aEx , χx) where x runs over a set of representatives
in G of H-orbits in P\G. Consider η as an H-fixed element of π−∞

λ,σ . Then there exists
an H-orbit in P\G so that the support condition (5.2) is satisfied. See Remark 5.2. Let
x ∈ G be the representative of the orbit. The assertions now follow from (ii), (iii) and
(iv) in Lemma 6.1 with ω =

∑
C 2ρ(lC,x ∩ n), b = aEx and ν = Imχx.

Ad (ii): If V belongs to a discrete series representation, then ĥ = h by Lemma 3.3, and
therefore aEx = ax. We set b = ax and use (i) in Lemma 6.1 instead of (ii).

7 Negativity versus integrality in root systems
In this section we develop some general theory which is independent of the results in
previous sections.

7.1 Equivalence relations
Let Σ be a (possibly non-reduced) root system spanning the Euclidean space a∗. We
denote byW the corresponding Weyl group. Let Π ⊆ Σ be a basis, Σ+ the corresponding
positive system and C ⊆ a = (a∗)∗ be the closure of the corresponding positive Weyl
chamber, i.e.

C = {x ∈ a | (∀α ∈ Π) α(x) ≥ 0} .
Further we use the notation C× = C\{0}.

We define an equivalence relation on a∗C by λ ∼ µ provided that µ is obtained from λ
via a sequence

λ = µ0, µ1, . . . , µl = µ ,

where for all i:

(a) µi+1 = si(µi) with si = sαi
the simple reflection associated to αi ∈ Π,

(b) µi(α∨
i ) ̸∈ Z.

The equivalence class of λ is denoted by [λ].
A root subsystem Σ0 of the root system Σ is a subset of Σ that satisfies:

(a) Σ0 is a root system in the subspace it spans,

(b) if α, β are in Σ0, and γ = α + β ∈ Σ, then γ ∈ Σ0.

A root subsystem Σ0 ⊆ Σ has a unique system of positive roots Σ0,+ contained in Σ+.
Given now λ ∈ a∗C we define

Σ(λ)∨ := {α∨ ∈ Σ∨|λ(α∨) ∈ Z}
Σ(λ) := {α ∈ Σ|λ(α∨) ∈ Z} .

Clearly Σ(λ)∨ is a root subsystem of Σ∨, but observe that Σ(λ) might not be a root
subsystem of Σ. We call an element µ ∈ a∗ a weight of Σ(λ) if µ(α∨) ∈ Z for every
α ∈ Σ(λ). The set of weights of Σ(λ) forms a lattice in a∗ which contains Re(λ).
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Next we define an equivalence relation on W by u ∼λ v provided that uC and vC are
connected by a gallery of chambers (uC = C0, C1, ..., Cl = vC) such that for each i, Ci
and Ci+1 are separated by Hβi with βi ∈ Σ\Σ(λ) an indivisible root for each i.

Let Σ(λ)+ = Σ(λ) ∩Σ+. We denote the closure of the corresponding positive cham-
ber by C(λ) ⊆ a.

Lemma 7.1. Let λ ∈ a∗C. Then the following assertions hold:

(i) C(λ) equals the union of the sets w(C) where w runs over [e]λ, the equivalence
class of e ∈ W .

(ii) Let µ ∈ a∗C. Then λ ∼ µ if and only if there exists a w ∈ W with w−1 ∈ [e]λ such
that µ = wλ.

Proof. We start with the proof of (i). Let D be the union of the sets w(C) where w runs
over [e]λ. By definition C(λ) is the closure of a connected component of the complement
of the union of the hyperplanes Hα with α ∈ Σ(λ), namely the connected component
which contains int(C).

Clearly C(λ) is the closure of the union of the open chambers it contains. These are
of the form w(int(C)), where w varies over a subset of [e]λ; indeed, the latter follows
since the hyperplanes intersecting int

(
C(λ)

)
are hyperplanes of roots which are not in

Σ(λ). Hence C(λ) ⊆ D, since D is closed. But clearly we can not extend any further
beyond C(λ) while staying in D, since all the walls of C(λ) are hyperplanes of roots in
Σ(λ). Hence the equality is clear and (i) is established.

Moving on to (ii), let λ = µ0, µ1, . . . , µl = µ be a sequence connecting λ and µ = wλ
such that µi+1 = si(µi), with si a reflection in a simple root αi, and µi(α∨

i ) ̸∈ Z for all i.
Let w0 = e and wi+1 = siwi. Furthermore, let βi = w−1

i (αi), so that wi+1 = wisβi . Then
βi is an indivisible root and

λ(β∨
i ) = wi(λ)(α

∨
i ) = µi(α

∨
i ) ̸∈ Z ,

that is, βi ∈ Σ\Σ(λ). We may assume that wl = w. Therefore, the gallery

C,w−1
1 (C), w−1

2 (C), . . . , w−1(C)

yields an equivalence w−1 ∼λ e. The converse is also true. If the gallery

(C0 = C,C1, . . . , Cl = w−1(C))

defines an equivalence e ∼λ w
−1, then Ci+1 = sβi(Ci) with βi ∈ Σ\Σ(λ) an indivisible

root for all i. Let wi ∈ W so that Ci = w−1
i C, and µi := wi(λ). Since Hβi is a common

face of Ci and Ci+1 (by definition of gallery), we have sβiw
−1
i = w−1

i sαi
for some simple

root αi = wiβi ∈ Π. Note that

µi(α
∨
i ) = wiλ(α

∨
i ) = λ(β∨

i ) ̸∈ Z .

This implies that λ and w(λ) are equivalent and finishes the proof of (ii).
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7.2 Integral-negative parameters
Let us call λ ∈ a∗C weakly integral-negative provided that there exists a ωλ ∈ spanR(Σ(λ))
and a subspace aλ ⊆ a such that

(Reλ− ωλ)
∣∣
C
≤ 0 ,

(Reλ− ωλ)
∣∣
C\aλ

< 0 .

Further, we call λ ∈ a∗C integral-negative provided that there exists a ωλ ∈ spanR(Σ(λ))
and a subspace aλ ⊆ a such that

λ
∣∣
aλ

= Reλ
∣∣
aλ
,

(Reλ− ωλ)
∣∣
C
≤ 0 ,

(Reλ− ωλ)
∣∣
C\aλ

< 0 .

Finally, we call λ ∈ a∗C strictly integral-negative if there exists a ωλ ∈ spanR(Σ(λ)) such
that

(Reλ− ωλ)
∣∣
C\{0} < 0 .

Remark 7.2. These definitions are motivated by our results from the previous section.
Let a ⊆ g and Σ(g, a) be as introduced in Section 2, and let Σ+ be the positive system
determined by the minimal parabolic subgroup P . Let (V, η) be a spherical pair and
assume that there exists a quotient morphism πλ,σ ↠ V for some λ ∈ a∗C and σ ∈ M̂ .
Then from Corollary 6.2 we derive the following.

(i) 2λ is weakly integral-negative if V belongs to the twisted discrete series for Z. In
fact we may take aλ and ωλ to be equal to b and ω as in Corollary 6.2(i).

(ii) λ is integral-negative if V belongs to the discrete series for Z.

Remark 7.3. Sometimes more is true for parameters of the discrete series and λ is
actually strictly integral-negative. This for example happens in the group case Z =
G×G/G ≃ G.

Let us define the edge of λ by

e := e(λ) := {X ∈ a | (∀α ∈ Σ(λ)) α(X) = 0} ,

i.e., e is the intersection of all faces of C(λ).
Notice the orthogonal decomposition

a = e⊕ spanR Σ(λ)
∨ . (7.1)

Theorem 7.4. Let λ ∈ a∗C. Then the following assertions hold:

(i) Suppose that [λ] consists of weakly integral-negative parameters. Then there exists
a w ∈ W with w−1 ∼λ e such that e ⊆ w−1awλ. Moreover, Reλ

∣∣
e
= 0. Finally,

there exists anN ∈ N only depending on Σ such that Reλ(α∨) ∈ 1
N
Z for all α ∈ Σ.
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7. Negativity versus integrality in root systems

(ii) If [λ] consists of integral-negative parameters, then λ
∣∣
e
= 0. In particular, λ =

Reλ.

(iii) If [λ] consists of strictly integral-negative parameters, then e = {0}. In particular,
Σ(λ)∨ has full rank.

Proof. We start with (i). Let µ ∈ [λ], that is µ = wλ for some w ∈ W with w−1 ∼λ e
by Lemma 7.1(ii). Since µ is weakly integral-negative there exists a subspace aµ of a and
an ωµ ∈ spanR Σ(µ) such that (Reµ− ωµ)

∣∣
C\aµ

< 0 and (Reµ− ωµ)
∣∣
C
≤ 0. The latter

conditions are equivalent to (Reλ−w−1ωµ)
∣∣
w−1C\w−1aµ

< 0 and (Reλ−w−1ωµ)
∣∣
w−1C

≤
0. Now define a function f : a → R by

f(X) := max
w−1∼λe

w−1ωwλ(X) (X ∈ a) .

By Lemma 7.1(i) we have C(λ) =
⋃
w−1∼λe

w−1C, and thus(
Reλ− f

)∣∣
C(λ)\

⋃
w−1∼λe w

−1awλ
< 0 , (7.2)(

Reλ− f
)∣∣
C(λ)

≤ 0 . (7.3)

Recall that e is the intersection of all faces of C(λ). Since wΣ(λ)∨ = Σ(wλ)∨ for every
w ∈ W , we have w−1ωwλ ∈ spanR

(
Σ(λ)

)
. It follows that w−1ωwλ

∣∣
e
= 0 and thus f

∣∣
e
=

0. Since e\
⋃
w−1∼λe

w−1awλ is invariant under multiplication by −1, it follows from (7.2)
that e ⊆

⋃
w−1∼λe

w−1awλ. Hence e ⊆ w−1awλ for some w ∈ W with w−1 ∼λ e. It now
follows from (7.3) that Reλ

∣∣
e
= 0.

We call a root subsystem Σ′ of Σ parabolic if Σ′ is the intersection of Σ with a sub-
space. Let ΣP (λ) ⊆ Σ be the parabolic closure of Σ(λ) ⊆ Σ, i.e., the smallest parabolic
root subsystem of Σ containing Σ(λ). Then ΣP (λ) = e⊥ ∩ Σ, and Σ(λ)∨ ⊆ ΣP (λ)

∨ is a
root subsystem of maximal rank of the corresponding dual parabolic subsystem ΣP (λ)

∨

of Σ∨. By the above, Re(λ) ∈ e⊥, and by definition of Σ(λ), Re(λ) is a weight of Σ(λ).
Let N be the index of the root lattice of ΣP (λ) in the weight lattice of Σ(λ) (which

is a lattice containing the weight lattice of ΣP (λ)). Then N Re(λ) is in the root lattice of
ΣP (λ) and thus, a fortiori, in the root lattice of Σ. In particular, N Re(λ) is integral for Σ
(i.e., as a functional on Σ∨).

Since there are only finitely many root subsystems of maximal rank in any given root
system, and only finitely many parabolic root subsystems, we see that we can choose the
bound N ∈ N independent of λ (only depending on Σ). This completes the proof of (i).

We move on to (ii). From (i) it follows that there exists a w ∈ W with w−1 ∼λ e such
that e ⊆ w−1awλ. Now λ(e) ⊆ λ(w−1awλ) = wλ(awλ) ⊆ R. It follows that λ

∣∣
e

is real
and thus λ

∣∣
e
= 0 by (i). It then follows from (7.1) that λ = Reλ.

Finally for (iii) we observe that [λ] being strictly integral-negative implies, as above,
Reλ(X) < f(X) for all X ∈ C(λ) \ {0} and therefore Reλ

∣∣
e×
< 0. The latter forces

e× = ∅, i.e., e = {0}.
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I. The infinitesimal characters of discrete series for real spherical spaces

7.3 Additional results
The assertions in this subsection are of independent interest, but not needed in the re-
mainder of this article.

Given a full rank subsystem (Σ0)∨ of Σ∨ we note that Z[(Σ0)∨] has finite index in the
full co-root lattice Z[Σ∨] and thus

Z[Σ∨]/Z[(Σ0)∨] ≃
r⊕
j=1

Z/djZ

for dj ∈ N. Set N(Σ0) := lcm{d1, . . . , dr} and note that N(Σ0)α∨ ∈ Z[(Σ0)∨] for all
α ∈ Σ.

The following corollary is particularly relevant for the group case Z = G × G/G.
See Remark 7.3.

Corollary 7.5. Let λ ∈ a∗C be such that [λ] consist of strictly integral-negative parame-
ters. Then

λ(α∨) ∈ 1

N(Σ(λ))
Z (α ∈ Σ) .

Note that

NΣ := lcm{N(Σ0) | (Σ0)∨ is full rank subsystem of Σ∨} .

is finite as there are only finitely many full rank subsystems of Σ∨. Therefore, NΣ is an
upper bound for the indices N(Σ(λ)) which only depends on Σ.

Remark 7.6. Full rank subsystems can be described by repeated applications of the
”Borel-de Siebenthal” theorem. That is: The maximal such subsystems are obtained by
removing a node from the affine extended root system (and we can repeat this procedure
to obtain the non maximal cases).

In type An, there are no proper subsystems of this type, since the affine extension
is a cycle, so removing a node will again yield An. Hence if Σ is of type An, then the
condition that [λ] consists of strictly integral-negative parameters implies that [λ] = {λ},
and λ is integral on all coroots.

8 Integrality properties of leading exponents of twisted
discrete series

For every α ∈ Π and λ ∈ a∗C we set λα := sα(λ) and σα := σ ◦ sα. Further we let
Iα(λ) : π

∞
λα,σα

→ π∞
λ,σ be the rank one intertwining operator. If we identify the space of

smooth vectors of πλ,σ with C∞(K ×M Vσ) then the assignment

a∗C → End(C∞(K ×M Vσ)), λ 7→ Iα(λ)

is meromorphic. In the appendix we prove:
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8. Integrality properties of leading exponents of twisted discrete series

Lemma 8.1. There exists a constant N ∈ N only depending on G with the following
property: If λ(α∨) ̸∈ 1

N
Z, then Iα(λ) is an isomorphism.

Combining Lemma 8.1 with Remark 7.2 we obtain:

Corollary 8.2. Let N ∈ N be as in Lemma 8.1. Let (V, η) be a representation of the
twisted discrete series and πλ,σ ↠ V a quotient morphism. Then the equivalence class
[2Nλ] consists of weakly integral-negative parameters. If moreover (V, η) belongs to the
discrete series, then [2Nλ] consists of integral-negative parameters.

Proof. If α ∈ Π and α ̸∈ Σ(2Nλ), then Iα(λ) is an isomorphism by Lemma 8.1. There-
fore the composition of Iα(λ) with the quotient morphism πλ,σ ↠ V gives a quotient
morphism πλα,σα ↠ V . It then follows from Remark 7.2(i) that 2λα and thus also 2Nλα
is weakly integral-negative. By repeating this argument we obtain that the equivalence
class [2Nλ] consists of weakly integral-negative elements. If (V, η) belongs to the dis-
crete series, then we use (ii) in Remark 7.2 instead of (i).

Recall the set of spherical roots S ⊆ a∗Z and recall that S ⊆ Z[Σ]. Let χ ∈ (ĥ/h)∗C
be normalized unitary and let µ ∈ a∗Z be a leading exponent of a χ-twisted discrete series
representation (V, η). Then we know from (3.3), (3.4), and (3.5) that we may expand µ
as

µ = ρQ +
∑
α∈S

cαα + iν (cα ∈ R) . (8.1)

with

(a) cα > 0 for all α ∈ S,

(b) ν ∈ a∗Z with ν
∣∣
aZ,E

= Imχ
∣∣
aZ,E

.

Theorem 8.3. Let Z = G/H be a unimodular real spherical space. There exists an
N ∈ N and for every normalized unitary χ ∈ (ĥ/h)∗C a finite set Yχ ⊆ a∗ with the
following property. Let (V, η) be a spherical pair corresponding to a χ-twisted discrete
series representation and let µ be any leading exponent of (V, η), which we expand as
µ = ρQ +

∑
α∈S cαα + iν as in (8.1). Then the following hold.

(i) cα ∈ 1
N
N for all α ∈ S and ν ∈ Yχ.

(ii) If in addition (V, η) belongs to the discrete series, then ν = 0, i.e., µ ∈ a∗Z . In
particular, the infinitesimal character of V is real.

Proof. We let λ := w0µ+ ρP and recall from Lemma 3.4 that there exists a σ ∈ M̂ such
that πλ,σ ↠ V . By Corollary 8.2 there exists a constantN(G) ∈ N, depending only onG,
such that the equivalence class [2N(G)λ] consists of weakly integral-negative elements.
By Theorem 7.4 (i) there exists an N ′ ∈ N, only depending on G, such that

Reλ(α∨) ∈ 1

N ′Z (α ∈ Σ) .
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I. The infinitesimal characters of discrete series for real spherical spaces

This implies that Reλ ∈ 1
N ′′Z(Π) for some N ′′ ∈ N depending only on G. Since the

spherical roots are integral linear combinations of simple roots, it follows that there exists
a N ∈ N (only depending on Z) such that cα ∈ 1

N
N. Moreover, it follows from Corollary

6.2(i) and Theorem 7.4(i) (cf. Remark 7.2) that the imaginary part of λ is contained in
a finite subset of a∗ depending only on χ. This proves (i). For the second assertion we
use (ii) in Theorem 7.4 instead of (i). The infinitesimal character of V is equal to the
infinitesimal character of πλ,σ, which is real since λ is real.

Theorem 8.3 (ii) implies the following.

Corollary 8.4. Fix a normalized unitary χ ∈ (ĥ/h)∗C and a K-type τ . There are only
finitely many χ-twisted discrete series representations V for Z such that the τ -isotypical
component V [τ ] of V is non-zero.

Proof. (cf. [12, Lemma 70, p. 84]) Let t ⊆ m be a Cartan subalgebra of m. Set c :=
a + it and note that cC is a Cartan subalgebra of gC. We inflate Σ+ = Σ+(g, a) to a
positive system Σ+(gC, c) and write ρB for the corresponding half sum. Observe that
ρB = ρP + ρM ∈ c∗. We identify σ with its highest weight in it∗ and write ⟨·⟩2 for
the quadratic form on cC obtained from the Cartan-Killing form. Let Cg be the Casimir
element of g. Note that Cg acts on πλ,σ with λ ∈ a∗C as the scalar

⟨λ+ σ + ρM⟩2 − ⟨ρB⟩2 .

Let tk ⊇ t be a Cartan subalgebra of k and ρk ∈ it∗k be the Weyl half sum with respect
to a fixed positive system of Σ(kC, tk) ⊆ itk∗ . As before we identify τ ∈ K̂ with its
highest weight in it∗k . We write ⟨·⟩2k for the quadratic form on tk,C obtained from the
Cartan-Killing form. Further we let Ck denote the Casimir element of k. The element
∆ := Cg + 2Ck is a Laplace element and thus ⟨∆v, v⟩ ≤ 0 for all K-finite vectors in a
unitarizable Harish-Chandra module V .

Let now V be a χ-twisted discrete series representation and πλ,σ ↠ V a quotient
morphism. For 0 ̸= v ∈ V [τ ] we obtain

0 ≥ ⟨∆v, v⟩ = ⟨(Cg + 2Ck)v, v⟩

=
(
⟨λ+ σ + ρM⟩2 − ⟨ρB⟩2 − 2

(
⟨τ + ρk⟩2k − ⟨ρk⟩2k

))
⟨v, v⟩ .

This forces
⟨λ+ σ + ρM⟩2 − ⟨ρB⟩2 ≤ 2

(
⟨τ + ρk⟩2k − ⟨ρk⟩2k

)
and in particular

⟨Reλ⟩2 − ⟨Imλ⟩2 − ⟨ρ⟩2 ≤ 2
(
⟨τ + ρk⟩2k − ⟨ρk⟩2k

)
.

By Theorem 8.3 (i) Reλ is discrete and Imλ is contained in a finite set that only depends
on Z. The assertion now follows from the fact that the map X from (1.1) has finite
fibers.
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8. Integrality properties of leading exponents of twisted discrete series

Appendices

Appendix A: Invariant Sobolev Lemma

The aim of this appendix is an invariant Sobolev lemma for functions on Z that transform
under the right action of AZ,E by a unitary character.

Recall that a weight on Z is a locally bounded function w : Z → R>0 with the
property that for every compact subset Ω ⊆ G there exists a constant C > 0 such that

w(gz) ≤ Cw(z) (z ∈ Z, g ∈ Ω) .

Further recall that there is a natural identification between the space of smooth densities
on Ẑ and the space of functions

C∞(G : ∆Ẑ) := {f ∈ C∞(G) : f( · ĥ) = ∆−1

Ẑ
(ĥ)f for ĥ ∈ Ĥ} ,

where ∆Ẑ is the modular character

∆Ẑ : Ĥ → R>0; ha 7→ a−2ρQ (a ∈ AZ,E, h ∈ H) .

See Sections 8.1 and 8.2 in [25]. Note that smooth functions f : G→ C satisfying

f( ·ha) = aρQ+iνf (h ∈ H, a ∈ AZ,E)

for some ν ∈ a∗Z,E , are in the same way identified with smooth half-densities on Ẑ.
Let B be a ball in G, i.e., a compact symmetric neighborhood of e in G. Recall that

the corresponding volume-weight vB is defined by

vB(z) := volZ(Bz) (z ∈ Z) .

Note that if B′ is another ball in G, then there exists c > 0 such that

1

c
vB′ ≤ vB ≤ cvB′ .

In the following we drop the index and write v instead of vB.
The following lemma is a generalization of the invariant Sobolev lemma of Bernstein.

See the key lemma in [3] on p. 686 and [31, Lemma 4.2].

Lemma A.1. For every k > dimG there exists a constant C > 0 with the following
property. Let ν ∈ a∗Z,E and let f ∈ C∞(Z) be a smooth function which transforms
as f(z · a) = f(z)aρQ+iν for all a ∈ AZ,E , and let Ωf be the attached half-density on
Ẑ = G/Ĥ . Then

|f(z)| ≤ Cv(z)−
1
2∥Ωf∥Bẑ,2;k (z ∈ Z) .

Here ẑ ∈ Ẑ is the image of z ∈ Z and ∥ · ∥Bẑ,2:k is the k’th L2-Sobolev norm on Bẑ.
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I. The infinitesimal characters of discrete series for real spherical spaces

Let A0 be a closed subgroup of A such that the multiplication map A0 × AE → A
is a diffeomorphism. Let A−

0 be the cone such that A−
0 AE/AE = A−

Ẑ
. By taking inverse

images of the projection AZ = A/(A ∩H) → AẐ = A/AE we get

A−
0 AE/(A ∩H) = A−

Z . (A.1)

We recall from [25, Section 3.4] that there exists a finite sets F,W ⊆ G such that

WAZ,E ⊆ AZ,EWH (A.2)

and
Ẑ = FKA−

Ẑ
W · ẑ0 .

For the proof of the invariant Sobolev lemma we need the following lemma.

Lemma A.2. There exists an a1 ∈ A and a constant c > 0, depending only on the
normalization of the Haar measures on K and AẐ , such that for all compactly supported
measurable non-negative densities f on Ẑ we have∫

Ẑ

f ≥ c
∑
w∈W

∫
K

∫
A−

Ẑ

f(ka1aw)a
−2ρQ da dk .

Proof. Let f be a compactly supported measurable non-negative density on Ẑ and let
φ : Z → R≥0 be a compactly supported continuous function such that∫

AE/A∩H
φ(zaE)a

−2ρQ
E daE = f(ẑ) (z ∈ Z) .

Here ẑ ∈ Ẑ denotes the image of z ∈ Z. Then by the Fubini theorem for densities (see
[1, Theorem A.8]) ∫

Ẑ

f =

∫
Z

φ(z) dz.

We will use Lemma 3.3 (1) in [28] to obtain a lower bound for this integral. The esti-
mate in that lemma involves the integration over the conjugate of the maximal compact
subgroup by some element in A, which we shall denote by a1. We apply the lemma to
the function z 7→ φ(a1 · z) on Z, and write the estimate in terms of the original maximal
compact subgroup K. By this we obtain a constant c > 0 such that∫

Z

φ(a1 · z) dz ≥ c
∑
w∈W

∫
K

∫
A−

Z

φ(ka1aw)a
−2ρQ da dk .

Using that the measure on Z is G-invariant and (A.1), we obtain∫
Z

φ(z) dz ≥ c
∑
w∈W

∫
K

∫
A−

0

∫
AE/A∩H

φ(ka1aaEw)a
−2ρQ
E a−2ρQ daE da dk .

In view of (A.2) we now have∫
Z

φ(z) dz ≥ c
∑
w∈W

∫
K

∫
A−

0

f(ka1aw)a
−2ρQ da dk = c

∑
w∈W

∫
K

∫
A−

Ẑ

f(ka1aw)a
−2ρQ da dk .
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Proof of Lemma A.1. We will prove that there exists a constant C > 0 such that for every
non-negative smooth density ϕ on Ẑ and every x ∈ G∫

B

ϕ(gx) dg ≤ C
1

v(x)

∫
BxĤ

ϕ . (A.3)

On the left-hand side ϕ is considered as a function on G that transforms under the right-
action of Ĥ with the modular character. Before giving the proof of A.3 we derive the
lemma from it. By the local Sobolev lemma, applied to the function f( · z) on G, we
obtain the following bound by the k-th Sobolev norm of f( · z) over the neighborhood B
of e ∈ G:

|f(z)| ≤ C∥f( · z)∥B,2;k.
The constant C is independent of f and z. Choose x ∈ G such that z = xH . Using A.3
for the square of each derivative up to k of Ωf , we also have

∥f( · z)∥2B,2;k ≤ C
1

v(x)
∥Ωf∥2BxĤ,2;k.

The lemma follows from these inequalities.
For a measurable function χ : Z → R≥0, let ψχ : G→ R≥0 be such that

χ =

∫
H

ψχ( ·h) dh .

Then for every a ∈ AZ,E we have∫
G

ψχ(xa) dx =

∫
Z

∫
H

ψχ(gha) dh dgH =
∣∣ detAd(a)∣∣

h

∣∣ ∫
Z

χ(z · a) dz .

Since
∣∣ detAd(a)∣∣

h

∣∣ = a−2ρQ , and by the invariance of the Haar measure the left-hand
side is independent of a, it follows that∫

Z

χ(z · a) dz = a2ρQ
∫
Z

χ(z) dz .

We may apply this to χ = 1Bz and obtain

v( · a) = a−2ρQv (a ∈ AZ,E) .

We conclude that 1
v

may be considered as a density on Z.
Let B ⊆ G be a ball and define wB : Ẑ → R>0 by

wB(ẑ) :=

∫
Bẑ

1

v
(ẑ ∈ Ẑ) .

If B′ is another ball in G, then we may cover B′ by a finite number of sets of the form
gB. Since v is a weight, it follows that there exists a c > 0 such that

1

c
wB′ ≤ wB ≤ cwB′ . (A.4)
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Let Ω be a compact subset of G. Let B′ = {g−1bg : g ∈ Ω, b ∈ B}. Then

wB(gẑ) =

∫
Bgẑ

1

v
≤

∫
gB′ẑ

1

v
= wB′(ẑ) (ẑ ∈ Ẑ, g ∈ Ω) .

From (A.4) it follows that there exits a c > 0 such that

wB(gẑ) ≤ cwB(ẑ) (ẑ ∈ Ẑ, g ∈ Ω) .

We thus see that wB is a weight.
We claim that there exists a c1 > 0 such that for every z ∈ Ẑ

wB(ẑ) > c1 . (A.5)

Since wB is a weight, it suffices to show that infa0∈A−
Ẑ
,w0∈W wB(a0w0 · ẑ0) > 0 to prove

this claim.
Let a0 ∈ A−

Ẑ
and w0 ∈ W . It follows from the inequality (3.6) in [28] and Lemma

A.2 that there exists a an element a1 ∈ A and a constant C > 0 such that,

wB(a0w0 · ẑ0) ≥ C
∑
w∈W

∫
K

∫
A−

Ẑ

1Ba0w0·z0(ka1aw · ẑ0) da dk

≥ C

∫
K

∫
A−

Ẑ

1Ba0w0·z0(ka1aw0 · ẑ0) da dk

≥ C

∫
K

∫
a1A

−
Ẑ

1Ba0w0·z0(kaw0 · ẑ0) da dk .

For the last equality we used the invariance of the measure on AẐ . Let Ac be a compact
subset of A with non-empty interior and AcAZ,E/AZ,E ⊆ a1A

−
Ẑ

. By enlarging B, we
may assume that B is invariant under left translations by elements from K on the left and
Ac ⊆ B. Since

∫
K
dk = 1, we have∫

K

∫
a1A

−
Ẑ

1Ba0w0·z0(kaw0 · ẑ0) da dk =

∫
a1A

−
Ẑ

1Ba0w0·z0(aw0 · ẑ0) da .

If a ∈ a0AcAZ,E/AZ,E , then aw0 · ẑ0 ∈ Aca0w0 · ẑ0 ⊆ Ba0w0 · ẑ0. Therefore,∫
a1A

−
Ẑ

1Ba0w0·z0(aw0 · ẑ0) da ≥
∫
a1A

−
Ẑ

1a0AcAZ,E/AZ,E
(a) da .

Since a0 ∈ A−
Ẑ

and A−
Ẑ
A−
Ẑ
⊆ A−

Ẑ
, the set a0AcAZ,E/AZ,E is contained in a1A−

Ẑ
and thus∫

a1A
−
Ẑ

1a0AcAZ,E/AZ,E
(a) da =

∫
A

Ẑ

1a0AcAZ,E/AZ,E
(a) da =

∫
A

Ẑ

1AcAZ,E/AZ,E
(a) da ,

and hence
wB(a0w0 · ẑ0) ≥ C

∫
A

Ẑ

1AcAZ,E/AZ,E
(a) da .
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The claim (A.5) now follows as the right-hand side is independent of a0 and strictly
positive.

Let ϕ be a non-negative smooth density on Ẑ and let x ∈ G. To prove (A.3) we
may assume that suppϕ ⊆ BxĤ and that B−1 = B. Since v is a weight, there exists a
constant c2 > 0 such that v(x) ≤ c2v(y) for every y ∈ Bx. If y = bx with b ∈ B, then

v(x)

∫
B

ϕ(gx) dg ≤ c2v(y)

∫
B

ϕ(gb−1y) dg ≤ c2v(y)

∫
B2

ϕ(gy) dg .

Note that vϕ is right Ĥ-invariant, hence

v(x)

∫
B

ϕ(gx) dg ≤ c2v(y)

∫
B2

ϕ(gy) dg (y ∈ BxĤ) .

Therefore, ∫
B

ϕ(gx) dg

∫
y∈BxĤ

1

v(y)
≤ c2

v(x)

∫
y∈BxĤ

[∫
B2

ϕ(gy) dg

]
.

Let c1 > 0 be as in (A.5). Then∫
B

ϕ(gx) dg ≤ 1

c1

∫
B

ϕ(gx) dg

∫
BxĤ

1

v
≤ c2
c1v(x)

∫
y∈BxĤ

[ ∫
B2

ϕ(gy) dg
]
.

Now we use Fubini’s theorem to change the order of integration. We thus get∫
B

ϕ(gx) dg ≤ c2
c1v(x)

∫
B2

[ ∫
y∈BxĤ

ϕ(gy)
]
dg

≤ c2
c1v(x)

∫
B2

[ ∫
y∈Ẑ

ϕ(gy)
]
dg

=
c2 vol(B

2)

c1v(x)

∫
Ẑ

ϕ .

This implies (A.3) as by assumption suppϕ ⊆ BxĤ .

Appendix B: Intertwining operators
The main result of this appendix is the following proposition.

Proposition B.1. There exists a N ∈ N such that for every α ∈ Π, σ ∈ M̂ and λ ∈ a∗C
with λ(α∨) /∈ 1

N
Z, the standard intertwining operator Iα(λ, σ) : πsαλ,sασ → πλ,σ is

defined and an isomorphism.

Before we prove the proposition, we first prove a lemma.

Lemma B.2. Assume that the split rank of G is equal to 1 and let α be the simple root of
(g, a). There exists a N ∈ N such that for every σ ∈ M̂ and ν ∈ a∗C with ν(α∨) /∈ 1

N
Z,

the representation πν,σ is irreducible.

47



I. The infinitesimal characters of discrete series for real spherical spaces

Proof. Let t be a maximal torus in m. Let h = a ⊕ it. Then hC is a Cartan subalgebra
of gC. We define Σ(h) ⊆ h∗ to be the set of roots of (gC, hC), choose a positive system
Σ+(h) and define

ρM :=
1

2

∑
β∈Σ+(h)
β|a=0

dim(gβ)β .

Let ξ ∈ t∗C be the Harish-Chandra parameter of some constituent σ0 of the restriction of
σ to the connected component of M . Then ξ − ρM is the highest weight of σ0.

We view t∗C and a∗C as subspaces of h∗C by extending the functionals trivially with
respect to the decomposition hC = tC ⊕ aC. We write pa and pt for the restrictions aC and
tC respectively. Let θ be the involutive automorphism on hC that is 1 on tC and −1 on aC.
We denote the adjoint of θ by θ as well.

Now assume that πν,σ is not irreducible. We write γ = (ξ, ν) ∈ t∗C ⊕ a∗C. By [40,
Theorem 1.1] there exists a β ∈ Σ(h) such that γ(β∨) ∈ Z and either

(a) γ(β∨) > 0, γ(θβ∨) < 0 and θβ ̸= −β, or

(b) θβ = −β.

Note that in both cases (a) and (b) paβ is non-zero and is in fact a root of (g, a). Therefore,
paβ ∈ {±α,±2α}. Let k ∈ {±1,±2} be such that paβ = kα. Then

ν(α∨) =
k∥β∥2

∥paβ∥2
2⟨ν, paβ⟩
∥β∥2

=
k∥β∥2

∥paβ∥2
(
γ(β∨)− 2⟨ξ, ptβ⟩

∥β∥2
)
∈ k∥β∥2

∥paβ∥2
(
Z− 2⟨ξ, ptβ⟩

∥β∥2
)
.

Let d be the determinant of the Cartan matrix of the root system Σm(tC) of mC in tC.
The lattice Λm(tC) of integral weights of mC in tC is contained in 1

d
Z[Σm(tC)]. Note that

ptβ, ξ ∈ Λm(tC). Let l be the square of the length of the shortest root in Σ(h). Then
∥Σ(h)∥2 ⊆ {l , 2l , 3l} and ⟨Σ(h),Σ(h)⟩ ∈ l

2
Z. Therefore,

⟨Λm(tC),Λm(tC)⟩ ⊆
1

d2
⟨Σ(tC),Σ(tC)⟩ ⊆

l

2d2
Z ,

and since ptβ, ξ ∈ Λm(tC),
2⟨ξ, ptβ⟩
∥β∥2

∈ 1

6d2
Z .

Since θβ ∈ Σ(h) and by the Cauchy-Schwartz inequality

2⟨β, θβ⟩
∥β∥2

∈ {0,±1,±2} .

Taking into account that 0 < ∥paβ∥2 ≤ ∥β∥2 we obtain

∥β∥2

∥paβ∥2
=

2∥β∥2

∥β∥2 − ⟨β, θβ⟩
∈ {1, 4

3
, 2, 4}

and thus

ν(α∨) ∈ k∥β∥2

∥paβ∥2
(
Z− 2⟨ξ, ptβ⟩

∥β∥2
)
⊆ 1

18d2
Z .
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Proof of Proposition B.1. Let N ∈ N be as in Lemma B.2. For α ∈ Π let Gα be the
connected subgroup ofGwith Lie algebra generated by the subspace g−2α⊕g−α⊕gα⊕g2α

of g. Note that the real rank of Gα is equal to 1. We define the subgroups

Aα := A ∩Gα , Mα :=M ∩Gα , Pα := P ∩Gα .

Write σα and λα for σ
∣∣
Mα

and λ
∣∣
aα

respectively. Let I0α(λα, σα) be the standard inter-
twining operator

I0α(λα, σα) : Ind
Gα
Pα

(sαλα ⊗ sασα) → IndGα
Pα

(λα ⊗ σα) .

By equation (17.8) in [18] we have

Iα(λ, σ)f(e) = I0α(λα, σα)
(
f
∣∣
Gα

)
(e)

(
f ∈ π∞

sαλ,sασ

)
. (B.1)

The poles of the meromorphic family I0α(λα, σα) are located at the λα ∈ a∗α such that
λα(α

∨) ∈ −N0. See [18, Theorem 3]. It follows from (B.1) that Iα(λ, σ) is defined for
λ(α∨) /∈ −N0.

Now assume that λ(α∨) /∈ Z. Let ϕ0 ∈ C∞
c (N, Vσ) be such that

∫
N∩sαN ϕ0(n) dn ̸=

0. Define ϕ ∈ π∞
σλ, sασ by setting ϕ

∣∣
N
= ϕ0. Then the integral∫
N∩sαN

ϕ(n) dn

is absolutely convergent and non-zero. Hence Iα(λ, σ)ϕ(e) is non-zero. In particular this
shows that both Iα(λ, σ) and I0α(λα, σα) are non-zero.

If Iα(λ, σ) is not injective, then there exists a ϕ ∈ π∞
sαλ,sασ

such that Iα(λ, σ)ϕ = 0
and ϕ(e) ̸= 0. It then follows from (B.1) that I0α(λα, σα) is not injective either. Since
I0α(λα, σα) is non-zero, IndGα

Pα
(sαλα ⊗ sασα) is not irreducible. Similarly, if Iα(λ, σ)

is not surjective, then its adjoint Iα(λ, σ)∗ = Iα(−sαλ, sασ∨) is not injective, hence it
follows that IndGα

Pα
(−λα ⊗ σ∨

α) is not irreducible. It now follows from Lemma B.2 that if
Iα(λ, σ) is not an isomorphism then λ(α∨) ∈ 1

N
Z.
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Chapter II

Ellipticity and discrete series†

Joint with Bernhard Krötz, Eric Opdam and Henrik Schlichtkrull.

Abstract

We explain by elementary means why the existence of a discrete series
representation of a real reductive group G implies the existence of a compact
Cartan subgroup ofG. The presented approach has the potential to generalize
to real spherical spaces.

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.1 Real spherical spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.2 The group case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3 Reading of the existence of a maximal compact Cartan subgroup . . . . . . . 56
4 Power series expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5 Application of the translation principle . . . . . . . . . . . . . . . . . . . . . 60

1 Introduction
Let G be a connected reductive algebraic group defined over R and G := G(R) its group
of real points. In this article we give an elementary proof that Harish-Chandra’s compact
Cartan subgroup condition is necessary for G to have discrete series. To explain the
background, we first describe the problem in the more general context of real spherical
spaces.

1.1 Real spherical spaces
Let H ⊂ G be an algebraic subgroup defined over R and H = H(R). A suitable frame-
work for harmonic analysis on Z := G/H is obtained by the request that Z is real spher-
ical, i.e., there exists an open orbit on Z for the natural action of a minimal parabolic
subgroup P of G.

†This article was published in J. reine angew. Math. 782 (2022), 109–119.
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II. Ellipticity and discrete series

Our interest is to obtain a geometric criterion for the existence of discrete series on a
unimodular real spherical space Z. We recall that by definition the discrete series for Z
consists of the irreducible subrepresentations of the regular representation ofG on L2(Z).
The following condition for its existence was conjectured in [8, (1.2)]:

Conjecture 1.1. Let Z be a unimodular real spherical space. A necessary and sufficient
condition for the existence of a discrete series representation for Z is that the interior of
(h⊥)ell in h⊥ is non-empty.

Let us explain the notation. Let g, h be the Lie algebras of G and H . Then h⊥ ≃
(g/h)∗ is the cotangent space T ∗

z0
Z at the base point z0 = H ∈ Z, and the index ‘ell’

stands for elliptic elements.
The sufficiency of the condition has been established in [3]. We recall the result:

Theorem 1.2. Let Z be a unimodular real spherical space. If the interior of (h⊥)ell in h⊥

is non-empty, then there exist infinitely many representations in the discrete series for Z.

A central tool in the proof of this theorem is a property of the infinitesimal characters
of discrete series representations for Z, derived in [8]. The same property is crucial for
our approach to necessity. Some notation is needed in order to describe it.

Let G = KAN be an Iwasawa decomposition for G and P = MAN the associated
minimal parabolic subgroup, with M = ZK(A) the centralizer of A in K. Let t ⊂ m be
a maximal torus. Then c = a+ t is a maximally split Cartan subalgebra of G, unique up
to conjugation. With cR = a + it we obtain a real form of cC which is characterized by
the property that all roots γ ∈ Σc = Σ(gC, cC) ⊂ c∗C are real valued on cR. Let V be the
Harish-Chandra module of a discrete series representation for Z, and let its infinitesimal
character be denoted χV ∈ Homalg(Z(g),C). Using the Harish-Chandra isomorphism
we identify χV with a Wc-orbit [ΛV ] = Wc · ΛV ∈ c∗C/Wc, where Wc is the big Weyl
group, i.e. the Weyl group of the root system Σc with respect to the Cartan subalgebra c.

The mentioned result of [8] asserts that there exists an explicit Wc-invariant rational
lattice L, such that

[ΛV ] ⊂ L ⊂ c∗R (1.1)

for all discrete series representations V of Z. Let us emphasize in particular that the
parameters ΛV of the discrete series are real, as the lattice L lies in the real form c∗R.

The purpose of this article is to explore whether this property of the infinitesimal
character can be used to establish the conjectured necessity of the condition. To be more
precise, we show that this is the case for the group, regarded as a spherical space. We
believe the approach has the potential to generalize to all real spherical spaces.

1.2 The group case
In the remainder of this article we consider the group case. The groupG is a real spherical
space when looked upon as a geometric object under its both-sided symmetries of G×G.
Specialized to this case the conjecture is Harish-Chandra’s beautiful geometric criterion
for the existence of discrete series representations for G, which results from his deep
study of discrete series [4, 5].
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Theorem 1.1. (Harish-Chandra, [5, Theorem 13]) A necessary and sufficient condition
for G to admit discrete series is that it has a compact Cartan subgroup.

As mentioned, we provide an elementary proof of the necessity, based on the property
(1.1) for G. In the case at hand the proof of this property is also elementary, as explained
in the introduction to [8].

Let us describe the argument. Let σ be the conjugation on gC with respect to g. We call
an element Λ ∈ c∗C strongly regular provided that the stabilizer of Λ in the extended Weyl
group Wc,ext := ⟨Wc,−σ⟩ ⊂ Aut(Σc) is trivial. We show that the existence of a unitary
representation with a strongly regular real infinitesimal character implies the existence
of a compact Cartan subgroup, see Corollary 3.6. Knowing that infinitesimal characters
of discrete series are real, the existence of a discrete series representation with strongly
regular infinitesimal character therefore requires the existence of a compact Cartan sub-
group. Finally, we complete the proof by using the Zuckerman translation principle [9] to
produce from any representation of the discrete series a discrete series representation with
strongly regular infinitesimal character, see Corollary 5.8. The tools used for this belong
to general representation theory of Harish-Chandra modules. Beyond the characteriza-
tion of square integrability in terms of the leading exponents of asymptotic expansions,
the only property of discrete series used at this stage is the existence of the lattice L
satisfying (1.1).

Acknowledgement: We thank Joseph Bernstein and the referee for valuable com-
ments.

2 Notation
Throughout this article we let G be the open connected subgroup of G(R) where G is a
connected reductive group defined over R. We write GC for the connected group G(C).
As usual we denote the Lie algebra of G by g and keep this terminology for subgroups of
G, i.e., if H ⊂ G is a subgroup, then we denote by h its Lie algebra. If h is a Lie algebra,
then we write hC for the complexification of h.

Fix a Cartan involution θ of G and denote by K = Gθ the corresponding maximal
compact subgroup. The Lie algebra automorphism of g induced by θ, and its linear
extension to gC, will be denoted by θ as well. We write g = k + s for the associated
Cartan decomposition. We fix a maximal abelian subspace a ⊂ s and write A = exp(a).
Further we let M = ZK(A) and select with t ⊂ m a maximal torus. We write T for the
Cartan subgroup ZM(t) of M .

We denote by σ : gC → gC the complex conjugation with respect to the real form
g, and let U := K exp(is) be the θ-stable maximal compact subgroup of GC, which
is obtained as the fixed point subgroup of the antilinear extension θ ◦ σ of the Cartan
involution θ to GC.

We extend a by t to a Cartan subalgebra c := a+ t of g, and use the symbol σ also for
the restriction of σ to cC. We write Σc = Σ(gC, cC) for the corresponding root system and
Σa := Σc|a\{0} for the corresponding restricted root system. Further we set cR := a+ it.
Note that Σc ⊂ c∗R, that σ preserves Σc and cR and that σ

∣∣
cR

= −θ
∣∣
cR

. We write CC for
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the maximal torus of GC with Lie algebra cC. As GC is a connected algebraic reductive
group, the torus CC is connected. We further define C := G ∩ CC and CU := CC ∩ U .
Note that C = TA and CU = T exp(ia).

Let us denote by Wc the Weyl group of the root system Σc and likewise we denote
by Wa the Weyl group of the restricted root system Σa. With respect to Σa we have the
restricted root space decomposition

g = a⊕m⊕
⊕
α∈Σa

gα .

In the sequel we fix with Σ+
a ⊂ Σa a positive system. We then let Σ+

c ⊂ Σc be any
positive system which is compatible with Σ+

a , i.e., Σ+
a = Σ+

c |a\{0}.
The positive system Σ+

a defines a maximal nilpotent subalgebra n =
⊕

α∈Σ+
a
gα. Put

N = exp n and note that P = MAN ⊂ G defines a minimal parabolic subgroup of G.
We write P and n for θP and θn, respectively.

3 Reading of the existence of a maximal compact Cartan
subgroup from the infinitesimal character

As usual we write Z(g) for the center of the universal enveloping algebra U(g) of gC.
Recall that according to Harish-Chandra the characters χ of Z(g) are parametrized by
c∗C/Wc as follows. For any positive system S of Σc we set

uS :=
⊕
α∈S

gC,α,

and write ρS for half the trace of ad(c) on uS . Using the Poincaré-Birkhoff-Witt theorem
we may decompose an element Z ∈ Z(g) as

Z ∈ CS + u−S U(g)uS (3.1)

with CS ∈ U(c), see the proof of [7, Lemma 8.17]. The element [Λ] ∈ c∗C/Wc parametriz-
ing χ is then given by

χ(Z) = (Λ− ρS)(CS) (3.2)

and does not depend on the choice of S.
Every irreducible Harish-Chandra module V admits an infinitesimal character

χV : Z(g) → C

which then corresponds to a Wc-orbit

[ΛV ] := Wc · ΛV

for some ΛV ∈ c∗C. The following lemma is standard. For convenience we include its
short proof.
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Lemma 3.1. Let V be an irreducible Harish-Chandra module. The following hold.

1. [ΛṼ ] = [−ΛV ], where Ṽ is the contragredient of V .

2. If V is unitarizable, then [ΛV ] = [−σΛV ].

Proof. Let Z 7→ Z∨ denote the principal anti-automorphism of U(g). Then χṼ (Z) =
χV (Z

∨) for Z ∈ Z(g). Let S be any positive system of Σc. Let Z ∈ Z(g) and let
CS ∈ U(c) be as in (3.1). By (3.2)

χṼ (Z) = (ΛṼ − ρS)(CS).

As
Z∨ ∈ C∨

S + uS U(g)u−S,

we have
χV (Z

∨) = (ΛV − ρ−S)(C
∨
S ) = (−ΛV − ρS)(CS).

This proves 1.
The conjugate representation V of V has infinitesimal character [ΛV ] = [σ(ΛV )]. If V

is unitarizable, then the representation is isomorphic to its conjugate dual, hence assertion
2.

We recall that an element λ ∈ c∗C is regular provided that the stabilizer of λ in Wc

is trivial. Notice that the complex conjugation σ and − id induce automorphisms of Σc,
i.e., they determine elements of Aut(Σc). In particular −σ ∈ Aut(Σc). We define the
extended Weyl group of Wc as the following subgroup of Aut(Σc):

Wc,ext := ⟨Wc,−σ⟩group ⊂ Aut(Σc) .

Furthermore λ ∈ c∗C is called strongly regular in case the stabilizer in Wc,ext is trivial.
According to Harish-Chandra (see [5, Theorem 16]) the infinitesimal characters of

representations of the discrete series V of G are real, i.e., ΛV ∈ c∗R/Wc. A simplified
proof of this fact was recently given in the more general context of real spherical spaces,
see [8, Theorem 1.1].

Proposition 3.2. Assume that there exists a representation V of the discrete series for G
with infinitesimal character [Λ] ∈ c∗C/Wc. Then the following assertions hold:

1. Λ ∈ c∗R and there exists an element w ∈ Wc such that w · Λ = −σ(Λ).

2. If in addition Λ is strongly regular, then there exists an element w ∈ Wc such that
w = −σ on c∗R. In particular, −σ|c∗R ∈ Wc ⊂ Aut(c∗R).

Proof. As mentioned above, Λ ∈ c∗R. Since representations of the discrete series are also
unitarizable, Lemma 3.1 gives [−σΛ] = [Λ]. This shows the first assertion and the second
is a consequence thereof.
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We recall that Wc = NGC(cC)/C and Wa = NK(a)/M . We denote by W θ
c the sub-

group of Wc consisting of the elements which commute with θ, and recall the exact se-
quence

1 → Wm → W θ
c → Wa → 1 (3.3)

where Wm is the Weyl group of the root system Σm := Σ(mC, tC), which can be realized
as NM(t)/T .

Lemma 3.3. Let τ be an automorphism of gC and JC a Cartan subgroup of GC. If τ acts
trivially on jC, then there exists a t ∈ JC so that τ = Ad(t).

Proof. Since τ acts trivially on jC, it preserves all root spaces gγC, γ ∈ Σj. Hence there
exists for all γ ∈ Σj numbers cγ ∈ C such that τ |gγC = cγ · idgγC

. Let now t ∈ JC be such
that Ad(t) coincides with τ on all simple root spaces gγC, γ ∈ Πj. Now ϕ := Ad(t)−1 ◦ τ
is an automorphism of gC which acts trivially on bC = jC +

⊕
γ∈Σ+

j
gγC and leaves all

other g−γC , γ ∈ Σ+
j , invariant. In fact, ϕ acts trivially on all negative root spaces. To see

this, let γ ∈ Σ+
j and 0 ̸= Eγ ∈ gγC and 0 ̸= Fγ ∈ g−γC . Then 0 ̸= [Eγ, Fγ] ∈ jC. As ϕ acts

trivially on jC we have

[Eγ, Fγ] = ϕ[Eγ, Fγ] = [Eγ, ϕFγ],

and hence ϕFγ = Fγ . It follows that τ = Ad(t).

Proposition 3.4. The following assertions are equivalent:

1. −σ|cR ∈ Wc.

2. θ|cC ∈ Wc.

3. θ is an inner automorphism of gC.

4. There exists a g ∈ U such that θ = Ad(g) as an automorphism of gC.

Proof. Since −σ and θ coincide on cR, the equivalence of (1) and (2) is clear.
Suppose now that (2) holds. Since θ

∣∣
a
∈ Wa there exists a k ∈ NK(a) so that

θ
∣∣
a
= Ad(k)

∣∣
a
. Since NK(a) ⊆ NK(M), the restriction of Ad(k)−1θ to cR defines an

element of Wc whose restriction to a is trivial. In view of (3.3) Ad(k)−1θ defines an
element of Wm, and thus there exists an m ∈ M so that Ad(k)−1θ

∣∣
it
= Ad(m)

∣∣
it

. Now
Ad(km) and θ coincide on cR. Let w = km.

Let τ = θ ◦ Ad(w). Since τ is an automorphism of gC with τ |cC = idcC , it follows
from Lemma 3.3 that there exists a t ∈ CC so that τ = Ad(t). Since θ commutes with
Ad(w) (as w in K) we have τ 2 ∈ Ad(K). Hence ⟨τ⟩ = ⟨τ 2⟩ ∪ τ⟨τ 2⟩ is a relatively
compact subgroup of Ad(CC). Consequently we see that t can in fact be chosen in CU .
It follows θ = Ad(tw−1) with g := tw−1 ∈ U . This proves (4).

The implication of (3) from (4) is trivial.
Finally, if (3) holds, then there exists a g ∈ GC so that θ = Ad(g). Since θ preserves

the Cartan subalgebra cR, we have g ∈ NGC(cR). Therefore, θ|cC = Ad(g)|cC ∈ Wc. This
proves (2).
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The following statement can also be found in [1, Lemma 1.6].

Corollary 3.5. The Cartan involution θ is an inner automorphism of gC if and only if
k ⊂ g is a reductive subalgebra of maximal rank. In that case g admits a compact Cartan
subalgebra.

Proof. Assume that θ is an inner automorphism of gC. By Proposition 3.4 there exists a
g ∈ U so that Ad(g) = θ. As g is semi-simple, the group KC := Gθ

C is equal to ZGC(g).
The centralizer of a semi-simple element contains a maximal torus of GC, and therefore,
rankKC = rankGC.

If k is reductive of maximal rank, then there exists a Cartan subalgebra h of g in k.
The Cartan involution θ acts trivially on h. Now Lemma 3.3 is applicable to τ = θ and
jC = hC. It follows that θ is inner.

Corollary 3.6. Suppose that there exists a representation of the discrete series for G with
strongly regular infinitesimal character. Then G admits a compact Cartan subgroup.

Proof. The assertion follows from Propositions 3.2 and 3.4 and Corollary 3.5.

4 Power series expansion
In this section we summarize a few basic facts regarding the power series expansions of
the matrix coefficients of an irreducible Harish-Chandra module V . We denote the dual
Harish-Chandra module of V by Ṽ . Recall that Ṽ is given by the K-finite vectors in the
algebraic dual V ∗ of V . As before we identify the infinitesimal character of V with an
Wc-orbit [ΛV ] = Wc · ΛV ⊂ c∗C.

Let us denote by a++ the positive Weyl chamber in a with respect to Σ+
a and denote

by a+ the closure of a++. Likewise we set A++ = exp(a++) and A+ = exp(a+). As
usual we denote by ρ = 1

2

∑
α∈Σ+

a
(dim gα)α ∈ a∗ the Weyl half sum.

Now given an irreducible Harish-Chandra module V each K-bi-finite matrix coeffi-
cient

G ∋ g 7→ mv,ṽ(g) := ⟨π(g)v, ṽ⟩

for v ∈ V and ṽ ∈ Ṽ admits a power series expansion on A++, see [7, Ch. VIII]. To be
precise, we have

mv,ṽ(a) =
∑

ξ∈[ΛV ]|a−N0[Σ
+
a ]

pξv,ṽ(log a) a
ξ−ρ (a ∈ A++, v ∈ V, ṽ ∈ Ṽ )

with unique polynomials pξv,ṽ on a which are of bounded degree and depend bilinearly on
the pair v, ṽ. In case V belongs to the discrete series only those elements ξ contribute for
which Re ξ|a+ is negative, i.e., Re ξ(X) < 0 for all X ∈ a+\{0}.

By definition, an element ξ ∈ [ΛV ]|a − N0[Σ
+
a ] is called an exponent of V if pξv,ṽ ̸= 0

for some v, ṽ. The maximal elements in the set of exponents with respect to the ordering
given by ξ1 ⪰ ξ2 if ξ1 − ξ2 ∈ N0[Σ

+
a ] are called the leading exponents. We denote
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II. Ellipticity and discrete series

by EV ⊂ a∗C the set of leading exponents and note that by [7, Theorem 8.33] we have
EV ⊆ [ΛV ]|a. Then

mv,ṽ(a) =
∑

ξ∈EV −N0[Σ
+
a ]

pξv,ṽ(log a)a
ξ−ρ (a ∈ A++) .

The coefficients pλv,ṽ for λ ∈ EV determine the principal asymptotics of the matrix
coefficient in the sense that

mv,ṽ(a) =
∑
λ∈EV

pλv,ṽ(log a)a
λ−ρ + lower order terms (a ∈ A++) .

The condition that V belongs to the discrete series can be read off by its set of leading
exponents. Let

C := (a+)⋆ := {λ ∈ a∗ | λ(X) ≥ 0, X ∈ a+} =
∑
α∈Σ+

R≥0α

be the dual Weyl chamber. By [7, Theorem 8.48] V belongs to the discrete series if and
only if it satisfies the condition

Re EV ⊂ − int C. (4.1)

Lemma 4.1. Let F = Fµ be a finite dimensional representation of G with highest weight
µ with respect to Σ+

c and let V be a Harish-Chandra module of the discrete series. The
following are equivalent:

1. Reµ|a +Re EV ⊂ − int C.

2. All matrix coefficients of V ⊗ Fµ are contained in L2(G).

Proof. If v ⊗ f ∈ V ⊗ Fµ and ṽ ⊗ f̃ ∈ Ṽ ⊗ F ∗
µ , then

mv⊗f,ṽ⊗f̃ = mv,ṽmf,f̃ . (4.2)

The assertion (1) ⇒ (2) now follows from (4.1) as speca Fµ ⊂ µ|a − N0[Σ
+
a ] ⊂ µ|a − C.

The other implication follows immediately from (4.2) with suitable choices of f and
f̃ .

5 Application of the translation principle
For a Harish-Chandra module V we denote byH0(n, V ) the finite dimensional n-homology
of degree 0, and recall that the covariant functor H0(n, · ) is right exact. Notice that
H0(n, V ) is a module for MA. By the Harish-Chandra homomorphism we have

Z(m) ≃ U(t)Wm .

Moreover we note Z(a + m) = U(a) ⊗ Z(m). Therefore we can consider the spectrum
of a finite dimensional Z(a +m)-module as a Wm-invariant subset of c∗C. In addition we
consider ρ as a Wm-invariant element of c∗C by extending it trivially on t.
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Lemma 5.1. Let V be an irreducible Harish-Chandra module with infinitesimal charac-
ter [Λ]. Then the following assertions hold:

1. specZ(a+m)H0(n, V ) ⊂ −ρ+ [Λ].

2. specaH0(n, V ) ⊂ −ρ+ EV − N0[Σ
+
a ].

Proof. For (1) see [6, Cor. 3.32]. For the inclusion in (2), let λ ∈ specaH0(n, V ).
Recall that it follows from Casselman’s version of Frobenius reciprocity that elements
λ ∈ specaH0(n, V ) correspond to embeddings of V into a minimal principal series rep-
resentation IndG

P

(
σ ⊗ (λ+ ρ)

)
(see [2] or [6, Theorem 4.9]). Without loss of generality,

we may assume that V ⊂ IndG
P

(
σ ⊗ (λ+ ρ)

)
. As in the derivation of [8, (1.4)] one sees

that λ+ ρ occurs as an exponent of V , and hence is contained in EV − N0[Σ
+
a ].

For the rest of this section we let V be a Harish-Chandra module of the discrete series
with infinitesimal character [Λ] = Wc · Λ ∈ c∗C/Wc. We set

[Λ]+ := {ν ∈ [Λ] | Re ν|a ∈ − int C} = {ν ∈ [Λ] | Re ν|a+\{0} < 0} .

Lemma 5.2. Let V be a Harish-Chandra module of the discrete series with infinitesimal
character [Λ]. Then

specZ(a+m)H0(n, V ) ⊂ −ρ+ [Λ]+ . (5.1)

Proof. Immediate from Lemma 5.1 and (4.1).

We pick the representative Λ ∈ [Λ] such that λ := Λ|a ∈ EV . In view of [8], The-
orem 1.1 and Remark 1.2(3), there exists an N ∈ N, independent of the discrete series
representation V , so that NΛ is integral. We select such an N and set µ0 := NΛ. Let µ
be the unique dominant integral element in Wc · µ0 and let Fµ be the corresponding finite
dimensional representation of G with highest weight µ ∈ c∗R.

We are interested in the Z(g)-isotypical decomposition of V ⊗ Fµ. Let

χΛ+µ0 : Z(g) → C

be the character corresponding to [Λ+µ0]. According to Zuckerman [9, Theorem 1.2 (1)]
the element [Λ + µ0] appears in specZ(g)(V ⊗ Fµ) and thus the corresponding isotypical
component

W := {v ∈ V ⊗ Fµ | (∃k ∈ N)(∀z ∈ Z(g)) (z − χΛ+µ0(z))
k · v = 0} (5.2)

is non-zero. Let J ⊂ W be a maximal submodule and set U := W/J . Then U is an
irreducible Harish-Chandra module with infinitesimal character

[ΛU ] = [Λ + µ0] = [(N + 1)Λ] .

Lemma 5.3. For any finite dimensional representation F and any p ≥ 0 we have

specZ(a+m)H0(n, V ⊗ F ) ⊂ −ρ+ [Λ]+ + specZ(a+m) F .
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II. Ellipticity and discrete series

Proof. Filter F as P -module as

F0 = {0} ⊊ F1 ⊊ . . . ⊊ Fn = F

such that Fk/Fk−1 is an irreducible P -module for each 1 ≤ k ≤ n. In particular, each
Fk/Fk−1 is a trivial n-module and thus H0(n, V ⊗ Fk/Fk−1) = H0(n, V ) ⊗ Fk/Fk−1 as
MA-modules.

We apply now H0 to the exact sequence of MA-modules

0 → V ⊗ Fk−1 → V ⊗ Fk → V ⊗ Fk/Fk−1 → 0.

and obtain the right exact sequence

H0(n, V ⊗ Fk−1) → H0(n, V ⊗ Fk) → H0(n, V )⊗ Fk/Fk−1 → 0 .

This implies

specZ(a+m)H0(n, V ⊗ Fk) ⊂ specZ(a+m)H0(n, V ⊗ Fk−1) ∪ specZ(a+m)(H0(n, V ) ⊗ F )

and the assertion follows by induction on k and (5.1).

Lemma 5.4. Let µ ∈ c∗R be dominant and integral and let Fµ be the highest weight
representation with highest weight µ. Let µ0 ∈ Wc · µ and let Λ ∈ R+µ0. Further, let
ν ∈ [Λ], σ ∈ specc Fµ and w ∈ Wc. If w(Λ + µ0) = ν + σ, then wΛ = ν and wµ0 = σ.

Proof. Let r > 0 be so that µ0 = rΛ. We have σ ∈ specc Fµ ⊂ conv(Wc · µ0). In
particular, ∥σ∥ ≤ ∥µ0∥. Moreover, ∥ν∥ = ∥Λ∥. The Cauchy-Schwarz inequality applied
to ν and σ then gives that σ = rν. It follows that σ = wµ0 and ν = wΛ.

For a Harish-Chandra module U and infinitesimal character [ΛU ] we define a subset
[ΛU ]E ⊂ [ΛU ] by

[ΛU ]E := {Υ ∈ [ΛU ] | Υ|a ∈ EU} .

Proposition 5.5. For U = W/J as defined after (5.2) one has [ΛU ]E ⊂ [Λ + µ0]
+. In

particular, U is square integrable.

Proof. First recall that W ⊂ V ⊗ Fµ is a direct summand as it is a generalized Z(g)-
eigenspace. Thus H0(n,W ) ⊂ H0(n, V ⊗ Fµ) as MA-module and therefore

specZ(a+m)H0(n,W ) ⊂ −ρ+ [Λ]+ + specZ(a+m) Fµ

by Lemma 5.3. Now U = W/J is a quotient of W and thus the natural map

H0(n,W ) ↠ H0(n, U)

is surjective. We conclude that

specZ(a+m)H0(n, U) ⊂ −ρ+ [Λ]+ + specZ(a+m) Fµ. (5.3)

On the other hand we have specZ(a+m)H0(n, U) ⊂ −ρ + [ΛU ] by Lemma 5.1(1). Com-
paring this with (5.3) and applying Lemma 5.4 yields

specZ(a+m)H0(n, U) ⊂ −ρ+ [ΛU ]
+ .

Finally, from (4.1) we deduce that U is square integrable.
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Repeated application of Proposition 5.5 yields:

Corollary 5.6. There exists a N ∈ N such that if V is a representation of the discrete
series with infinitesimal character [Λ], then for every k ∈ N there exists a representation
U of the discrete series with infinitesimal character [(kN + 1)Λ] and

EU ⊂ [(kN + 1)Λ]+
∣∣
a
.

Corollary 5.7. Suppose that there exists a representation of the discrete series. Then
there exists a representation of the discrete series with strongly regular infinitesimal char-
acter.

Proof. Let V be a representation of the discrete series with infinitesimal character [Λ]
such that λ = Λ

∣∣
a
∈ EV . By Corollary 5.6 there exists a discrete series representation Vk

for every k ∈ N with infinitesimal character [(kN+1)Λ] and Ek := EVk ⊂ [(kN+1)Λ]+|a.
Since [Λ]+|a ⊂ − int C, we have

lim
k→∞

dist(Ek,−∂C) ≥ lim
k→∞

(kN + 1) dist([Λ]+|a,−∂C) = ∞ .

It follows that for any µ ∈ c∗R there exists a k such that

Ek + conv
(
Wc · µ

∣∣
a

)
⊂ − int C.

In view of Lemma 4.1 this implies that for every m ∈ N and any choice of fundamental
representations Fµ1 , . . . , Fµm there exists a n ∈ N so that for every k ∈ N with k ≥ n all
matrix coefficients of the representation

Vk ⊗ Fµ1 ⊗ . . .⊗ Fµm (5.4)

are contained in L2(G). Let Λ̃ ∈ [Λ] be the dominant element with respect to Σ+
c . In

view of [9, Theorem 1.2(1)] the representation (5.4) contains a subrepresentation with
infinitesimal character [(kN + 1)Λ̃ + µ1 + . . .+ µm].

The proof will be finished by showing that (kN + 1)Λ̃ + µ1 + . . . + µm is strongly
regular for a suitable choice of µ1, . . . , µm and for all k sufficiently large. The strongly
regular elements comprise the complement of a finite union of proper subspaces of c∗C.
We first choose m and µ1, . . . , µm such that µ := µ1 + · · · + µm is outside of those
subspaces which contain Λ̃. Then so is (kN +1)Λ̃+µ for any k. Clearly each remaining
subspace can contain (kN + 1)Λ̃ + µ for at most one value of k.

Corollary 5.8 (Harish-Chandra). If a real reductive group G admits a representation of
the discrete series, then there exists a compact Cartan subalgebra.

Proof. Combine Corollary 5.7 with Corollary 3.6.
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Chapter III

On the little Weyl group of a real
spherical space
Joint with Eitan Sayag.

Abstract

In the present paper we further the study of the compression cone of
a real spherical homogeneous space Z = G/H . In particular we provide
a geometric construction of the little Weyl group of Z introduced recently
by Knop and Krötz. Our technique is based on a fine analysis of limits of
conjugates of the subalgebra Lie(H) along one-parameter subgroups in the
Grassmannian of subspaces of Lie(G). The little Weyl group is obtained
as a finite reflection group generated by the reflections in the walls of the
compression cone.
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III. On the little Weyl group of a real spherical space

1 Introduction

In this article we present an elementary construction of the little Weyl group of a real
homogeneous spherical space Z = G/H , which was first defined in [15]. Here G is
the group of real points of an algebraic reductive group defined over R and H the set of
real points of an algebraic subgroup. We assume that H is real spherical, i.e., a minimal
parabolic subgroup P of G admits an open orbit in Z. Our construction does not rely
on algebraic geometry. Instead we further develop the limit construction of spherical
subalgebras from [19]. More specifically we use a fine analysis of limits of conjugates of
the subalgebra Lie(H) along one-parameter subgroups in the Grassmannian of subspaces
of Lie(G).

Our main interest is inG-invariant harmonic analysis on a real spherical homogeneous
space Z. If Z admits a positive G-invariant Radon measure, then the space L2(Z) of
square integrable functions onZ is a unitary representation forG. Recently large progress
has been made towards a precise description of the Plancherel decomposition for real
spherical spaces, see [18], [8], [19], [7], [5] and [20]. From the last two mentioned articles
it is seen that the little Weyl group plays an important role in the multiplicities with which
representations occur in L2(Z). Such a relationship was earlier observed in the work of
Sakellaridis and Venkatesh on p-adic spherical spaces in [23] and the description of the
Plancherel decomposition for real reductive symmetric spaces by Delorme, [6] and Van
den Ban and Schlichtkrull [1], [2]. The theory we develop to construct the little Weyl
group is central to our article [20], in which we determine the most continuous part of the
Plancherel decomposition of a real spherical space.

For harmonic analysis it is important to understand the asymptotics of the generalized
matrix-coefficients of H-invariant functionals on induced representations. An example
of this is Theorem 5.1 in [19], where the asymptotics of an H-fixed linear functional
is described in terms of a limit of translates of this functional. Such a limit-functional
is no longer invariant under the action of Lie(H) or a conjugate of it, but rather by a
corresponding limit of conjugates of Lie(H) in the Grassmannian of subspaces in Lie(G).
In our approach the elements of the little Weyl group are obtained by examining such limit
subalgebras.

We will now describe our construction and results. For convenience we assume that
Z is quasi-affine, i.e., a Zariski open subvariety of an affine variety. For a point z ∈ Z we
write hz for its stabilizer subalgebra. We fix a minimal parabolic subgroup P of G and
a Langlands decomposition P = MAN of P . Given a direction X ∈ a := Lie(A) we
consider the limit subalgebra

hz,X = lim
t→∞

Ad
(
exp(tX)

)
hz,

where the limit is taken in the Grassmannian. If X is contained in the negative Weyl
chamber with respect to P , then the limit hz,X is up to M -conjugacy the same for all z ∈
Z with the property that P · z is open. Such a limit is called a horospherical degeneration
of hz. We fix a horospherical degeneration h∅, i.e., h∅ = hz,X for some choice of X in the
negative Weyl chamber and z ∈ Z for which P · z is open. The M -conjugacy class of a

66



1. Introduction

subalgebra s of g we denote by [s]. We define

N∅ := {v ∈ NG(a) : Ad(v)[h∅] = [h∅]},

which is a subgroup of G. For z ∈ Z we further define

Vz := {v ∈ NG(a) : [hz,X ] = Ad(v)[h∅] for some X ∈ a}. (1.1)

and the set of cosets
Wz := Vz/N∅ ⊆ G/N∅.

The main result of the paper is that for a suitable choice of z ∈ Z the above set admits
the structure of a finite Coxeter group and

The group Wz is a finite crystallographic group, which can be identified with the little
Weyl group as defined in [15].

Our strategy is to obtain the little Weyl group as a subquotient of the Weyl group
W (g, a) by first determining a cone that can serve as a fundamental domain. The per-
spective of limit subalgebras suggests that for a given point z ∈ Z we should consider all
directions X ∈ a for which the limit hz,X is M -conjugate to h∅, i.e., we should consider
the cone

Cz := {X ∈ a : [hz,X ] = [h∅]}.

If P · z is open, then Cz contains the negative Weyl-chamber and therefore has non-empty
interior. However, in general the cone Cz strongly depends on the choice of z. It turns out
that when Cz is maximal then it is a fundamental domain for a reflection group. Thus our
first step is to identify points z for which the cone Cz is maximal. For this we introduce
the concept of an adapted point.

The definition is motivated by the local structure theorem from [17]. The local struc-
ture theorem provides a canonical parabolic subgroup Q so that P ⊆ Q. Let lQ be the
Levi-subalgebra of q := Lie(Q) that contains a. We denote by ⊥ the orthocomplement
with respect to a G-invariant non-degenerate bilinear form on g. We say that a point
z ∈ Z is adapted to the Langlands decomposition P =MAN if

(i) P · z is open

(ii) there exists an X ∈ a ∩ h⊥z so that Zg(X) = lQ.

It follows from the local structure theorem that every open P -orbit in Z contains adapted
points. Adapted points are special in the sense that their stabilizer subgroups Hz intersect
with P in a clean way:

P ∩Hz = (M ∩Hz)(A ∩Hz)(N ∩Hz).

In fact A ∩ Hz and N ∩ Hz are the same for all adapted points z in Z. In the present
article adapted points play a fundamental role because their cones Cz are of maximal size
and identical. Therefore, C := Cz, where z is adapted, is an invariant of Z. It is called
the compression cone of Z. The closure C of the compression cone is a finitely generated
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III. On the little Weyl group of a real spherical space

convex cone. In general it is not a proper cone in the sense that it may contain a non-
trivial subspace; in fact ah := Lie(A ∩Hz) is contained in the edge of C. We denote the
projection a → a/ah by ph. The cone ph(C) is finitely generated convex cone in a/ah. It
is this cone that will be a fundamental domain for the little Weyl group.

The passage from the cone ph(C) to the reflection group requires some multiplication
law among certain cosets of W (g, a). For this we consider NG(a)-conjugates of h∅ that
appear as a limit hz,X , i.e., we consider the set Vz defined in (1.1). If z ∈ Z is adapted
and v ∈ Vz, then v−1 · z is again adapted. If moreover, v′ ∈ Vv−1·z then there exists an
X ∈ a so that

[hz,Ad(v)X ] = Ad(v)[hv−1·z,X ] = Ad(vv′)[h∅],

and hence vv′ ∈ Vz. If Vv−1·z would be the same for all v ∈ Vz, then this would define
a product map on Vz. However, a priori this is not the case for all adapted points z. It
turns out that this can be achieved by restricting further to admissible points, i.e., adapted
points z for which the limits hz,X are conjugate to h∅ for all X ∈ a outside of a finite set
of hyperplanes. One of the main results in this article is that admissible points exist; in
fact every open P -orbit in Z contains admissible points. Moreover, the sets V := Vz are
the same for all admissible points.

The set V is contained in

N := NG(a) ∩NG(lQ,nc + ah),

where lQ,nc is the sum of all non-compact simple ideals in lQ. The group N∅ is a normal
subgroup of N and N /N∅ is finite. We define

W := V/N∅ ⊆ N /N∅. (1.2)

Now W is finite and closed under multiplication in the group N /N∅. It therefore is a
group. We now come to our main theorem, see Theorem 12.1.

Theorem 1.1. The following assertions hold true.

(i) The group W is a subgroup of N /N∅, and as such it is a subquotient of the Weyl
group W (g, a) of the root system of g in a.

(ii) The group W acts faithfully on a/ah as a finite crystallographic group, i.e. it is a
finite group generated by reflections s1, . . . , sl and for each i, j the order mi,j of
sisj is contained in the set {1, 2, 3, 4, 6}.

(iii) The cone ph(C) is a fundamental domain for the action of W on a/ah. Moreover, W
is generated by the simple reflections in the walls ph(C).

In fact, W is equal to the little Weyl group of Z as defined in [15, Section 9].

For the proof of the theorem we use two results from the literature. The first is the
local structure theorem from [17], which we use to establish the existence of adapted
points. The second is the polar decomposition from [16], which we use to describe the
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closure of Ad(G)hz in the Grassmannian. Besides these two theorems the proof is essen-
tially self-contained. It is based on an analysis of the limits hz,X , where z ∈ Z is adapted
and X ∈ a.

The heart of the proof is to show the existence of admissible points. For this we first
classify the adapted points and study the correspondence between adapted points in Z
and in its boundary degenerations. For the horospherical boundary degeneration G/H∅
of Z the existence of such points is clear, but it cannot be used to deduce anything for
Z. We thus consider the second most degenerate boundary degenerations, for which
the existence of admissible points can be proven by a non-trivial direct computation.
The existence of admissible points in Z is then proven by a reduction to these boundary
degenerations. The realization of W as a reflection group is then obtained from the natural
relation between the little Weyl group of a space and its degenerations.

For convenience of the reader we give a short description of each section in this paper.
In §2 we recall the definition of a real spherical space and introduce our notations and ba-
sic assumptions. We then properly start in §3 by defining the notion of adapted points. We
further prove several properties of adapted points, in particular that they satisfy the main
conclusion from the local structure theorem, and we provide a kind of parametrization. In
the short section §4 we provide a description of the stabilizer subalgebra hz of an adapted
point z in terms of a linear map Tz. This description is a direct generalization of Brion’s
description in the complex case ([4, Proposition 2.5]) and was also used in [16]. In the
following section, Section §5, we discuss limits in the Grassmannian of k-dimensional
subspaces of the Lie algebra g and we collect all properties of such limits that will be
needed in the following sections. We introduce the compression cone in §6. The main
result in the section is that the compression cone Cz is of maximal size if z is adapted and
does not depend on the choice of the adapted point. It therefore is an invariant of Z.

In §7 we describe the relation between limits subalgebras, open P -orbits in Z and the
compression cone. This description gives the first indication that the little Weyl group
may be constructed from such limits. The sections §8 and §10 serve as a preparation for
the proof of the existence of admissible points. In §8 we describe the Ad(G)-orbits in the
closure of Ad(G)hz in the Grassmannian. Each of the subalgebras in this closure gives
rise to a boundary degeneration of Z, i.e., a real spherical homogeneous space which is
determined by a subalgebra contained in the closure of Ad(G)hz. In §10 we show that
there is a correspondence between adapted points in Z and adapted points in a boundary
degeneration. After these preparations we can prove the existence of admissible points in
§11. This is done through a reduction to the same problem for the second-most degenerate
boundary degenerations of Z.

In §12 we finally define the set W by (1.1) and (1.2) using an admissible point z.
We then prove that W has the properties listed in Theorem 1.1. It is relatively easy to
see that W is a group acting on a/ah. For the proof that it is generated by reflections an
explicit computation on the walls of the compression cone is needed. This computation
is performed in Section 9.

In Section 13 we prove that the group W is a crystallographic group and show how to
attach to it a reduced root system, the spherical root system.

The technique developed in the body of the paper works under the assumption that
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Z is quasi-affine. In Section 14 we extend many of the concepts that were studied in the
previous sections to any real spherical space, in particular we construct the little Weyl
group W and hence the reduced root system ΣZ in this generality. This is done by a
standard trick that is based on a theorem of Chevalley.

We end this introduction with a short account of related works on the little Weyl
group. Recall that an algebraic G-variety Z defined over k = C is called spherical if a
Borel subgroup of G defined over k admits an open orbit in Z. Here G is an algebraic
connected reductive group defined over k. In [4] Brion first introduced the compression
cone for complex spherical varieties and showed that the asymptotic behavior of such
varieties is determined by a root system: the spherical root system. The little Weyl group
is the Weyl group for this root system.

By now, there are several constructions of the little Weyl group for complex varieties.
Next to the construction of Brion, Knop gave a vast generalization. In fact, in [11] he
constructed the little Weyl group for an arbitrary irreducible G-variety and connected it
to the ring of G-invariant differential operators on Z, see [13]. We also mention here a
second construction by Knop in [12] and the explicit calculation of these groups by Losev
[21].

In the case where k is an algebraically closed field of characteristic different from 2,
Knop gave in [10] a construction of the little Weyl group and the spherical root system.
The technique is close in spirit to Brion’s approach for k = C. Moving to fields that are
not necessarily algebraically closed, a natural concept is that of a k-spherical variety, i.e.,
a G-variety Z defined over k for which a minimal parabolic subgroup P of G defined
over k admits an open orbit. In [15], the authors assume that k is of characteristic 0 and
use algebraic geometry to define the little Weyl group of such a space Z = Z(k). The
construction is based on algebra geometric invariants attached to the variety Z, especially
the cone of G-invariant central valuations on Z, as is the case for Knop’s construction for
k = C in [11]. This valuation cone serves as a fundamental domain for the action of WZ.

The compression cone plays an important role in this work. It was first considered
for real spherical spaces in [16] by employing the local structure theorem of [17]. In
[4] Brion showed that in the complex case the closure of the compression cone may be
identified with the valuation cone. This argument generalizes to real spherical spaces.

The compression cone can be viewed as a dual object to the weight-monoid used
by algebraic geometers to study spherical spaces. In the present work the compression
cone is defined purely in terms of limits of subalgebras in the Grassmannian and is from
our point of view better suited for application in harmonic analysis, like in [19]. We
mention here our article [20], in which we determine the Plancherel decomposition of the
most continuous part of L2(Z). A major step towards this is the construction of H-fixed
functionals on principal series representations. For the analysis of P -orbits that is needed
for this, we use the theory of limits of subalgebras.

Our approach to the little Weyl group is closest to that taken by Brion in his article
[4] on complex spherical spaces. However, there are notable differences. Brion studies
the relation between the closure of Ad(G)hz in the Grassmannian and the wonderful
compactification. In our approach compactifications do not enter directly. Further, Brion
uses explicit computations related to the structure of hz for a well chosen point z. Some
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of these computations are adapted in Section 9 to the case of real spherical spaces. It
appears that Brion’s computations do not generalize easily to real spherical spaces as they
rely on the fact that root spaces are 1-dimensional. We therefore put more attention to
the compression cone and the limits hz,X for generic elements X ∈ a and adapted points
z ∈ Z. We do not fix a specific point z, but rather study the dependence of compression
cones and limit subalgebras hz,X on adapted points z. In particular we obtain the group
law for the little Weyl group from these considerations as explained above, rather than
from explicit computations.

We thank Bernhard Krötz, Friedrich Knop and Vladimir Zhgoon for various discus-
sions on the subject matter of this paper.

2 Notation and assumptions
Let G be a reductive algebraic group defined over R and let G be an open subgroup of
G(R). Let H be a closed subgroup of G. We assume that there exists a subgroup H of G
defined over R so that H = G ∩H(C). We define

Z := G/H

We fix a minimal parabolic subgroup P ofG and a Langlands decomposition P =MAN .
We assume that Z is real spherical, i.e., there exists an open P -orbit in Z.

Until Section 14 we assume that Z is quasi-affine. The assumption is used in one
place only, namely for Proposition 3.1. In Section 3 we will define a notion of adapted
points inZ. Proposition 3.1, and therefore the assumption thatZ is quasi-affine, is needed
to show that adapted points exist. In Section 14 we will consider real spherical spaces Z
that are not necessarily quasi-affine and describe a reduction to the quasi-affine case.

Groups are indicated by capital roman letters. Their Lie algebras are indicated by the
corresponding lower-case fraktur letter. If z ∈ Z, then the stabilizer subgroup of Z is
indicated by Hz and its Lie algebra by hz.

The root system of g in a we denote by Σ. If Q is a parabolic subgroup containing
A we write Σ(Q) for the subset of Σ of roots that occur in the nilpotent radical of q. We
write Σ+ for Σ(P ). We further write a− for the open negative Weyl chamber, i.e.,

a− := {X ∈ a : α(X) < 0 for all α ∈ Σ+}.

We fix a Cartan involution θ of G that stabilizes A. If Q is a parabolic subgroup
containing A, then we write Q for the opposite parabolic subgroup containing A, i.e.,
Q = θ(Q). The unipotent radical of Q we denote by NQ. We further agree to write NQ

for NQ.
We fix an Ad(G)-invariant bilinear formB on g so that −B( · , θ · ) is positive definite.

For E ⊆ g, we define
E⊥ =

{
X ∈ g : B(X,E) = {0}

}
.

IfE is a finite dimensional real vector space, then we writeEC for its complexification
E⊗R C. If S is an algebraic subgroup of G, then we write SC for the complexification of
S.
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III. On the little Weyl group of a real spherical space

3 Adapted points
In this section we introduce the notion of an adapted point in Z. We further parameterize
the set of adapted points and end the section with some applications which will be of use
in the following sections.

We recall that we have fixed a minimal parabolic subgroup P and a Langlands de-
composition P = MANP of P . For z ∈ Z, let Hz be the stabilizer of z in G and let hz
be the Lie algebra of Hz.

The following proposition is a reformulation of the so-called local structure theorem
[17, Theorem 2.3].

Proposition 3.1. There exists a parabolic subgroup Q with P ⊆ Q, and a Levi decom-
position Q = LQNQ with A ⊆ LQ, so that for every open P -orbit O in Z

Q · O = O,

and there exists a z ∈ O, so that the following hold,

(i) Q ∩Hz = LQ ∩Hz,

(ii) the map

NQ × LQ/LQ ∩Hz → Z,
(
n, l(LQ ∩Hz)

)
7→ nl · z

is a diffeomorphism onto O,

(iii) the sum lQ,nc of all non-compact simple ideals in lQ is contained in hz,

(iv) there exists an X ∈ a ∩ h⊥z so that LQ = ZG(X) and α(X) > 0 for all α ∈ Σ(Q).

Remark 3.2.

(i) The point z ∈ O with the properties asserted in the above proposition is in general
not unique. On the other hand the parabolic subgroupQ and its Levi-decomposition
are uniquely determined by O. (Of course, the parabolic subgroup Q and the Levi
decomposition of Q do depend on the choice of the minimal parabolic P and its
Langlands decomposition P = MANP , but these choices we have assumed to be
fixed.)

(ii) Property (iv) in Proposition 3.1 is not explicitly stated in [17, Theorem 2.3], but
does follow from the proof of the theorem if Z is quasi-affine. For completeness,
we give here an account of how this follows.

Let z0 ∈ Z be so that P · z0 is open. In the proof of [17, Theorem 2.3] an iterative
process is used to produce a sequence of parabolic subgroups

G = Q0 ⊇ Q1 ⊇ Q2 ⊇ . . . ,

each containing P . Further, for each i ∈ N a hyperbolic element Xi ∈ (li−1 ∩ hz0)
⊥

is constructed, with the property that Li := ZG(Xi) is a Levi subgroup of Qi and
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the restriction of ad(Xi) to nQi
has only strictly negative eigenvalues. Since the

sequence of parabolic subgroups descends it stabilizes, and hence there exists a
parabolic subgroupQwithQi = Q for sufficiently large i ∈ N. This is the parabolic
subgroup Q in Proposition 3.1.

Since A ⊆ Q ⊆ Qi and ZG(Xi) is a Levi subgroup of Qi, there exists an n ∈ NQi

so that A ⊆ Li := nZG(Xi)n
−1 = ZG

(
Ad(n)Xi

)
. Moreover, as Ad(n)Xi is an

hyperbolic element in li, there exists an l ∈ Li so that X ′
i := Ad(ln)Xi ∈ a. We set

zi := ln · z0 ∈ P · z0. Now Li = ZG(X
′
i) and X ′

i ∈ (a ∩ hzi)
⊥. We set z := zi,

LQ := Li and X ′ := Xi for some i ∈ N with Qi = Q. Then Q, LQ and z satisfy
(i), (ii) and (iii) in the proposition.

Each iteration uses a finite dimensional representation as input. To be more precise,
for the i-th iteration a finite dimensional representation of Li−1 is used as input with
the property that it contains a cyclic vector whose stabilizer is Li−1 ∩ Hzi−1

. As
Z is assumed to be quasi-affine, the theorem of Chevalley guarantees the existence
of such representations. The representation that is used can freely be chosen from
the set of representations with the mentioned property. If for the first iteration a
representation is chosen with the additional requirement that it contains a lowest
weight that does not vanish on any of the α∨ with α ∈ Σ(Q), then the process
yields Q1 = Q, and hence only one iteration is needed. Moreover, in this case
X := −X ′

1 has the property listed in (iv). It thus remains to show that there exists a
finite dimensional representation of G with a lowest weight that does not vanish on
α∨ for every α ∈ Σ(Q) and that contains a cyclic vector whose stabilizer is equal
to Hz.

It follows from [17, Lemma 3.4 & Remark 3.5] that the lowest weights of irreducible
finite dimensional Hz-spherical representations span

(
a/(a ∩ hz)

)∗. Therefore, the
lattice of lowest weights of Hz-spherical representations contains a weight λ so
that λ(α∨) ̸= 0 for all α ∈ Σ with α∨ /∈ a ∩ hz. Let X ′ ∈ (a ∩ hz)

⊥ be as
above. As the centralizer of X ′ is equal to LQ, it follows that for every α ∈ Σ
we have α∨ ∈ a ∩ hz only if gα ⊆ lQ. Therefore, there exists an irreducible finite
dimensional Hz-spherical representation V with lowest weight λ so that λ(α∨) ̸= 0
for all α ∈ Σ(Q). Let W be any finite dimensional representation that contains a
cyclic vector whose stabilizer is equal to Hz. Then for sufficiently large n ∈ N the
representation W ⊗ V ⊗n contains a cyclic vector whose stabilizer is equal to Hz

and admits a lowest weight does not vanish on any of the α∨ with α ∈ Σ(Q), as
requested.

The assumption that Z is quasi-affine is crucial here. Up until Section 14 this is the
only place where the assumption is explicitly used.

Definition 3.3. We say that a point z ∈ Z is adapted (to the Langlands decomposition
P =MANP ) if the following three conditions are satisfied.

(i) P · z is open in Z, i.e., p+ hz = g,

(ii) lQ,nc ⊆ hz,

73



III. On the little Weyl group of a real spherical space

(iii) There exists an X ∈ a ∩ h⊥z so that Zg(X) = lQ.

Remark 3.4.

(a) It follows from Proposition 3.1, that every open P -orbit O in Z contains an adapted
point.

(b) If a point z ∈ Z satisfies (i) and (iii), then (ii) is automatically satisfied. We will give
a proof of this fact later in this section, see Proposition 3.19.

(c) (iii) can be stated alternatively as

(iii’) There exists an X ∈ a ∩ h⊥z so that α(X) ̸= 0 for all α ∈ Σ(Q).

(d) The set of adapted points in Z is LQ-stable. To see this, let z ∈ Z be adapted. The
Levi-subgroup LQ decomposes as

LQ =MALQ,nc, (3.1)

where LQ,nc is the connected subgroup with Lie algebra lQ,nc. Note that

LQ,nc ⊆ Hz (3.2)

since lQ,nc ⊆ hz. Let m ∈ M , a ∈ A and l ∈ LQ,nc. Then l · z = z, and therefore,
Pmal · z = P · z is open and

a ∩ h⊥mal·z = a ∩ Ad(ma)h⊥z = Ad(ma)
(
a ∩ h⊥z

)
= a ∩ h⊥z .

Moreover, lQ,nc is LQ-stable and hence lQ,nc ⊆ Ad(l)hz = hl·z for all l ∈ LQ. This
proves the assertion.

Example 3.5. Let Z = G/NP and let z := e · NP . We claim that the set of adapted
points is equal to MA · z.

Let W := NG(A)/MA be the Weyl group of Σ. The Bruhat decomposition of G
provides a description of P\Z,

Z =
⊔
w∈W

Pw · z.

There is only one open P -orbit in Z, namely O := P · z. Since for every p ∈ P

p ∩ hp·z = p ∩ Ad(p)nP = {0},

we have Q = P . It is now easy to see that z satisfies (i) – (iv) in Proposition 3.1. Since
the set of adapted points is MA-stable, it suffices to show that the only adapted point in
NP · z is z in order to prove the claim. Let n ∈ NP and assume that n · z is adapted. Now
h⊥n·z = Ad(n)p, and hence

a ∩ h⊥n·z = a ∩ Ad(n)p ⊆ p ∩ Ad(n)p = Ad(n)
(
p ∩ p

)
= Ad(n)(m⊕ a).

Since n · z is adapted, there exists a regular element X ∈ a ∩ h⊥n·z. It follows that
X ∈ Ad(n)(m ⊕ a), and hence Ad(n−1)X ∈ m ⊕ a. This implies that n stabilizes X .
Since X is regular, it follows that n = e.
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Proposition 3.6. Let z ∈ Z be adapted. Then the following hold.

(i) Q ∩Hz = LQ ∩Hz,

(ii) The map

NQ × LQ/LQ ∩Hz → Z,
(
n, l(LQ ∩Hz)

)
7→ nl · z

is a diffeomorphism onto P · z.

Remark 3.7.

(a) The proposition shows that besides (iii) and a weaker version of (iv), which hold by
definition, also (i) and (ii) in Proposition 3.1 hold for adapted points z ∈ Z.

(b) Let z ∈ Z be adapted. We claim that

MA ∩Hz = (M ∩Hz)(A ∩Hz) = (M ∩Hz) exp(a ∩ hz). (3.3)

To prove the claim, we first note that MA ∩Hz, M ∩Hz and A ∩Hz are algebraic
subgroups of G, and that M ∩Hz is a normal subgroup of MA ∩Hz. Define A′ and
M ′ to be the images of the projections ofMA∩Hz ontoA andM , respectively. Then
A′ and M ′ are algebraic subgroups of A and M , respectively. Moreover, A∩Hz and
M ∩Hz are normal subgroups of A′ and M ′, respectively. Let

ϕ : A′/(A ∩Hz) →M ′/(M ∩Hz)

be the unique map so that

aϕ(a) ∈ (MA ∩Hz)/(M ∩Hz)(A ∩Hz)
(
a ∈ A′/(A ∩Hz)

)
.

Then ϕ is an algebraic homomorphism. An algebraic homomorphism from a split
torus to a compact group is necessarily trivial. It follows that A′ = A ∩ Hz, and
hence M ′ = M ∩ Hz. Moreover, the group A ∩ Hz is connected since A ∩ Hz is
an algebraic subgroup of A and A is isomorphic to a vector space. This proves (3.3).
From (3.1), (3.2) and (3.3) it follows that

M/(M ∩Hz)× A/ exp(ah) → LQ · z; (m(M ∩Hz), a exp(ah)) 7→ ma · z

is a diffeomorphism. Therefore, if z ∈ Z is adapted, then (ii) in Proposition 3.6 can
be replaced by

(ii’) The map

NQ ×M/(M ∩Hz)× A/ exp(a ∩ hz) → Z;(
n,m(M ∩Hz), a exp(a ∩ hz)

)
7→ nma · z

is a diffeomorphism onto P · z.

Before we prove the proposition, we first prove a lemma.
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Lemma 3.8. Let z ∈ Z be adapted and let q ∈ Q. Then q ∈ LQ if and only if there exists
an element

X ∈ a ∩ h⊥z ∩ h⊥q·z

so that lQ = Zg(X) (and thus α(X) ̸= 0 for all α ∈ Σ(Q)). In that case

a ∩ h⊥z = a ∩ h⊥q·z.

Proof. Assume that there exists an element X ∈ a ∩ h⊥z ∩ h⊥q·z so that α(X) ̸= 0 for all
α ∈ Σ(Q). Let l ∈ LQ and n ∈ NQ be so that q = ln. We will show that n = e. Since
α∨ ∈ hz for every α ∈ Σ with gα ⊆ lQ, we have α(X) = 0 for these roots. This implies
that lQ centralizes X . Now in view of (3.1) also the group LQ centralizes X . It follows
that

Ad(n−1)X = Ad(n−1l−1)X = Ad(q−1)X ∈ Ad(q−1)h⊥q·z = h⊥z ,

and hence Ad(n−1)X −X is contained in both h⊥z and nQ. However, since P · z is open,
we have

h⊥z ∩ nQ = (hz + q)⊥ = g⊥ = {0}.

Hence Ad(n−1)X = X . Since α(X) ̸= 0 for every α ∈ Σ(Q), it follows that n = e.
Now assume that q ∈ LQ. It follows from (3.1) that there exist m ∈ M , a ∈ A and

lnc ∈ LQ,nc so that q = malnc. Since lnc is contained in Hz, it normalizes h⊥z and hence

a ∩ h⊥q·z = a ∩ Ad(q)h⊥z = a ∩ Ad(ma)h⊥z = Ad(ma)
(
a ∩ h⊥z

)
= a ∩ h⊥z .

The latter set contains an element X with Zg(X) = lQ in view of Definition 3.3.

Proof of Proposition 3.6. Let q ∈ Q ∩ Hz. Then h⊥q·z = Ad(q)h⊥z = h⊥z . Since there
exists an element X ∈ a ∩ h⊥z so that Zg(X) = lQ, it follows from Lemma 3.8 that
q ∈ LQ. Therefore, Q ∩Hz ⊆ LQ ∩Hz. The other inclusion is trivial. This proves (i).

The map Q/(Q ∩ Hz) → Z, q 7→ q · z is a diffeomorphism onto Q · z. Since also
NQ × LQ → Q is a diffeomorphism and P · z = Q · z by Proposition 3.1, assertion (ii)
follows from (i).

We move on to give a description of the adapted points in Z. We begin with a lemma
parameterizing the points that satisfy (ii) in Definition 3.3 and the infinitesimal version
of (i) in Proposition 3.6.

Lemma 3.9. Fix an adapted point z ∈ Z. Let z′ ∈ P · z. Then

lQ,nc ⊆ q ∩ hz′ = lQ ∩ hz′ (3.4)

if and only if there exist m ∈ M , a ∈ A and n ∈ ZNQ
(lQ ∩ hz) so that z′ = man · z. In

that case
lQ ∩ hz′ = Ad(m)

(
lQ ∩ hz

)
, (3.5)

and hence in particular
a ∩ hz′ = a ∩ hz. (3.6)
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Proof. Let n ∈ ZNQ
(lQ ∩ hz). Since lQ,nc ⊆ lQ ∩ hz, the element n centralizes lQ,nc, and

hence
lQ,nc = Ad(n)lQ,nc ⊆ Ad(n)

(
q ∩ hz) = q ∩ Ad(n)hz = q ∩ hn·z.

Moreover, as
lQ ∩ hz ⊆ Ad(n)hz = hn·z

and q ∩ hz = lQ ∩ hz by Proposition 3.6 (ii), we have

lQ ∩ hz ⊆ lQ ∩ hn·z ⊆ q ∩ hn·z = Ad(n)(q ∩ hz) = Ad(n)(lQ ∩ hz) = lQ ∩ hz.

It follows that q ∩ hn·z = lQ ∩ hn·z. We have now proven (3.4) for z′ = n · z. The
subalgebras lQ,nc, q and lQ are MA-stable. Therefore,

lQ,nc = Ad(ma)lQ,nc ⊆ Ad(ma)(q ∩ hn·z) = q ∩ hman·z

and
Ad(ma)(q ∩ hn·z) = Ad(ma)(lQ ∩ hn·z) = lQ ∩ hman·z.

This proves that (3.4) holds as well for z′ = man · z.
For the converse implication, let z′ ∈ Z and assume that (3.4) holds. By Remark 3.7

(b) there exist m ∈ M , a ∈ A and n ∈ NQ so that z′ = man · z. Since q ∩ hz = lQ ∩ hz
by Proposition 3.6 (ii), we have

Ad(n)
(
lQ∩hz

)
= Ad(n)

(
q∩hz

)
= Ad(ma)−1

(
q∩hman·z

)
= Ad(ma)−1

(
lQ∩hman·z

)
.

The space on the right-hand side is contained in lQ. It follows that Ad(n)
(
lQ ∩ hz

)
⊆ lQ.

Now for every Y ∈ lQ ∩ hz

Ad(n)Y ∈ (Y + nQ) ∩ lQ = Y + (nQ ∩ lQ) = Y + {0}.

We thus conclude that n centralizes lQ ∩ hz.
We continue to prove the identities (3.5) and (3.6). Let m ∈ M , a ∈ A and n ∈

ZNQ
(lQ ∩ hz). Then

lQ ∩ hman·z = q∩ hman·z = q∩Ad(man)hz = Ad(man)
(
q∩ hz

)
= Ad(man)

(
lQ ∩ hz

)
.

Now a normalizes and n centralizes lQ ∩ hz. This proves (3.5). Equation (3.6) follows
from (3.5) by intersecting both sides with a.

For an adapted point z ∈ Z we define

a◦z := a ∩ (a ∩ hz)
⊥

and

a◦z,reg := {X ∈ a◦z : Zg(X) = lQ} = {X ∈ a◦z : α(X) ̸= 0 for all α ∈ Σ(Q)}.

If z, z′ ∈ Z are both adapted and P · z = P · z′, then in view of Proposition 3.6 we may
apply Lemma 3.9 to z and z′ and conclude that a ∩ hz = a ∩ hz′ . It follows that a ∩ hz,
a◦z and a◦z,reg only depend on the open P -orbit O = P · z, not on the adapted point in O.
Later we will prove that a ∩ hz, a◦z and a◦z,reg are in fact the same for all adapted points
z ∈ Z. See Corollary 3.17.

For the next lemma we adapt the analysis in [7, Section 12.2].
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III. On the little Weyl group of a real spherical space

Lemma 3.10. Let z ∈ Z be adapted. There exists a unique linear map

T⊥
z : a◦z → ZnQ(lQ ∩ hz)

with the property that for every X ∈ a◦z

X + T⊥
z (X) ∈ h⊥z .

Proof. Since g = hz + p, we have

h⊥z ∩ nP = h⊥z ∩ p⊥ = (hz + p)⊥ = g⊥ = {0}.

Therefore, h⊥z + nQ = h⊥z ⊕ nQ. As l⊥Q = nQ ⊕ nQ, we further have

h⊥z ⊕ nQ ⊆ h⊥z + l⊥Q = (lQ ∩ hz)
⊥.

Moreover,

dim
(
(lQ ∩ hz)

⊥) = 2dim(nQ) + dim(lQ)− dim(lQ ∩ hz)

and, in view of Proposition 3.6 (ii) and the fact that g = hz + q,

dim(h⊥z ) = dim(q)− dim(q ∩ hz) = dim(nQ) + dim(lQ)− dim(lQ ∩ hz).

It follows that dim
(
(lQ ∩ hz)

⊥) = dim
(
h⊥z ⊕ nQ

)
, and hence

(lQ ∩ hz)
⊥ = h⊥z ⊕ nQ. (3.7)

In particular, for everyX ∈ a◦z there exists a unique element Y ∈ nQ so thatX+Y ∈ h⊥z ,
and thus there exists a unique linear map T : a◦z → nQ whose graph is contained in h⊥z . It
remains to be shown that T actually maps to ZnQ(lQ ∩ hz).

Let X ∈ a◦z and Y ∈ nQ satisfy X + Y ∈ h⊥z . We will show that Y ∈ ZnQ(lQ ∩ hz).
Note that a◦z = a∩(lQ∩hz)⊥. As [lQ∩hz, (lQ∩hz)⊥] ⊆ (lQ∩hz)⊥ and [lQ∩hz, a] ⊆ lQ∩hz
we have [lQ ∩ hz, a

◦
z] = {0}. From [lQ ∩ hz, Y ] ⊆ [lQ ∩ hz, nQ] ⊆ nQ and

[lQ ∩ hz, Y ] = [lQ ∩ hz, X + Y ] ⊆ [lQ ∩ hz, h
⊥
z ] ⊆ h⊥z ,

it follows that
[lQ ∩ hz, Y ] ⊆ h⊥z ∩ nQ = {0},

and thus Y ∈ ZnQ(lQ ∩ hz).

Given an adapted point z, the following lemma gives a characterization of the adapted
points in the open P -orbit P · z.

Lemma 3.11. Let z ∈ Z be adapted and n ∈ NQ. Then n · z is adapted if and only if
there exists an X ∈ a◦z,reg so that

Ad(n−1)X = X + T⊥
z (X).
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3. Adapted points

Proof. Assume that n · z is adapted. By definition there exists an element X ∈ a◦n·z,reg =
a◦z,reg. Now

Ad(n−1)X ∈ Ad(n−1)h⊥n·z = h⊥z .

Moreover, in view of Proposition 3.6 and Lemma 3.9 we have n ∈ ZNQ
(lQ∩hz). The Lie

algebra lQ ∩ hz is normalized by a and the roots of lQ ∩ hz in a vanish on a◦z. Therefore,
X centralizes lQ ∩ hz. It follows that

Ad(n−1)X ∈ Ad(NQ)X ∩ Ad
(
ZG(lQ ∩ hz)

)
X ⊆ (X + nQ) ∩ Zg(lQ ∩ hz)

= X + ZnQ(lQ ∩ hz).

Since also X + T⊥
z (X) ∈ h⊥z ∩

(
X + ZnQ(lQ ∩ hz)

)
, it follows from (3.7) that

Ad(n−1)X = X + T⊥
z (X).

We move on to prove the other implication. Assume that there exists an X ∈ a◦z,reg so
that

Ad(n−1)X = X + T⊥
z (X).

First note that
Pn · z = P · z

is an open P -orbit in Z. Further, Ad(n−1)X ∈ h⊥z and thus

X = Ad(n)Ad(n−1)X ∈ Ad(n)h⊥z = h⊥n·z.

Finally, we claim that n ∈ ZNQ
(lQ ∩ hz). From the claim and Lemma 3.9 it follows that

lQ,nc ⊆ hn·z,

and hence that n · z is adapted.
It thus remains to prove the claim. Since α(X) ̸= 0 for all roots α ∈ Σ(Q), the map

Ξ : NQ → nQ, u 7→ Ad(u)X −X

is a diffeomorphism. The image of ZNQ
(lQ∩hz) under Ξ is a submanifold of ZnQ(lQ∩hz)

that contains 0. Moreover, its dimension coincides with the dimension of ZnQ(lQ ∩ hz),
and hence it is an open neighborhood of 0 in ZnQ(lQ ∩ hz). As lQ ∩ hz is normalized by
A, also ZNQ

(lQ ∩ hz) is normalized by A. Therefore, Ξ
(
ZNQ

(lQ ∩ hz)) is A-stable. The
only A-stable open neighborhood of 0 in ZnQ(lQ ∩ hz) is ZnQ(lQ ∩ hz) itself. We thus
conclude that

Ξ
(
ZNQ

(lQ ∩ hz)) = ZnQ(lQ ∩ hz).

The claim now follows as

n−1 = Ξ−1
(
Ad(n−1)X −X

)
= Ξ−1

(
T⊥
z (X)

)
∈ Ξ−1

(
ZnQ(lQ ∩ hz)

)
= ZNQ

(lQ ∩ hz).

We can now describe the adapted points in a given open P -orbit in Z.
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III. On the little Weyl group of a real spherical space

Proposition 3.12. Let z ∈ Z be adapted. There exists a unique smooth rational map

Φz : a
◦
z,reg → nQ

so that the following hold.

(i) A point z′ ∈ P · z is adapted if and only if there exist m ∈M , a ∈ A and X ∈ a◦z,reg
so that

z′ = ma exp
(
Φz(X)

)
· z (3.8)

(ii) For every X ∈ a◦z,reg we have RX ⊆ h⊥exp(Φz(X))·z.

The map Φz is determined by the identity

Ad
(
exp(−Φz(X))

)
X = X + T⊥

z (X) ∈ h⊥z (X ∈ a◦z,reg). (3.9)

Finally, if z′ ∈ P · z is adapted and X ∈ a◦z,reg ∩ h⊥z′ , then

z′ ∈MA exp
(
Φz(X)

)
· z

Proof. Define the map

Ψ : a◦z,reg × nQ → a◦z,reg × nQ; (X, Y ) 7→ (X,Ad
(
exp(−Y )

)
X −X).

Ψ is a diffeomorphism and its inverse defines a smooth rational map from a◦z,reg × nQ to
itself. Define Φz : a

◦
z,reg → nQ to be the map determined by(
X,Φz(X)

)
= Ψ−1

(
X,T⊥

z (X)
)

(X ∈ a◦z,reg). (3.10)

By construction (3.9) holds. It follows from Lemma 3.11 that a point z′ ∈ P ·z is adapted
if and only if (3.8) holds. Moreover, (3.9) implies that for every X ∈ a◦z,reg

X ∈ Ad
(
exp(Φz(X))

)
h⊥z = h⊥Φz(X)·z.

This shows that Φz has all the desired properties.
We move on to show uniqueness. Let Φ′ : a◦z,reg → nQ be a second map satisfying the

properties (i) and (ii). If X ∈ a◦z,reg, then

X ∈ a ∩ h⊥exp(Φz(X))·z ∩ h⊥exp(Φ′
z(X))·z

In view of Lemma 3.8

exp
(
Φz(X)

)
exp

(
− Φ′

z(X)
)
∈ NQ ∩ LQ = {e},

and hence Φz(X) = Φ′
z(X). This shows that Φz is unique.

Finally, let z′ ∈ P · z be adapted and X ∈ a◦z,reg ∩ h⊥z′ . Then

X ∈ a ∩ h⊥z′ ∩ h⊥exp(Φz(X))·z

By Lemma 3.8
z′ ∈ LQ exp

(
Φz(X)

)
· z

Since exp
(
Φz(X)

)
· z is adapted we have LQ,nc ⊆ Hexp(Φz(X))·z, and thus

LQ exp
(
Φz(X)

)
· z =MA exp

(
Φz(X)

)
· z.

This proves the final assertion.
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We complete the description of the adapted points in Z with a proposition, which
provides a set of adapted points that intersects with all open P -orbits in Z.

Proposition 3.13. Let z ∈ Z be adapted. Every open P -orbit in Z contains a point f · z
with f ∈ G ∩ exp(ia)Hz,C. For every f ∈ G ∩ exp(ia)Hz,C the point f · z is adapted.
Moreover,

lQ ∩ hf ·z = lQ ∩ hz,

a ∩ hf ·z = a ∩ hz

a ∩ h⊥f ·z = a ∩ h⊥z .

To prove the proposition we make use of the following complex version of Lemma
3.8. The proof for this lemma is the same as the proof for Lemma 3.8.

Lemma 3.14. Let z ∈ Z be adapted and let q ∈ QC. Then q ∈ LQ,C if and only if there
exists an element

X ∈ aC ∩ h⊥z,C ∩ Ad(q)h⊥z,C

so that lQ,C = ZgC(X) (and thus α(X) ̸= 0 for all α ∈ Σ(Q)). In that case

aC ∩ h⊥z,C = aC ∩ Ad(q)h⊥z,C.

Proof of Proposition 3.13. We adapt the arguments from [16, Sections 2.4 & 2.5].
Let O be an open P -orbit in Z. By [16, Lemma 2.1] the set

G ∩ PCHz,C

is the union of all open P × Hz-double cosets in G. Therefore, there exist p ∈ PC and
h ∈ Hz,C so that ph ∈ G and O = Pph · z. Let X ∈ a◦z,reg ∩ h⊥z . It follows from
Proposition 3.12 that we may choose p so that X ∈ hph·z. In view of Lemma 3.14 we
have

p ∈ PC ∩ LQ,C =MCAC(NP,C ∩ LQ,C).
As NP,C ∩LQ,C ⊆ Hz,C, MC =M exp(im) and AC = A exp(ia), we may further choose
p so that p ∈ exp(im) exp(ia). We claim that now ph ∈ exp(ia)Hz,C.

To prove the claim, define g 7→ g to be the conjugation on GC with respect to G. Note
that MC exp(ia) is a group that is stable under this conjugation. Since ph ∈ G, we have
ph = ph. Moreover, since p ∈ exp(im) exp(ia) we have p = p−1, and hence

p2 = p−1p = hh−1.

The group MC exp(ia)∩Hz,C is algebraic and hence it has finitely many connected com-
ponents. Therefore, exp(im) ∩ Hz,C is connected, and thus equal to exp(im ∩ hz). It
follows that p ∈ exp(ia)Hz,C. This proves the claim. We have now proven that the set(

G ∩ exp(ia)Hz,C
)
· z

intersects with every open P -orbit in Z. We move on to show that all points in this set
are adapted.
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III. On the little Weyl group of a real spherical space

Let a ∈ exp(ia) and h ∈ Hz,C be so that ah ∈ G. Then

pC + hah·z,C = pC +Ad(ah)hz,C = Ad(a)
(
pC + hz,C

)
.

Since P · z is open, the right-hand side is equal to gC. Intersection both sides with g now
yields

p+ hah·z = g

and therefore Pah · z is open in Z. Furthermore, since lQ,nc,C is stable under the action
of AC and lQ,nc ⊆ hz, we have

lQ,nc,C = Ad(a)lQ,nc,C ⊆ Ad(a)hz,C = Ad(ah)hz,C = hah·z,C.

Intersecting both sides with g yields

lQ,nc ⊆ hah·z.

Finally,

aC ∩ h⊥ah·z,C = aC ∩ Ad(ah)h⊥z,C = Ad(a)
(
aC ∩ h⊥z,C

)
= aC ∩ h⊥z,C,

and hence intersecting with g yields

a ∩ h⊥ah·z, = a ∩ h⊥z .

Since z is adapted, a ∩ h⊥z contains an element X so that Zg(X) = lQ. This concludes
the proof that ah · z is adapted.

It remains to prove that lQ ∩ hah·z = lQ ∩ hz and a ∩ hah·z = a ∩ hz. These identities
follow by intersecting with g and a, respectively, from

lQ,C ∩ hah·z,C = lQ,C ∩ Ad(ah)hz,C = Ad(a)
(
lQ,C ∩ hz,C

)
= lQ,C ∩ hz,C.

We end this section with three corollaries of the previous results in this section. We
begin with a description of the normalizer of hz.

Corollary 3.15. Let z ∈ Z be adapted. Then

NG(hz) ⊆MA
(
G ∩ exp(ia)Hz,C

)
.

In particular,
Ng(hz) = hz +Na(hz) +Nm(hz).

Remark 3.16. The second assertion in the corollary was proven in [16, (5.10)] and a
slightly weaker version in [17, Lemma 4.2]. In these articles the requirement (iii) in
Definition 3.3 is not mentioned, but in general it cannot be omitted. If for example H =
NP and z = man·NP , thenNg(hz) = Ad(man)p. This is only contained in m⊕a⊕nP if
n = e. In Example 3.5 we showed that the latter condition is equivalent to the existence of
regular elements in a ∩ h⊥z . The additional requirement (iii) in Definition 3.3 is therefore
necessary in this case.
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Proof of Corollary 3.15. Let g ∈ NG(hz). Then hg·z = Ad(g)hz = hz. It follows that the
properties (i) – (iii) in Definition 3.3 hold for the point g · z and thus g · z is adapted. By
Proposition 3.13 there exists an f ∈ G∩ exp(ia)Hz,C so that Pg · z = Pf · z. Moreover,
f · z is adapted and

a ∩ h⊥f ·z = a ∩ h⊥z = a ∩ h⊥g·z.

Since z is adapted, these spaces contain elements X so that lQ = Zg(X). It follows from
Lemma 3.8 that g · z ∈ LQf · z. Since LQ,nc ⊆ Hf ·z and LQ = MALQ,nc, there exist
m ∈M and a ∈ A so that g · z = maf · z. This proves the first assertion in the Corollary.

We move on to the second assertion. Consider the set Λ consisting of all λ ∈ a∗ for
which there exists a regular function ϕλ ∈ R[G] so that ϕ(e) = 1 and

ϕλ(manxh) = aλϕ(x)
(
m ∈M,a ∈ A, n ∈ NP , h ∈ Hz, x ∈ G

)
.

It follows from [17, Lemma 3.4 & Remark 3.5] that Λ spans (a/ah)∗. For each λ ∈ Λ the
function ϕλ extends to regular function on GC which satisfies

ϕλ(ah) = aλ
(
a ∈ exp(ia), h ∈ (Hz,C)e

)
,

where (Hz,C)e is the connected open subgroup of Hz,C. Note that aλ with a ∈ exp(ia) is
real if and only if aλ = ±1. From this it follows that

(
G ∩ exp(ia)Hz,C

)
/Hz is discrete.

Since it is algebraic, it is in fact a finite set, and hence Hz is a relatively open subset of
G ∩ exp(ia)Hz,C. Therefore, there exists a subspace s of m⊕ a so that

Ng(hz) = hz + s.

We may assume thatNm(hz)⊕Na(hz) ⊆ s. To prove the second assertion, it now suffices
to show that s = (s∩m)⊕ (s∩ a). The latter follows from (3.3) with Hz replaced by the
real spherical subgroup NG(hz).

The spaces a ∩ hz and a◦z play an important role in this article. By the following
corollary these spaces do not depend on the adapted point z.

Corollary 3.17. If z, z′ ∈ Z are adapted, then a ∩ hz = a ∩ hz′ .

Proof. By Proposition 3.13 there exits an f ∈ G ∩ exp(ia)Hz,C and a p ∈ P so that
z′ = pf · z. Moreover, f · z is adapted and a∩ hf ·z = a∩ hz. It follows from Proposition
3.6 that we may apply Lemma 3.9 to the points f · z and pf · z. It follows that a∩hpf ·z =
a ∩ hf ·z = a ∩ hz.

In view of Corollary 3.17 we may make the following definition.

Definition 3.18. We define
ah := a ∩ hz,

where z ∈ Z is any adapted point. We further define

a◦ := a ∩ a⊥h

and

a◦reg := {X ∈ a◦ : α(X) ̸= 0 for all α ∈ Σ(Q)} = {X ∈ a◦ : Zg(X) = lQ}.
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III. On the little Weyl group of a real spherical space

The subalgebras m ∩ hz and m ∩ hz′ may not be equal for all adapted points z and z′.
However, there exists an m ∈M so that

m ∩ hz = Ad(m)
(
m ∩ hz′

)
.

We note that a◦z = a◦ and a◦z,reg = a◦reg for all adapted points z ∈ Z.
Finally, we give the alternative characterization of adapted points which we announced

in Remark 3.4 (b).

Proposition 3.19. Let z ∈ Z. Then z is adapted if and only if the following hold.

(i) P · z is open in Z, i.e., p+ hz = g,

(ii) There exists an X ∈ a ∩ h⊥z so that Zg(X) = lQ, i.e., a◦reg ∩ h⊥z ̸= ∅.

Proof. By definition adapted points satisfy (i) and (ii). For the converse implication,
assume that z satisfies (i) and (ii). Let X ∈ a◦reg ∩ h⊥z . It follows from Proposition 3.12
that there exists an adapted point z′ ∈ P · z so that X ∈ a◦reg ∩ h⊥z′ . By Lemma 3.8 there
exists a l ∈ LQ so that z = l · z′. Since the set of adapted points is LQ-stable, it follows
that z is adapted.

4 Description of hz in terms of a graph
As in [4, Proposition 2.5] we may describe of the stabilizer subalgebra hz of an adapted
point z in terms of a graph. It follows from Proposition 3.6 that for every adapted point
z ∈ Z there exists a unique linear map

Tz : nQ →
(
m ∩ (m ∩ hz)

⊥)⊕ a◦ ⊕ nQ,

so that
hz = (lQ ∩ hz)⊕ G(Tz).

Here G(Tz) denotes the graph of Tz.

Lemma 4.1. Let z ∈ Z be adapted. The subspace
(
m ∩ (m ∩ hz)

⊥) ⊕ a◦ ⊕ nQ of g is
(LQ ∩Hz)-stable. Moreover, the map Tz is (LQ ∩Hz)-equivariant.

Proof. Note that (
m ∩ (m ∩ hz)

⊥)⊕ a◦ ⊕ nQ = q ∩ (lQ ∩ hz)
⊥.

As LQ∩Hz stabilizes both q and lQ∩hz, and the adjoint representation preserves Killing-
orthocomplements, the first assertion follows.

It follows from the first assertion that the decomposition

g = nQ ⊕ (lQ ∩ hz)⊕
((

m ∩ (m ∩ hz)
⊥)⊕ a◦ ⊕ nQ

)
is stable under the adjoint action of LQ ∩Hz. The second assertion now follows from the
uniqueness of Tz.
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For α ∈ Σ(Q) let pα be the projection g → gα with respect to the root space decom-
position

g = m⊕ a⊕
⊕
α∈Σ

gα.

Likewise, we write pm and pa for the projections g → m and g → a with respect to this
decomposition. For an adapted point z ∈ Z and Y ∈ nQ we define the z-support of Y to
be

suppz(Y ) :=
{
β ∈ Σ(Q) ∪ {m, a} : pβ

(
Tz(Y )

)
̸= 0

}
.

For every α ∈ Σ(Q) we have

−α(X)Y +
(
ad(X) ◦ Tz

)
(Y ) =

[
X, Y + Tz(Y )

]
⊆ hz

(
X ∈ ah, Y ∈ g−α

)
The uniqueness of the map T implies that

ad(X) ◦ Tz
∣∣
g−α

= −α(X)Tz
∣∣
g−α

In particular,

α|ah =
{

−β|ah if β ∈ Σ(Q) with β ∈ suppz(g−α),
0 if m ∈ suppz(g−α) or a ∈ suppz(g−α).

(4.1)

The map Tz possesses several symmetries, some of which are described in the follow-
ing lemma.

Lemma 4.2. Let z ∈ Z be adapted. If X ∈ a ∩ h⊥z , then

B
(
[X, Y1], Tz(Y2)

)
= B

(
[X, Y2], Tz(Y1)

) (
Y1, Y2 ∈ nQ

)
.

Remark 4.3. If α, β ∈ Σ(Q) and Y−α ∈ g−α and Y−β ∈ g−β , then the identity in the
lemma specializes to

B
(
Y−α, pαTz(Y−β)

)
α(X) = B

(
Y−β, pβTz(Y−α)

)
β(X). (4.2)

This identity was proved by Brion in [4, Proposition 2.5] in case G and H are complex
algebraic groups and for one specific choice of X .

Proof of Lemma 4.2. Since [X, Y1], Y2 ∈ nQ we have

B([X, Y1], Y2) = 0,

and since [X,Tz(Y1)] ∈ nQ and Tz(Y2) ∈ q, we have

B
(
[X,Tz(Y1)], Tz(Y2)

)
= 0.

Therefore,

B
(
[X, Y1], Tz(Y2)

)
−B

(
Tz(Y1), [X, Y2]

)
= B

(
[X, Y1], Tz(Y2)

)
+B

(
[X,Tz(Y1)], Y2

)
= B

(
[X, Y1 + Tz(Y1)], Y2 + Tz(Y2)

)
.

The right-hand side equals 0 as [X, Y1 + Tz(Y1)] ∈ h⊥z and Y2 + Tz(Y2) ∈ hz.
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5 Limits of subspaces
For k ∈ N let Gr(g, k) be the Grassmannian of k-dimensional subspaces of the Lie
algebra g. For our approach to the little Weyl group we will need to consider certain
limits of the stabilizer subalgebras hz in Gr

(
g, dim(hz)

)
. In this section we introduce the

relevant limits and discuss their properties.

Definition 5.1. We say that an element X ∈ a is order-regular if

α(X) ̸= β(X)

for all α, β ∈ Σ with α ̸= β.

If X ∈ a is order-regular, then in particular α(X) ̸= −α(X) and therefore α(X) ̸= 0
for every α ∈ Σ. This implies that order-regular elements in a are regular. Every order-
regular element X ∈ a determines a linear order ≥ on Σ by setting

α ≥ β if and only if α(X) ≥ β(X)

for α, β ∈ Σ.

Proposition 5.2. Let E ∈ Gr(g, k) and let X ∈ a. The limit

EX := lim
t→∞

Ad
(
exp(tX)

)
E,

exists in the Grassmannian Gr(g, k). If λ1 < λ2 < · · · < λn are the eigenvalues and
p1, . . . , pn the corresponding projections onto the eigenspaces Vi of ad(X), then EX is
given by

EX =
n⊕
i=1

pi
(
E ∩

i⊕
j=1

Vj
)
. (5.1)

The following hold.

(i) If E is a Lie subalgebra of g, then EX is a Lie subalgebra of g.

(ii) If X ∈ a is order-regular, then EX is a-stable.

(iii) Let R ⊆ a be a connected component of the set of order-regular elements in a. If
X ∈ R and Y ∈ R, then

(
EX

)
Y
= EY . In particular, ifX, Y ∈ R, thenEX = EY .

(iv) If g, g′ ∈ G and
lim
t→∞

exp(tX)g exp(−tX) = g′,

then (
Ad(g)E

)
X
= Ad(g′)EX

(v) Let EC,X be the limit of Ad
(
exp(tX)

)
EC for t → ∞ in the Grassmannian of

k-dimensional complex subspaces in the complexification gC of g. Then

EC,X = (EX)C.
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6. The compression cone

Proof. The proofs for all assertions with the exception of (iv) and (v) are given in [19,
Lemma 4.1]. Although order-regular elements are in [19] assumed to have the additional
property that they are contained in a−, this is not used anywhere in the proof of Lemma
4.1 loc. cit.

We move on to prove (iv). IfAt → 1 for t→ ∞ in End(E), thenAt Ad
(
exp(tX)

)
E

tends to EX as t → ∞. The identity now follow straightforwardly from the fact that
(g′)−1 exp(tX)g exp(−tX) converges to e in G.

Finally we prove (v). The space EC,X is a complex subspace of g ⊗R C. Since
E is contained in E ⊗R C as a real subspace, the limit EX is contained in EC,X as a
real subspace. Therefore, EX ⊗R C ⊆ EC,X . A dimension count shows that equality
holds.

Remark 5.3. If X is not order-regular, then EX need not to be stable under the action
of a, even if X is regular. An example of this can be constructed as follows. Let α, β ∈
Σ(a) be such that α ̸= β and α(X) = β(X). Let Yα ∈ gα and Yβ ∈ gβ and define
E = R(Yα + Yβ). Now E consists of eigenvectors for ad(X), hence EX = E. However
E is not a-stable.

6 The compression cone
In this section we introduce the compression cone of a point z ∈ Z. It consists of all
X ∈ a for which the limit hz,X is equal to a given limit subalgebra. The main result
in this section is that the compression cones are the same for all adapted points. (See
Proposition 6.5.) The compression cone for an adapted point is therefore an invariant
of the space Z, which we call the compression cone of Z. For a non-adapted point the
compression cone may be strictly smaller than the compression cone of Z. The closure of
the compression cone of Z will serve as a fundamental domain of the little Weyl group.

We fix an adapted point z0 ∈ Z and define the subalgebra

h∅ := (lQ ∩ hz0) + nQ. (6.1)

This subalgebra was defined in the introduction as a limit subalgebra. From Lemma 6.4
it will follow that the two definitions indeed agree.

Clearly h∅ depends on the choice of the adapted point z0 ∈ Z. However in view of
the following lemma, another choice of z0 would yield an M -conjugate of h∅.

Lemma 6.1. Let z ∈ Z be adapted. There exists an m ∈M so that

(lQ ∩ hz)⊕ nQ = Ad(m)h∅.

Proof. The assertion follows directly from Proposition 3.13 and Lemma 3.9. The latter
lemma we may apply in view of Proposition 3.6.

Definition 6.2. For z ∈ Z and X ∈ a we define

hz,X := (hz)X = lim
t→∞

Ad
(
exp(tX)

)
hz.
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III. On the little Weyl group of a real spherical space

Here the limit is taken in the Grassmannian of dim(hz)-dimensional subspaces of g. We
further define for z ∈ Z the cone in a

Cz := {X ∈ a : hz,X = Ad(m)h∅ for some m ∈M}.

Lemma 6.3. Let z ∈ Z be adapted. We define the set

Sz := {α + β : α ∈ Σ(Q), β ∈ suppz(g−α) ∩ Σ(Q)} (6.2)
∪ {α ∈ Σ(Q) : a ∈ suppz(gα) or m ∈ suppz(gα)}.

The cone Cz is given by

Cz = {X ∈ a : γ(X) < 0 for all γ ∈ Sz}. (6.3)

In particular Cz is an open cone in a, a− is contained in Cz, and

Cz + ah = Cz. (6.4)

The dual cone
C∨
z := {λ ∈ a∗ : λ(X) ≥ 0 for all X ∈ Cz}

is equal to the finitely generated cone

C∨
z =

∑
γ∈Sz

R≤0γ.

Finally, Cz is equal to the interior of the double dual cone (C∨
z )

∨ and thus it is equal to
the smallest convex open cone containing the order-regular elements in Cz.

Proof. Let X ∈ a. Since hz = (lQ ∩ hz) ⊕ G(Tz) we have hz,X = Ad(m)h∅ for some
m ∈M if and only if

lim
t→∞

Ad
(
exp(tX)

)
G(Tz) = nQ.

In view of (5.1) the latter is equivalent to the conditions{
−α(X) > β(X) if α, β ∈ Σ(Q) and β ∈ suppz(g−α),
−α(X) > 0 if α ∈ Σ(Q), and m ∈ suppz(g−α) or a ∈ suppz(g−α).

This proves (6.3). The identity (6.4) follows from (4.1). All other assertions are trivial
consequences of (6.3).

Lemma 6.4. Let z ∈ Z. The following hold.

(i) For every m ∈M and a ∈ A we have Cma·z = Cz.

(ii) Cz ̸= ∅ if and only if P · z is open. In that case a− ⊆ Cz.
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6. The compression cone

Proof. Let X ∈ a. It follows from Proposition 5.2 (iv) that hma·z,X = Ad(ma)hz,X .
Since h∅ is A-stable it follows that X ∈ Cma·z if and only if X ∈ Cz. This proves (i).

We move on to prove (ii). Assume that Cz ̸= ∅ and let X ∈ Cz. Then nP ⊆ hz,X , and
hence hz,X + p = g. This implies that g = Ad

(
exp(tX)

)
hz + p for large t > 0. Since

g and p are both stable under the adjoint action of A, it follows that g = hz + p and thus
P · z is open.

Assume now that O := P · z is open. We will show that a− ⊆ Cz. To do so, let
z′ ∈ O be adapted and let m ∈ M , a ∈ A and n ∈ NP so that z = man · z′. It
follows from Lemma 6.3 that a− is contained in Cz′ . In view of Proposition 5.2 (iv) we
have hn·z′,X = hz′,X for every X ∈ a−. Therefore, a− ⊆ Cn·z′ . It follows from (i) that
Cz = Cn·z′ , and hence we have a− ⊆ Cz. This proves (ii).

Proposition 6.5. Let z ∈ Z be adapted. For every z′ ∈ Z such that P · z′ is open, we
have

a− ⊆ Cz′ ⊆ Cz.

Moreover, if z′ is adapted, then
Cz′ = Cz.

If P · z′ is open, but z′ is not adapted, then the inclusion Cz′ ⊆ Cz may be strict.
Before we prove the proposition, we first consider the example of Z = G/NP where this
phenomenon is readily seen.

Example 6.6. Let Z = G/NP and let z = e ·NP . We recall from Example 3.5 that the
only open P -orbit in Z is P · z and the set of adapted points is equal to MA · z.

Since nP is a-stable, we have
Cz = a.

Let Y ∈ nP and write Y =
∑

α∈Σ+ Yα with Yα ∈ gα. We claim that

Cexp(Y )·z = {X ∈ a : α(X) < 0 for all α ∈ Σ+ with Yα ̸= 0}.

In view of Proposition 5.2 (iv) the set on the right-hand side is contained in Cexp(Y )·z. For
the other inclusion it suffices to show that no order-regular element in the complement of
the set on the right-hand side is contained in Cexp(Y )·z. Let X ∈ a be order-regular, and
assume that there exists a root α ∈ Σ+ so that Yα ̸= 0 and α(X) > 0. Let α0 ∈ Σ+ be so
that α0(X) is minimal among the numbers α(X) with α ∈ Σ+, Yα ̸= 0 and α(X) > 0.
Now

Ad(Y )θYα0 ∈ θYα0 + [Yα0 , θYα0 ] + nP ,

and hence

Ad
(
exp(tX)

)
Ad(Y )θYα0 ∈ e−tα0(X)θYα0 + [Yα0 , θYα0 ] + nP

The limit of Ad
(
exp(tX)

)
R
(
Ad(Y )θYα0

)
in P(g) is a line contained in p as −α0(X) <

0 and [Yα0 , θYα0 ] ∈ a \ {0}. It follows that X /∈ Cexp(Y )·z.
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III. On the little Weyl group of a real spherical space

The proof of Proposition 6.5 relies on the following lemma, which will also be of use
later on.

Lemma 6.7. Let z ∈ Z and f ∈ G ∩ exp(ia)Hz,C. For every order-regular element
X ∈ a

hz,X = hf ·z,X .

Proof. Let a ∈ exp(ia) and h ∈ Hz,C be so that f = ah. In view of Proposition 5.2
(v) limits and complexifications can be interchanges. Therefore, for every order-regular
element X ∈ a

(hf ·z,X)C = lim
t→∞

Ad
(
exp(tX)

)
hah·z,C

= lim
t→∞

Ad
(
exp(tX)ah

)
hz,C

= Ad(a)(hz,X)C.

By Proposition 5.2 (ii) the space hz,X is a-stable and therefore (hz,X)C is normalized by a.
It follows that (hf ·z,X)C = (hz,X)C. Intersecting both sides with g now yields the desired
identity.

Proof of Proposition 6.5. By Proposition 3.13 there exists an f ∈ G ∩ exp(ia)Hz,C so
that f · z is adapted and z′ ∈ Pf · z. By Lemma 6.7 we have hz,X = hf ·z,X for every
order-regular element X ∈ a, and hence Cf ·z = Cz. By replacing z by f · z we may thus
without loss of generality assume that z′ ∈ P · z.

It follows from Lemma 6.4 (ii) that a− is contained in Cz′ . We move on to show that
Cz′ is contained in Cz. Let m ∈ M , a ∈ A and n ∈ NQ be so that z′ = man · z. Such
elements exist by Proposition 3.6; see Remark 3.7 (b). In view of Lemma 6.4 (i) we have
Cz′ = Cn·z.

Let X ∈ Cn·z be order-regular. We may write n = n−n+ with

log(n±) ∈
⊕

α∈Σ(Q)
±α(X)>0

gα.

In view of Proposition 5.2 (iv) we have hn·z,X = hn+·z,X . We claim that n+ = e. Assum-
ing the claim is true, we have hn·z,X = hz,X and thus X ∈ Cz.

To prove the claim we assume that n+ ̸= e and work towards a contradiction. Let
X⊥ ∈ a◦reg ∩ h⊥z . For β ∈ Σ(Q) let Uβ ∈ gβ be so that

Ad(n+)X⊥ = X⊥ +
∑

β∈Σ(Q)

Uβ.

Note that there exists an β ∈ Σ(Q) so that Uβ ̸= 0, and that Uβ ̸= 0 only if β(X) > 0.
Let α ∈ Σ(Q) be the maximal root for the order defined by X for which Uα ̸= 0. Set
Y−α := θUα. There exists an m′ ∈ M so that hn+·z,X = hn·z,X = Ad(m−1)hz′,X =
Ad(m′)h∅. It follows that

RY−α ⊆ nQ = Ad(m′)nQ ⊆ Ad(m′)h∅ = hn+·z,X .
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6. The compression cone

We will exploit this fact.
Let Y ∈ hn+·z be so that (RY )X = RY−α. The existence of such an element Y is

guaranteed by equation (5.1) in Proposition 5.2. The projection of Y onto g−α along
the root space decomposition is up to scaling equal to Y−α. After rescaling Y , we may
therefore assume that Y decomposes as

Y = Y−α +
∑

β∈Σ∪{0}
β ̸=α

Y−β

with Y−β ∈ g−β if β ∈ Σ and Y0 ∈ m ⊕ a. Since (RY )X = RY−α, the element Y−β can
only be non-zero if β(X) ≥ α(X) > 0 (and since X is order-regular, equality holds if
and only if β = α). Therefore, B(X⊥, Y−β) = B(Uβ′ , Y−β) = 0 for all β ∈ Σ ∪ {0} for
which Y−β ̸= 0 and all β′ ∈ Σ(Q) for which Uβ′ ̸= 0. It follows that

B(Uα, Y−α) = B
(
Ad(n+)X⊥, Y

)
= B

(
X⊥,Ad(n

−1
+ )Y

)
= 0.

For the last equality we used that Ad(n−1
+ )Y ∈ hz. Since −B( · , θ · ) is positive definite

on the semisimple part of g, we conclude that Uα = 0. This is a contradiction.
We have now proven that Cz′ ⊆ Cz. For the second assertion in the proposition we

may reverse the role of z′ and z and further obtain the other inclusion Cz ⊆ Cz′ .

Proposition 6.5 allows us to make the following definition.

Definition 6.8. We define C ⊆ a to be the cone given by C := Cz, where z is any adapted
point in Z. The cone C is called the compression cone of Z.

Let aE be the edge of C, i.e.,

aE := C ∩ (−C). (6.5)

We note that aE is a subspace of a. We end this section with a description of the relation
between aE and the normalizer of hz.

Recall the set Sz from (6.2).

Proposition 6.9. Let z ∈ Z be adapted.

(i) The space aE is equal to the joint kernel of Sz, i.e.,

aE = {X ∈ a : σ(X) = 0 for all σ ∈ Sz}.

(ii) aE = Na(hz).

Proof. Assertion (i) follows from Lemma 6.3. We move on to (ii). It follows from (i) that
aE normalizes the graph G(Tz). Moreover, a normalizes lQ∩hz, and hence aE normalizes
hz. This shows that aE ⊆ Na(hz).

LetX ∈ Na(hz). For every Y ∈ a we have hz,X+Y = hz,Y . In particularNa(hz)+C =
C. It follows that Na(hz) ⊆ C and thus Na(hz) ⊆ C ∩ (−C) = aE .
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III. On the little Weyl group of a real spherical space

7 Limit subalgebras and open P -orbits

In this section we describe a relation between limits of hz and open P -orbits in PNG(a)·z
for an adapted point z.

We define the group

N := NG(a) ∩NG(lQ,nc + ah). (7.1)

The group N is relevant because of the following lemma.

Lemma 7.1. Let v ∈ NG(a), z ∈ Z, and X ∈ a. If z is adapted and hz,X = Ad(v)h∅,
then v ∈ N .

Proof. Since z is adapted, the a-stable subalgebra lQ,nc+ah is contained in hz. Therefore,
lQ,nc + ah is also contained in hz,X = Ad(v)h∅. From (6.1) it is easily seen that the
maximal θ-stable subspace of Ad(v)h∅ is Ad(v)(lQ∩h). Since lQ,nc is θ-stable, it follows
that lQ,nc ⊆ Ad(v)(lQ ∩ h). From the fact that lQ,nc is the sum of all non-compact simple
ideals in lQ ∩ h, it follows that in fact lQ,nc = Ad(v)lQ,nc. Thus we find that v normalizes
lQ,nc. Moreover,

ah ⊆ a ∩ hz,X = a ∩ Ad(v)h∅ = Ad(v)
(
a ∩ h∅

)
= Ad(v)ah.

Therefore, v ∈ N .

The main result of this section is the following proposition.

Proposition 7.2. Let z ∈ Z be adapted and let w ∈ N . The following are equivalent.

(i) There exists a X ∈ a so that hz,X = Ad(wm)h∅ for some m ∈M ,

(ii) Pw−1 · z is open in Z,

(iii) X ∈ Ad(w)C if and only if hz,X = Ad(wm)h∅ for some m ∈M .

Before we prove the proposition, we first prove a lemma.

Lemma 7.3. Let z ∈ Z and v ∈ N . If z is adapted and Pv−1 · z is open, then v−1 · z is
adapted.

Proof. Assume that z is adapted and Pv−1 · z is open. As v normalizes a and lQ,nc + ah,
it also normalizes m and hence a+m+ lQ,nc = lQ. If X ∈ a∩ h⊥z is so that lQ = Zg(X),
then

lQ = Ad(v−1)lQ = Zg(Ad(v
−1)X).

Moreover, Ad(v−1)X ∈ Ad(v−1)
(
a∩ h⊥z

)
= a∩ h⊥v−1·z. The assertion now follows from

Proposition 3.19.

92



8. Limits of hz

Proof of Proposition 7.2. (i)⇒(ii): Let X ∈ a. If hz,X = Ad(wm)h∅ for some m ∈ M ,
then

hw−1·z,Ad(w−1)X = Ad(w−1)hz,X = Ad(m)h∅,

and hence Ad(w−1)X ∈ Cw−1·z. Now Pw−1 · z is open in view of Lemma 6.4 (ii).
(ii)⇒(iii): By Lemma 7.3 the point w−1 · z is adapted. It follows from Proposition 6.5
that Cw−1·z = C. Therefore X ∈ Ad(w)C if and only if

hw−1·z,Ad(w−1)X = Ad(m)h∅

for some m ∈M . The implication now follows from the identity

Ad(w−1)hz,X = hw−1·z,Ad(w−1)X .

(iii)⇒(i): This implication is trivial.

8 Limits of hz
In this section we describe the closure of Ad(G)hz in the Grassmannian. We will show
that this closure is a finite union of G-orbits, each of the form Ad(G)hz,X , where z is an
adapted point in Z and X ∈ C. The crucial tool for this is the polar decomposition ([16])
for Z.

Recall the set Sz defined in (6.2). For an adapted point z ∈ Z let Mz be the monoid
generated by Sz, i.e.,

Mz := NSz. (8.1)

We note that the negative dual cone

−C∨ := −{ξ ∈ a∗ : ξ(X) ≥ 0 for all X ∈ C}

of C is equal to the cone generated by Mz. A priori Mz may depend on the adapted
point z ∈ Z, but the cone spanned by Mz is independent of z. We write Sz for the set of
indecomposable elements in Mz. Note that Sz ⊆ Sz.

The closure of the compression cone C is finitely generated and hence polyhedral as
−C∨ is finitely generated. We call a subset F ⊆ C a face of C if F = C or there exists a
closed half-space H so that

F = C ∩ H and C ∩ ∂H = ∅.

There exist finitely many faces of C and each face is polyhedral cone. A face F of C is
said to be a wall of C or C if span(F) has codimension 1.

Let z ∈ Z be adapted. Each subset S of Sz corresponds to a face F of C, namely

F = C ∩
⋂
α∈S

ker(α). (8.2)
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III. On the little Weyl group of a real spherical space

The map from the power set of Sz to the set of faces of C is surjective. If C∨ is generated
by a set of linearly independent elements, then this map is also injective. If F is a wall of
C, then there exists an element α ∈ Sz so that

F = C ∩ ker(α). (8.3)

For an adapted point z ∈ Z and a face F of C we define

Mz,F := {σ ∈ Mz : σ
∣∣
F = 0}. (8.4)

Note that Mz,F is a submonoid of Mz. We further note that the annihilator of Mz,F is
equal to

aF := span(F),

i.e., ⋂
σ∈Mz,F

ker(σ) = aF . (8.5)

Lemma 8.1. Let z ∈ Z be adapted and let F be a face of C. Let Mz,F be as in (8.4).
For every X in the (relative) interior of F

hz,X = (lQ ∩ hz)⊕
⊕

α∈Σ(Q)

G
( ∑
σ∈−α+Mz,F

pσ ◦ Tz
∣∣
g−α

)
. (8.6)

In particular, for all X and X ′ in the (relative) interior of F

hz,X = hz,X′ .

Proof. Let X be an element from the interior of F . Then

Mz,F = {σ ∈ Mz : σ(X) = 0}.

For σ ∈ Σ ∪ {0}, let pσ : g → gσ be the projection onto gσ along the Bruhat decomposi-
tion, where g0 denotes m⊕ a. If α ∈ Σ(Q) and Y ∈ g−α, then

Ad
(
exp(tX)

)(
Y + Tz(Y )

)
= e−tα(X)

(
Y +

∑
σ∈−α+Mz,F

pσTz(Y )
)
+

∑
σ∈(−α+Mz)\(−α+Mz,F )

etσ(X)pσTz(Y ).

If σ ∈ −α +Mz but σ /∈ −α +Mz,F , then σ(X) < −α(X). Therefore,(
R
(
Y + Tz(Y )

))
X
= R

(
Y +

∑
σ∈−α+Mz,F

pσTz(Y )
)
,

and hence ⊕
α∈Σ(Q)

G
( ∑
σ∈−α+Mz,F

pσ ◦ Tz
∣∣
g−α

)
⊆

(
G(Tz)

)
X
.

In fact, equality holds since the dimensions of both spaces are equal. As

hz,X = (lQ ∩ hz)⊕
(
G(Tz)

)
X
,

this proves (8.6). It follows from (8.6) that hz,X does not depend on the choice of X in
the interior of F .
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Lemma 8.1 allows us to make the following definition.

Definition 8.2. For an adapted point z ∈ Z and a face F of C, define

hz,F := hz,X

with X contained in the interior of F .

We note that for every adapted point z ∈ Z there exists an m ∈M so that

hz,C = Ad(m)h∅.

Lemma 8.3. Let z ∈ Z be adapted and let F be a face of C. The Lie algebra hz,F is a
real spherical subalgebra of g. Moreover,

Ng(hz,F) = hz,F + aF +Nm(hz,F).

Finally,
hz,F ∩ a = ah.

Proof. By Proposition 5.2 (iii) there exists an m ∈M so that for all X ∈ C

(hz,F)X = hz,X = Ad(m)h∅.

Since nP ⊆ h∅, it follows that (hz,F)X + p = g and hence Ad
(
exp(tX)

)
hz,F + p = g

for sufficiently large t > 0. Since p and g are both stable under the action of A, we find

hz,F + p = g.

In particular hz,F is a real spherical subalgebra of g.
By Corollary 3.15

Ng(hz,F) = hz,F +Na(hz,F) +Nm(hz,F).

To prove the second assertion in the lemma, it suffices to show that Na(hz,F) = aF . It
follows from equation (8.6) that hz,F is normalized by aF , and hence aF ⊆ Na(hz,F). To
prove the other inclusion, let X ∈ Na(hz,F). It follows from (8.6) that σ(X) = 0 for all
σ ∈ Mz,F so that −α + σ ∈ suppz(g−α) for some α ∈ Σ(Q). The submonoid Mz,F is
generated by the indecomposable elements from Mz that vanish on F . Therefore, there
exists a set of generators σ of Mz,F with −α + σ ∈ suppz(g−α) for some α ∈ Σ(Q). It
follows that X is in the joint kernel of a set of generators of Mz,F , and hence σ(X) = 0
for all σ ∈ Mz,F . By (8.5) the annihilator of Mz,F is equal to aF . Therefore, X ∈ aF .
This proves the second assertion.

Finally, for every X ∈ C

ah ⊆ a ∩ hz,F = (a ∩ hz,F)X ⊆ a ∩ (hz,F)X = a ∩ h∅ ⊆ ah.

Here we used Proposition 5.2 (iii) for the second equality. It follows that a ∩ hz,F =
ah.
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The following proposition describes the dependence of the Lie algebras hz,F on the
adapted point z.

Proposition 8.4. Let z, z′ ∈ Z be adapted and let F be a face of C. If P · z = P · z′, then

Ad(G)hz,F = Ad(G)hz′,F .

The proof for the proposition relies on the following two lemmas. Recall the map
T⊥
z : a◦ → ZnQ(lQ ∩ hz) from Lemma 3.10.

Lemma 8.5. Let z ∈ Z be adapted. Then

Im (T⊥
z ) ⊆

⊕
α∈Σ(Q)

a∈suppz(g−α)

gα.

Proof. Let pa be the projection g → a along the decomposition g = m ⊕ a ⊕
⊕

α∈Σ gα.
We claim that

Im (T⊥
z ) ⊆

(
ker(pa ◦ Tz)

)⊥ ∩ nQ (8.7)

To prove the claim, let X ∈ a◦ and Y ∈ ker(pa ◦ Tz). Now Tz(Y ) ∈ m⊕ nQ. Using
that Y ∈ nQ, it follows that Y +Tz(Y ) ∈ nQ⊕m⊕nQ. Therefore,B

(
X, Y +Tz(Y )

)
= 0.

Moreover, as T⊥
z (X) ∈ nQ and Tz(Y ) ∈ m ⊕ nQ, we have B

(
T⊥
z (X), Tz(Y )

)
= 0. It

follows that

B
(
T⊥
z (X), Y

)
= B

(
T⊥
z (X), Y

)
+B

(
T⊥
z (X), Tz(Y )

)
+B

(
X, Y + Tz(Y )

)
= B

(
X + T⊥

z (X), Y + Tz(Y )
)
.

The right-hand side vanishes as X + T⊥
z (X) ∈ h⊥z and Y + Tz(Y ) ∈ hz. It follows that

B
(
Im (T⊥

z ), ker(pa ◦ Tz)
)
= {0}, and hence the claimed identity (8.7) follows.

We have(
ker(pa ◦ Tz)

)⊥ ∩ nQ ⊆
( ⊕

α∈Σ(Q)
a/∈suppz(g−α)

g−α

)⊥
∩ nQ =

⊕
α∈Σ(Q)

a∈suppz(g−α)

gα,

and hence
Im (T⊥

z ) ⊆
⊕

α∈Σ(Q)
a∈suppz(g−α)

gα

in view of (8.7).

Recall the map Φz : a
◦
reg → nQ from (3.10).

Lemma 8.6. Let z ∈ Z be adapted. Then

Im (Φz) ⊆
⊕

α∈Σ(Q)
α|C≤0

gα.
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Proof. If X ∈ a◦reg, then X does not vanish on any root in Σ(Q), and hence the map

Ψ : nQ → nQ, Y 7→ Ad
(
exp(Y )

)
X −X

is a diffeomorphism. As
n0 :=

⊕
α∈Σ(Q)
α|C≤0

gα

is an a-stable Lie subalgebra of nQ, the restriction of Ψ to n0 maps n0 onto itself. There-
fore, it suffices to prove that Ad

(
exp

(
Φz(X)

))
X −X ∈ n0.

It follows from (3.9) that Ad
(
exp

(
Φz(X)

))
X −X ∈ Im (T⊥

z ) for every X ∈ a◦reg.
By Lemma 8.5 the image of T⊥

z is contained in the direct sum of all root spaces for roots
α ∈ Σ(Q) with a ∈ suppz(g−α). By Lemma 6.3 we have α

∣∣
C ≤ 0 for any such root. This

proves the lemma.

Proof of Proposition 8.4. Assume that P ·z = P ·z′ and letX be contained in the interior
of F . By Proposition 3.12 there exist m ∈ M , a ∈ A and n ∈ exp

(
Im (Φz)

)
so that

z′ = man · z. By Lemma 8.6

n ∈ exp
( ⊕
α∈Σ(Q)
α(X)≤0

gα

)
.

It follows that the limit for t→ ∞ of exp(tX)man exp(tX)−1 = ma exp(tX)n exp(tX)−1

exists in G. We write g for the limit. By Proposition 5.2 (iv) we now have

hz′,F = hz′,X =
(
Ad(man)hz

)
X
= Ad(g)hz,X ∈ Ad(G)hz,X = Ad(G)hz,F .

We continue with a description of the closure of Ad(G)hz in the Grassmannian. For
this we need the so-called polar decomposition. The following proposition, describing
the polar decomposition for Z, is an adaptation from [16, Theorem 5.13].

Proposition 8.7. Let Ξ ⊆ Z be a finite set of adapted points so that P · Ξ is the union of
all open P -orbits in Z. Then there exists a compact subset Ω ⊆ G so that

Z = Ωexp(C) · Ξ. (8.8)

Proof. By [16, Theorem 5.13] there exists an adapted point z0 ∈ Z, a finite set F ⊆
G ∩ exp(ia)NGC(hz0,C) and a compact set Ω0 ⊆ G so that

Z = Ω0 exp(C)F · z0. (8.9)

Moreover, for every open P -orbit O in Z there exists an f ∈ F so that f · z0 ∈ O. A
priori it is possible that there exists f, f ′ ∈ F with f ̸= f ′, but Pf · z0 = Pf ′ · z0.

We claim that for every f ∈ F the point f · z0 is adapted and a∩ h⊥f ·z0 = a∩ h⊥z0 . The
proof for the claim is the same as the proof for the analogous statements in Proposition
3.13.
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Let O be an open P -orbit in Z and let f ∈ F be so that f · z0 ∈ O. By Proposition
3.13 we may choose a fO ∈ G ∩ exp(ia)Hz,C so that PfO · z0 = O. Then

a ∩ h⊥fO·z0 = a ∩ h⊥z0 = a ∩ h⊥f ·z0

In view of Lemma 3.8 and the decomposition (3.1) of LQ with z = z0, there exist for
every f ∈ FO elements mf ∈M and af ∈ A so that

f · z0 = mfaffO · z0.

It follows from (8.9) that
Z = Ω1 exp(C)F1 · z0, (8.10)

where

Ω1 := Ω0{mfaf : f ∈ F} and F1 := {fO : O is an open P -orbit}.

Note that Ω1 is compact.
Let O be an open P -orbit and let z ∈ Ξ∩O. By Proposition 3.12 there existmz ∈M ,

az ∈ A and nz ∈ Im (exp ◦ΦfO·z0) so that fO · z0 = mzaznz · z. It follows from (8.10)
that (8.8) holds with

Ω := Ω2

( ⋃
z∈Ξ

{mzazanza−1 : a ∈ exp(C)}
)
.

In view of Lemma 8.6 the elements log(nz) are sums of root vectors for roots that are
non-positive on C. Therefore, the sets {mzazanza

−1 : a ∈ exp(C)} are bounded, and
thus we conclude that Ω is compact.

Proposition 8.8. Let z0 ∈ Z and let Ξ ⊆ Z be a finite set of adapted points so that
P · Ξ is the union of all open P -orbits in Z. Then the following equality of subsets of the
Grassmannian of dim(hz0)-dimensional subspaces of g holds,

Ad(G)hz0 =
⋃

z∈Ξ,F face of C

Ad(G)hz,F .

Proof. Let Ω be a compact subset of G so that (8.8) holds. Let s ∈ Ad(G)hz0 and let
(ωn)n∈N, (an)n∈N and (zn)n∈N be sequences in Ω, exp(C) and Ξ, respectively, so that
Ad(ωnan)hzn converges to s for n → ∞. By taking suitable subsequences we may
assume that ωn converges to an element ω ∈ Ω for n→ ∞ and zn = z is constant.

Let I be the subset of Sz consisting of all α ∈ Sz so that aαn is bounded away from
0. By taking a suitable subsequence we assume that there exists a convergent sequence
bn ∈ A so that (b−1

n an)
α is equal to 1 for all α ∈ I and converges to 0 as n → ∞ for all

α ∈ Sz \I . Let b ∈ A be the limit of the sequence (bn)n∈N. Let F be the face of C defined
by I via the formula (8.2). Now

lim
n→∞

Ad(b−1
n an)hz = hz,F

and thus
s = lim

n→∞
Ad(ωnan)hz = Ad(ωb)hz,F ∈ Ad(G)hz,F .
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9 Walls of the compression cone
For every wall F of C there exists an α ∈ Σ + (Σ ∪ {0}) so that (8.3) holds. The main
result in this section is the following proposition, which puts restriction on the elements
α which can occur. The result will be needed for the proof of Lemma 12.4.

Proposition 9.1. Let F be a wall of C. Then either there exists a root α ∈ Σ(Q) so that
aF = ker(α), or there exist β, γ ∈ Σ(Q) so that aF = ker(β+γ) and the following hold,

(i) β is a simple root,

(ii) β and γ are orthogonal

(iii) span(β∨, γ∨) ∩ ah ̸= {0}.

Remark 9.2. Brion proved a stronger version of this lemma under the additional assump-
tion that G and H are complex groups. See [4, Theorem 2.6]. The proof of Proposition
9.1 is heavily inspired by the proof of Brion.

Before we prove the proposition, we first prove a lemma. Recall the set Sz of inde-
composable elements in the monoid Mz, where z ∈ Z is an adapted point.

Lemma 9.3. Let z ∈ Z be adapted. The set Sz consists of α + β ∈ Sz, with α a simple
root in Σ(Q), and β ∈ suppz(g−α) ∩ Σ(Q) or β = 0.

Proof. We first choose a suitable linear order on Σ. For this let X◦ ∈ a◦reg and Xh ∈ ah
be so that X = X◦ +Xh is order-regular and α(X) > 0 for all α ∈ Σ(Q). By rescaling
X◦, we may assume that α(X) < β(X) whenever α, β ∈ Σ and α(X◦) < β(X◦). Let >
be the linear order on Σ(Q) given by α > β if and only if α(X) > β(X).

For γ ∈ Σ(Q) ∪ {m, a} we define γ̃ ∈ Σ(Q) ∪ {0} to be equal to γ if γ ∈ Σ(Q) and
0 otherwise. Further, for a root α ∈ Σ(Q) we define Mz,α to be the monoid generated by
the set

{β + γ̃ : β ∈ Σ(Q), β ≤ α, γ ∈ suppz(g−β)}.

Note that for the longest root α ∈ Σ(Q) we have Mz,α = Mz.
To prove the lemma, we will show that a stronger assertion holds true, namely that

for every γ ∈ Σ(Q) each indecomposable element of Mz,γ is of the form α+ β with α a
simple root in Σ(Q), and β ∈ suppz(g−α)∩Σ(Q) or β = 0. This we will do by induction
with respect to the length of the roots γ.

For simple roots γ ∈ Σ(Q) the assertion is trivial. Now let α ∈ Σ be simple and
β ∈ Σ(Q) so that α + β ∈ Σ(Q). Assume that the assertion hold for all roots γ ∈ Σ(Q)
with γ < α+ β.

We have to consider two cases: the case that α ∈ Σ\Σ(Q) and the case that α ∈ Σ(Q).
First we assume that α ∈ Σ \ Σ(Q) and that α + β is a root. We claim that

Mz,α+β = Mz,β

Since the assertion is assumed to hold for β, it follows from the claim that the assertion
also holds for α + β. To prove the claim, we note that our choice of the linear order on
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Σ guarantees that if δ ∈ Σ(Q) with β < δ ≤ α + β, then δ − β ∈ Σ \ Σ(Q), and hence
gβ−δ ∈ lQ ∩ hz . Since Tz is (LQ ∩Hz)-equivariant by Lemma 4.1, we have

Tz([Yβ−δ, Y ]) = [Yβ−δ, Tz(Y )]
(
Yβ−δ ∈ gβ−δ, Y ∈ nQ

)
.

It follows that

{γ̃ : γ ∈ suppz(g−δ)} ⊆ {β − δ + γ̃ : γ ∈ suppz(g−β)},

and hence
{δ + γ̃ : γ ∈ suppz(g−δ)} ⊆ {β + γ̃ : γ ∈ suppz(g−β)}.

Therefore,

Mz,α+β =
〈
δ + γ̃ : δ ∈ Σ(Q), δ ≤ α + β, γ ∈ suppz(g−δ)

〉
=

〈
Mz,β ∪

{
δ + γ̃ : δ ∈ Σ(Q), β < δ ≤ α + β, γ ∈ suppz(g−δ)

}〉
⊆

〈
Mz,β ∪

{
β + γ̃ : γ ∈ suppz(g−β)

}〉
= Mz,β.

The inclusion Mz,β ⊆ Mz,α+β is a consequence of the fact that β < α + β. This proves
the claim.

We now move on to the case that α ∈ Σ(Q). Let δ be the largest root so that δ < α+β.
We claim that

Mz,α+β ⊆ ⟨Mz,α ∪Mz,δ⟩.
It follows from the claim that the indecomposable elements of Mz,α+β are contained in
the union of the sets of indecomposable elements of Mz,δ and Mz,α. Since the assertion
holds for α and is assumed to hold for δ, it follows that the assertion also holds for α+β.

It remains to prove the claim. We first note that

Mz,α+β =
〈
Mz,δ ∪

{
α + β + γ̃ : γ ∈ suppz(g−α−β)

}〉
It thus suffices to prove that{

α + β + γ̃ : γ ∈ suppz(g−α−β)
}
⊆ ⟨Mz,α ∪Mz,β⟩.

Let Y−α ∈ g−α and Y−β ∈ g−β . Let p− be the projection onto nQ, respectively, along
the decomposition g = nQ ⊕ lQ ⊕ nQ. From the uniqueness of the map Tz it follows that[

Y−α + Tz(Y−α), Y−β + Tz(Y−β)
]

= [Y−α, Y−β] +
[
Y−α, Tz(Y−β)

]
+
[
Tz(Y−α), Y−β

]
+
[
Tz(Y−α), Tz(Y−β)

]
= [Y−α, Y−β] + Tz

(
[Y−α, Y−β]

)
+ Y + Tz(Y ),

where
Y = p−

([
Y−α, Tz(Y−β)

]
+
[
Tz(Y−α), Y−β

])
.

Therefore,

Tz
(
[Y−α, Y−β]

)
(9.1)

=
[
Y−α, Tz(Y−β)

]
+
[
Tz(Y−α), Y−β,

]
+
[
Tz(Y−α), Tz(Y−β)

]
− Tz(Y )− Y.

Now let γ ∈ Sα+β . Then γ−α−β ∈ Σ(Q)∪{0} is a weight occurring in Tz(g−α−β) =
Tz
(
[g−α, g−β]

)
. In view of (9.1) one of the following holds.
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I. γ−α−β is a weight of a occurring in [g−α, Tz(g−β)]. In this case γ−β is a weight
occurring in Tz(g−β), and hence γ ∈ Mz,β .

II. γ−α−β is a weight of a occurring in [Tz(g−α), g−β]. In this case γ−α is a weight
occurring in Tz(g−α), and hence γ ∈ Mz,α.

III. γ−α−β is a weight of a occurring in [Tz(g−α), Tz(g−β)]. In this case γ−α−β =
δ̃ + ϵ̃ for some δ ∈ suppz(g−α) and ϵ ∈ suppz(g−β). As α + δ̃ ∈ Mz,α and
β+ ϵ̃ ∈ Mz,β , it follows that γ = α+ δ̃+β+ ϵ̃ ∈ Mz,α+Mz,β ⊆ ⟨Mz,α∪Mz,β⟩.

IV. γ − α− β is a weight of a occurring in Tz ◦ p−
([
g−α, Tz(g−β)

])
. Since α is simple

and Tz(g−β) ⊆ m⊕ a⊕ nQ, the space p−
([
g−α, Tz(g−β)

])
is non-trivial only if the

weight 0 occurs in Tz(g−β). In this case β ∈ Mβ and p−
([
g−α, Tz(g−β)

])
⊆ g−α.

Now γ − α − β = δ̃ for some δ ∈ suppz(g−α). As α + δ̃ ∈ Mz,α, it follows that
γ = α + β + δ̃ ∈ Mα +Mβ ⊆ ⟨Mα ∪Mβ⟩.

V. γ − α− β is a weight of a occurring in Tz ◦ p−
([
Tz(g−α), g−β

])
. In this case there

occurs a weight δ in Tz(g−α) so that δ−β ∈ −Σ(Q) and the weight γ−α−β occurs
in Tz(gδ−β). Now γ−α− δ = (β− δ)+ (γ−α−β) ∈ Mz,β−δ and α+ δ ∈ Mz,α.
Therefore, γ ∈ Mz,β−δ+Mz,α. The fact that δ−β is a negative root implies that δ <
β. It follows that Mz,β−δ ⊆ Mz,β and thus γ ∈ Mz,β +Mz,α ⊆ ⟨Mz,α ∪Mz,β⟩.

In each of the cases I–V we have γ ∈ ⟨Mz,α ∪Mz,β⟩. This proves the lemma.

Proof of Proposition 9.1. Let z ∈ Z be adapted. In the course of the proof we will need
the existence of an element X ∈ a◦reg ∩ h⊥z so that β(X) ̸= −γ(X) for every pair of roots
β, γ ∈ Σ(Q). By Proposition 3.12 we may choose z so that such an element X exists.

Let α ∈ Mz be an indecomposable element so that (8.3) holds. Note that α ∈
Σ(Q) + (Σ(Q) ∪ {0}). If α ∈ Σ(Q) ∪ 2Σ(Q), then there is nothing left to prove.
Therefore, assume that α /∈ Σ(Q) ∪ 2Σ(Q). In view of Lemma 9.3 there exists a simple
root β ∈ Σ(Q) so that γ := α − β is a root in Σ(Q) and γ ∈ suppz(g−β). Since
α /∈ Σ ∪ 2Σ, γ ̸= β and β + γ is not a root. We will first show that β and γ are
orthogonal. To do this, we will work towards a contradiction and we thus assume that
⟨β, γ⟩ > 0. Note that γ − β is a root and is positive.

Let δ ∈ Σ(Q) ∪ {m, a}. We define δ̃ ∈ Σ(Q) ∪ {0} to be equal to δ if δ ∈ Σ(Q) and
0 otherwise. We claim that

δ̃ − β /∈ −Σ(Q) or δ /∈ suppz(gβ−γ) or β /∈ suppz(gδ̃−β). (9.2)

Indeed, otherwise γ−β+δ̃ ∈ Mz and 2β−δ̃ ∈ Mz, and hence α = (γ−β+δ̃)+(2β−δ̃)
would be decomposable. Likewise,

δ̃ + β − γ /∈ −Σ(Q) or δ /∈ suppz(g−β) or β /∈ suppz(gδ̃+β−γ) (9.3)

since otherwise β + δ̃ ∈ Mz and γ − δ̃ ∈ Mz and thus α = (β + δ̃) + (γ − δ̃) would be
decomposable.
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Let Yβ−γ ∈ gβ−γ and Y−β ∈ g−β . Then

[Y−β, Yβ−γ] + Tz

(
[Y−β, Yβ−γ]

)
∈
[
Y−β + Tz(Y−β), Yβ−γ + Tz(Yβ−γ)

]
+ (lQ ∩ hz)

+
∑

δ∈suppz(g−β)

δ̃+β−γ∈−Σ(Q)

G
(
Tz
∣∣
gδ̃+β−γ

)
+

∑
δ∈suppz(gβ−γ)

δ̃−β∈−Σ(Q)

G
(
Tz
∣∣
gδ̃−β

)

In view of (9.2) and (9.3) we have

pβTz

(
[Y−β, Yβ−γ]

)
= pβ

([
Y−β + Tz(Y−β), Yβ−γ + Tz(Yβ−γ)

])
=

[
Y−β, p2βTz(Yβ−γ)

]
+
[
pγTz(Y−β), Yβ−γ

]
+
[
p0Tz(Y−β), pβTz(Yβ−γ)

]
+
[
pβTz(Y−β), p0Tz(Yβ−γ)

]
.

For the second equality we used that β is simple, so that the only pairs of non-negative
a-weights that add up to β are (β, 0) and (0, β). We claim that the last two terms
on the right-hand side are equal to 0. Indeed, if

[
p0Tz(Y−β), pβTz(Yβ−γ)

]
̸= 0, then

a ∈ suppz(Y−β) or m ∈ suppz(Y−β), and moreover β ∈ suppz(Yβ−γ). In particular
β ∈ Mz and γ ∈ Mz and thus α = β + γ would be decomposable. Likewise, if[
pβTz(Y−β), p0Tz(Yβ−γ)

]
̸= 0, then it would follow that 2β ∈ Mz and γ− β ∈ Mz, and

hence α = 2β + (γ − β) would be decomposable. Therefore,

pβTz

(
[Y−β, Yβ−γ]

)
=

[
Y−β, p2βTz(Yβ−γ)

]
+
[
pγTz(Y−β), Yβ−γ

]
(9.4)

for all Y−β ∈ g−β and Yβ−γ ∈ gβ−γ .
Let Ỹ−β ∈ g−β . Let further X ∈ h⊥ ∩ a be so that β(X) ̸= −γ(X). In view of (4.2)

and (9.4)

B
(
[Y−β, Yβ−γ], pγTz(Ỹ−β)

)
γ(X) = B

(
Ỹ−β, pβTz

(
[Y−β, Yβ−γ]

))
β(X)

= B
(
Ỹ−β,

[
Y−β, p2βTz(Yβ−γ)

])
β(X) +B

(
Ỹ−β,

[
pγTz(Y−β), Yβ−γ

])
β(X).

Rearranging the terms we obtain

γ(X)

2
B
(
[Y−β, Yβ−γ], pγTz(Ỹ−β)

)
− β(X)

2
B
(
Ỹ−β,

[
pγTz(Y−β), Yβ−γ

])
= −γ(X)

2
B
(
[Y−β, Yβ−γ], pγTz(Ỹ−β)

)
+
β(X)

2
B
(
Ỹ−β,

[
pγTz(Y−β), Yβ−γ

])
+B

(
Ỹ−β,

[
Y−β, p2βTz(Yβ−γ)

])
β(X).

We now apply the identities B(U, [V,W ]) = B([U, V ],W ) and B(U, V ) = B(V, U) for
U, V,W ∈ g to each of the terms on both sides of this identity. We thus find

β(X) + γ(X)

2
B
(
[pγTz(Ỹ−β), Y−β] + [pγTz(Y−β), Ỹ−β], Yβ−γ

)
=
β(X)− γ(X)

2
B
(
[pγTz(Ỹ−β), Y−β]− [pγTz(Y−β), Ỹ−β], Yβ−γ

)
+ β(X)B

(
[Ỹ−β, Y−β], p2βTz(Yβ−γ)

)
.
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The left-hand side is unchanged when swapping Ỹ−β and Y−β , while the right-hand side
changes sign. Therefore, both sides equal 0 for all Y−β, Ỹ−β ∈ g−α and Yβ−γ ∈ gβ−γ . In
particular

[pγTz(Ỹ−β), Y−β] + [pγTz(Y−β), Ỹ−β] = 0
(
Y−β, Ỹ−β ∈ g−α

)
,

and hence
[pγTz(Y−β), Y−β] = 0

(
Y−β ∈ g−α

)
. (9.5)

Taking commutators on both sides of (9.4) with Y−β and using the Jacobi-identity and
(9.5) we obtain[

Y−β, pβTz

(
[Y−β, Yβ−γ]

)]
=

[
pγTz(Y−β), [Y−β, Yβ−γ]

]
+
[
Y−β, [Y−β, p2βTz(Yβ−γ)]

]
(9.6)

for all Y−β ∈ g−β , Yβ−γ ∈ gβ−γ . Note that the second term on the right-hand side is
contained in m. We now pair both sides of (9.6) with X via the Killing form and obtain

− β(X)B
(
Y−β, pβTz

(
[Y−β, Yβ−γ]

))
= B

(
X,

[
Y−β, pβTz

(
[Y−β, Yβ−γ]

)])
(9.7)

= B
(
X,

[
pγTz(Y−β), [Y−β, Yβ−γ]

])
= γ(X)B

(
pγTz(Y−β), [Y−β, Yβ−γ]

)
.

We claim that [Y−β, gβ−γ] = g−γ for every non-zero Y−β ∈ g−β . To see this, let
Y−γ ∈ g−γ . Then [θY−β, Y−γ] ∈ gβ−γ and[

Y−β, [θY−β, Y−γ]
]
= −

[
θY−β, [Y−γ, Y−β]

]
−
[
Y−γ, [Y−β, θY−β]

]
.

The first term on the right-hand side vanishes because −β − γ is not a root, while the
second term is equal to γ

(
[θY−β, Y−β]

)
Y−γ , which is a non-zero multiple of Y−γ due to

the assumption that ⟨β, γ⟩ > 0. This proves the claim.
Because of the claim and (9.7) we have

−β(X)B
(
Y−β, pβTz(Y−γ)

)
= γ(X)B

(
Y−γ, pγTz(Y−β)

)
for every Y−β ∈ g−β and Y−γ ∈ g−γ . However, in view of (4.2) we also have

β(X)B
(
Y−β, pβTz(Y−γ)

)
= γ(X)B

(
Y−γ, pγTz(Y−β)

)
.

It follows that pγTz(Y−β) = 0 for all Y−β ∈ g−β . This is in contradiction with the
assumption that γ ∈ suppz(g−β). We have thus proven that β and γ are orthogonal.

We move on to show that span(β∨, γ∨)∩hz ̸= {0}. Let δ ∈ Σ(Q)∪{m, a}. We have

{m, a} ∩ suppz(g−γ) = ∅ or {m, a} ∩ suppz(g−β) = ∅. (9.8)

Indeed, otherwise γ ∈ Mz and β ∈ Mz, and hence α = β + γ would be decomposable.
Likewise,

δ̃ − γ /∈ −Σ(Q) or δ /∈ suppz(g−β) or {m, a} ∩ suppz(gδ̃−γ) = ∅ (9.9)
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since otherwise β + δ̃ ∈ Mz and γ − δ̃ ∈ Mz and thus α = (β + δ̃) + (γ − δ̃) would be
decomposable.

Let Y−γ ∈ g−γ and Y−β ∈ g−β . Then

[Y−β, Y−γ] + Tz

(
[Y−β, Y−γ]

)
∈
[
Y−β + Tz(Y−β), Y−γ + Tz(Y−γ)

]
+ (lQ ∩ hz)

+
∑

δ∈suppz(g−γ)∩{m,a}

G
(
Tz
∣∣
g−β

)
+

∑
δ∈suppz(g−β)

δ̃−γ∈−Σ(Q)

G
(
Tz
∣∣
gδ̃−γ

)

In view of (9.8) and (9.9) we have

paTz

(
[Y−β, Y−γ]

)
∈ pa

([
Y−β + Tz(Y−β), Y−γ + Tz(Y−γ)

])
+ ah

=
[
Y−β, pβTz(Y−γ)

]
+
[
pγTz(Y−β), Y−γ

]
+ ah

= −∥β∥2

2
B
(
Y−β, pβTz(Y−γ)

)
β∨ +

∥γ∥2

2
B
(
pγTz(Y−β), Y−γ

)
γ∨ + ah.

Since α = β + γ is not a root, the left-hand side is equal to 0 and thus

−∥β∥2

2
B
(
Y−β, pβTz(Y−γ)

)
β∨ +

∥γ∥2

2
B
(
pγTz(Y−β), Y−γ

)
γ∨ ∈ ah.

Moreover, since β and γ are linearly independent, the left-hand side is not equal to 0 if
Y−β ∈ g−β satisfies pγTz(Y−β) ̸= 0 and Y−γ = θpγTz(Y−β). Such a Y−β exists because
γ ∈ suppz(g−β).

10 Adapted points in boundary degenerations
The real spherical homogeneous spaces with stabilizer subgroup equal to the connected
subgroup with Lie algebra hz,F , where z ∈ Z is adapted and F is a face of C are called
boundary degenerations. In this section we establish a correspondence between adapted
points in Z and adapted points in the boundary degenerations, and secondly, we give a
comparison between the compression cones for Z and the boundary degenerations.

In view of Proposition 8.4 we may make the following definition.

Definition 10.1. Let O be an open P -orbit in Z and let F be a face of C. We define the
homogeneous space

ZO,F := G/Hz,F ,

where z is any adapted point in O and Hz,F is the connected subgroup of G with Lie
algebra hz,F . The spaces ZO,F are called the boundary degenerations of Z. If z ∈ ZO,F ,
then we write hO,Fz for the stabilizer subalgebra of z.

We note that the spaces ZO,F are quasi-affine real spherical spaces. We will now first
explore the relation between adapted points in Z and in ZO,F .
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Lemma 10.2. Let O be an open P -orbit in Z and let F be a face of C. Let y ∈ ZO,F . If
there exists an adapted point z ∈ O so that hO,Fy = hz,F , then y is adapted and

a ∩ h⊥z ⊆ a ∩ (hO,Fy )⊥. (10.1)

Proof. Assume that z ∈ O is adapted and hO,Fy = hz,F . We will prove that y is adapted
by verifying the conditions in Proposition 3.19. Let X be in the interior of F and Y ∈ C.
By Proposition 5.2 (iii) we have

(hO,Fy )Y = (hz,F)Y = (hz,X)Y = hz,Y = Ad(m)h∅

for some m ∈ M . In view of Lemma 6.4 (ii) the P -orbit through y is open in ZO,F .
Furthermore,

a ∩ h⊥z = (a ∩ h⊥z )X ⊆ a ∩ (h⊥z )X = a ∩ h⊥z,X = a ∩ (hO,Fy )⊥.

This proves (10.1). Since z is adapted, we have a◦reg∩h⊥z ̸= ∅, and hence a◦reg∩(hO,Fy )⊥ ̸=
∅. In view of Proposition 3.19 the point y is adapted.

It follows from Lemma 8.3 and Lemma 10.2 that there exists an adapted point y ∈
ZO,F so that a ∩ hO,Fy = ah. By Corollary 3.17 the same holds for all adapted points
y ∈ ZO,F , and hence a◦ defined in Definition 3.18 equals a ∩ (a ∩ hO,Fy )⊥.

For an adapted point y ∈ ZO,F we write ΦO,F
y for the unique smooth rational map

ΦO,F
y : a◦ → nQ

satisfying (i) and (iii) in Proposition 3.12 with Z replaced by ZO,F .

Lemma 10.3. Let O be an open P -orbit in Z and let F be a face of C. Let z ∈ O be
adapted and let y ∈ ZO,F satisfy hO,Fy = hz,F . Then

lim
t→∞

Ad
(
exp(tX)

)
◦ Φz = ΦO,F

y

for every X in the interior of F , where the convergence is pointwise.

Proof. Let X be an element from the interior of F . By Lemma 8.6

Im
(
Φz

)
⊆

⊕
α∈Σ(Q)
α|C≤0

gα.

Since X ∈ C, it follows that Ad
(
exp(tX)

)
◦Φz converges pointwise. The limit is equal

to
Ψ :=

( ∑
α∈Σ(Q)
α(X)=0

pα

)
◦ Φz,

where pα denotes the projection g → gα along the Bruhat decomposition. It remains to
prove that Ψ = ΦO,F

y .
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Let Y ∈ a◦reg. By Proposition 3.12 the point exp
(
Φz(Y )

)
· z is adapted. By Lemma

10.2 a point in ZO,F with stabilizer subalgebra hexp(Φz(Y ))·z,F is adapted. It follows from
Proposition 5.2 (iv) that

hexp(Φz(Y ))·z,F =
(
Ad

(
exp

(
Φz(Y )

))
hz

)
X
= Ad

(
exp

(
Ψ(Y )

))
hz,F

= Ad
(
exp

(
Ψ(Y )

))
hO,Fy = hO,Fexp(Ψ(Y ))·y.

We thus conclude that the point exp
(
Ψ(Y )

)
· y is adapted.

By Proposition 3.12 we have RY ⊆ h⊥exp(Φz(Y ))·z, and hence applying (10.1) to the
point exp(Φz(Y )) · z yields

RY ⊆
(
hO,Fexp(Ψ(Y ))·y

)⊥
.

It follows from the final assertion in Proposition 3.12 that there exist m ∈ M and a ∈ A
so that

exp
(
Ψ(Y )

)
· y = ma exp

(
ΦO,F
y (Y )

)
· y.

By Proposition 3.6 the stabilizer of y is contained in LQ. As Ψ and ΦO,F
y both map to

NQ, it follows that Ψ(Y ) = ΦO,F
y (Y ).

Proposition 10.4. Let O be an open P -orbit in Z and let F be a face of C. Let further
z0 ∈ O be adapted and let y0 ∈ ZO,F be so that hO,Fy0

= hz0,F . In view of Lemma 10.2
the point y0 is adapted. Then a point y ∈ P · y0 is adapted if and only if there exists an
adapted point z ∈ O so that hO,Fy = hz,F . Moreover, if Y, Y ′ ∈ a◦reg and z ∈ O and
y ∈ P · y0 and satisfy

z ∈MA exp
(
Φz0(Y )

)
· z0 and y ∈MA exp

(
ΦO,F
y0

(Y ′)
)
· y0 (10.2)

(and hence are adapted), then hO,Fy = hz,F if and only if ΦO,F
y0

(Y ) = ΦO,F
y0

(Y ′).

Proof. Assume that y ∈ P · y0 is adapted. By Proposition 3.12 there exists m ∈ M ,
a ∈ A and Y ∈ a◦ so that y = ma exp

(
ΦO,F
y0

(Y )
)
· y0. Set z = exp

(
Φz0(Y )

)
· z0 and let

X be in the interior of F . Then by Proposition 5.2 (iv) and Lemma 10.3

hz,F =
(
Ad

(
ma exp

(
Φz0(Y )

))
hz0

)
X
= Ad

(
ma exp

(
ΦO,F
y0

(Y )
))

hz0,X = hO,Fy .

If z ∈ O is adapted and y ∈ P · y0 satisfies hO,Fy = hz,F , then y is adapted by Lemma
10.2. This proves the first assertion. We move on to the second.

Assume that (10.2) holds. If hO,Fy = hz,F , then Y ∈ h⊥z and hence Y ∈ h⊥z,F . This
implies that Y ∈ (hO,Fy )⊥. By Proposition 3.12

y ∈MA exp
(
ΦO,F
y0

(Y )
)
· y0,

and hence ΦO,F
y0

(Y ) = ΦO,F
y0

(Y ′) in view of Proposition 3.6 (ii). The other implication is
trivial.

We end this section with a description of the compression cone of ZO,F .
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Proposition 10.5. Let O be an open P -orbit in Z and let F be a face of C. The compres-
sion cone of ZO,F is equal to C + aF .

Proof. The assertion follows directly from (8.6) and (8.4).

In view of Proposition 10.5 the compression cone of ZO,F does not depend on the
open P -orbit O. We therefore write CF for the compression cone of ZO,F , i.e.,

CF := C + aF .

11 Admissible points

Recall the group N from (7.1). Proposition 7.2 is most useful for points z ∈ Z for which
the limits hz,X for order-regular elements X ∈ a are conjugates of h∅ by some element in
N . The purpose of the next definition is to single out those adapted points for which all
such limits have this property.

Definition 11.1. We say that an adapted point z ∈ Z is admissible if for every order-
regular element X ∈ a, there exists an element w ∈ N so that

hz,X = Ad(w)h∅.

In the remainder of this section we will prove the existence of admissible points. In
the next section we will use the set of elements w ∈ N so that Ad(w)h∅ occurs as a limit
hz,X of hz for an admissible point z to construct the little Weyl group.

We begin with a few remarks.

Remark 11.2.

(a) The set of admissible points is LQ-stable.

(b) If z is admissible and v ∈ N is such that Pv−1 · z is open, then v−1 · z is adapted by
Lemma 7.3. Moreover, if X ∈ a, then

hv−1·z,X = Ad(v−1)hz,Ad(v)X .

From this it follows that v−1 · z is also admissible.

We define the subgroup N∅ of N by

N∅ := {w ∈ N : Ad(w)h∅ = Ad(m)h∅ for some m ∈M}.

Lemma 11.3. We have N∅ = NLQ
(a). Moreover, N∅ is a normal subgroup of N . Finally,

the group N /N∅ is finite.
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III. On the little Weyl group of a real spherical space

Proof. Since the elements in N normalize a, they also normalize m+ a. Note that

h∅ +m+ a = q

is M -stable. Therefore, the elements in N∅ normalize q, and hence

N∅ ⊆ NG(a) ∩Q = NLQ
(a).

To prove the other inclusion we first note that LQ normalizes lQ,nc + ah. Therefore, it
follows directly from the definition (7.1) that NLQ

(a) ⊆ N . Now choose an adapted
point z ∈ Z so that h∅ = hz,X for some X ∈ C. Then

h∅ = (lQ ∩ hz)⊕ nQ.

We recall that LQ = MALQ,nc, see (3.1). The group LQ,nc is contained in Q, and hence
normalizes nQ. As LQ,nc ⊆ LQ ∩Hz, also lQ ∩ hz is normalized by LQ,nc. It follows that
LQ,nc normalizes h∅. Further, h∅ is A-stable. It thus follows that

Ad(LQ)h∅ = Ad(M)h∅.

In particular, NLQ
(a) ⊆ N ∩ LQ ⊆ N∅. This proves the first assertion.

We move on to the second assertion. By definition N normalizes A and LQ,nc. Ev-
ery element normalizing A also normalizes M . As LQ = MALQ,nc, it follows that N
normalizes N∅. This proves the second assertion.

For the final assertion we note that N and N∅ both contain the groupMA. As N /MA
is a subgroup of the Weyl group of Σ, it is finite. This implies that N /N∅ is finite.

We note that the quotient N /N∅ is a group in view of Lemma 11.3. The main result
in this section is the following proposition.

Proposition 11.4.

(i) The set of admissible points is dense and has non-empty interior in the set of adapted
points in Z (all with respect to the subspace topology). In particular, every open P -
orbit in Z contains an admissible point.

(ii) For z ∈ Z define

Wz := {wN∅ ∈ N /N∅ : w ∈ N and there exist X ∈ a so that hz,X = Ad(w)h∅}.

Let z ∈ Z be admissible and let z′ ∈ Z. If z′ is adapted, then Wz′ ⊆ Wz. Moreover,
if z′ is admissible, then Wz′ = Wz.

The remainder of this section is devoted to the proof of the proposition. We break the
proof up into a sequence of lemmas.

Lemma 11.5. Let z ∈ Z be adapted. There exists an open neighborhood U of z in P · z
so that Wz ⊆ Wz′ for all adapted points z′ ∈ U .
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Proof. Let w ∈ Wz and let v ∈ N be so that vN∅ = w. By Proposition 7.2 the P -
orbit Pv−1 · z is open. Therefore, there exists an open neighborhood Uv of e in G so that
v−1Uv ·z ⊆ Pv−1 ·z. It follows from the same proposition that v ∈ Wz′ for every adapted
point in z′ ∈ Uv · z. The assertion now follows with U equal to the intersection of the sets
Uv · z, where v runs over a set of representatives in N for Wz.

We now use Lemma 11.5 to prove a much stronger statement.

Lemma 11.6. Let z ∈ Z be adapted. There exists an open and dense subset U of the set
of adapted points in Z (with respect to the subspace topology) so that Wz ⊆ Wz′ for all
z′ ∈ U .

Proof. Let w ∈ Wz. We will prove that there exists an open and dense subset Uw of the
set of adapted points so that w ∈ Wz′ for all z′ ∈ Uw. Since N /N∅ is finite, the assertion
in the lemma follows from this with U equal to the finite intersection U =

⋂
w∈Wz

Uw.
Let k = dim(hz) with z ∈ Z, and let ι : Gr(g, k) ↪→ P(

∧k g) be the Plücker
embedding, i.e., ι is the map given by

ι
(
span(v1, . . . , vk)

)
= R(v1 ∧ · · · ∧ vk).

The map ι is a diffeomorphism onto a compact submanifold of P(
∧k g). The image is in

fact an algebraic subvariety of P(
∧k g), as it is the intersection of a number of quadrics

defined by the Plücker relations. See [9, p. 209–211].
Let v ∈ N be a representative of w and let X ∈ Ad(v)C. Let e1, . . . , em be a

basis of
∧k g consisting of eigenvectors of ad(X). We write µ1, . . . , µm ∈ R for the

corresponding eigenvalues. We may order the eigenvectors so that µ1 ≥ µ2 ≥ · · · ≥ µm.
Let ξ ∈

∧k g be the element so that ι(hz) = Rξ and let c1, . . . , cm : nQ → R be the
functions determined by

Ad
(
exp(Y )

)
ξ =

m∑
i=1

ci(Y )ei.

Since nP is a nilpotent Lie algebra, the function

nP →
k∧
g; Y 7→ Ad

(
exp(Y )

)
ξ

is polynomial, and hence also the functions ci are polynomial. Since Φz is a rational
function, the functions ci ◦ Φz : a◦ → R are rational. Let j0 be the smallest number so
that cj0 ◦ Φz is not identically zero, and let j1 be the largest number so that µj1 = µj0 .
Define the rational map a◦ → R

p :=

j1∑
i=j0

(ci ◦ Φz)
2.

Then for every Y in the open and dense subset V := p−1(R \ {0}) of a◦(
Ad

(
exp ◦Φz(Y )

)
ξ
)
X
= R

j1∑
i=j0

ci ◦ Φz(Y )ej.

109



III. On the little Weyl group of a real spherical space

By Lemma 11.5 there exists an open neighborhood U ′ of z so that w ∈ Wz′ for all
adapted points z′ ∈ U ′. Since X ∈ Ad(v)C we have in view of Proposition 7.2 that for
every adapted point z′ ∈ U ′ there exists a m ∈ M so that hz′,X = Ad(vm)h∅. It follows
that

R
j1∑
i=j0

ci ◦ Φz(Y )ej ∈ Ad(vM)ι(h∅) (11.1)

for all Y ∈ a◦ so that exp
(
Φz(Y )

)
· z ∈ U ′. The set of elements Y for which this holds

is open. Since the functions ci ◦ Φz are rational, we conclude that (11.1) holds for all
Y ∈ V , i.e., for every Y ∈ V

h
exp

(
Φz(Y )

)
·z,X

= Ad(vm)h∅

for some m ∈M . In particular

w ∈ W
exp

(
Φz(Y )

)
·z

(
Y ∈ V

)
.

Since hma·z′,X = Ad(ma)hz′,X for every m ∈M , a ∈ A and z′ ∈ Z, it follows that

w ∈ Wz′ (z′ ∈MA exp
(
Φz(V )

)
· z
)
.

In view of Proposition 3.12 the set MA exp
(
Φz(V )

)
· z is open and dense in the set of

adapted points in P · z.
Finally it follows from Proposition 3.13 and Lemma 6.7 that for each open P -orbit O

there exists a z′ ∈ O so that w ∈ Wz′ . The argument above then shows that w ∈ Wz′ for
an open and dense subset of the set of adapted points in O.

By Lemma 11.3 we have N∅ = NLQ
(a) = NLQ,nc

(a) ×MA. Every coroot α∨ of
a root α ∈ Σ(a, lQ,nc) lies in ah, and hence Ad(w)X − X ∈ ah for every w ∈ N∅ and
X ∈ a. Therefore, N /N∅ acts naturally on a/ah. Note that the compression cone C is
stable under translation by elements in ah. We write ph for the projection a → a/ah.

For an adapted point z ∈ Z we define

Az := {X + ah ∈ a/ah : hz,X = Ad(w)h∅ for some w ∈ N}.

Lemma 11.7. Let z ∈ Z be adapted. The following hold.

(i) The point z is admissible if and only if Az is dense in a/ah.

(ii) Az =
⋃
w∈Wz

w · ph(C).

(iii) Let w ∈ Wz and let v ∈ N be so that w = vN∅. By Proposition 7.2 and Lemma 7.3
the point v−1 · z is adapted. Then

Av−1·z = w−1 · Az.

(iv) There exists an open and dense subset U of the set of adapted points in Z (with
respect to the subspace topology) so that Az ⊆ Az′ for all z′ ∈ U .
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Proof. The identity in (ii) follows from Proposition 7.2. The identity shows that Az is
open. It follows from Proposition 5.2 (iii) that Az is dense if and only if p−1

h (Az) contains
all order-regular elements. The latter is true if and only if z is admissible. This proves (i).

We move on to prove (iii). Since hv−1·z,X = Ad(v−1)hz,Ad(v)X for every X ∈ a, we
have

Wv−1·z = {w′N /N∅ : there exist X ∈ a so that hz,X = Ad(ww′)h∅} = w−1Wz.

The identity in (iii) now follows from (ii).
The assertion in (iv) follows from (ii) and Lemma 11.6.

In view of the Lemmas 11.6 and 11.7 it suffices to prove the existence of one admis-
sible point in Z. For this we need an alternative characterization of admissible points.

Lemma 11.8. Let z ∈ Z and let X ∈ a be order regular. Then dim(ah) = dim(hz,X ∩ a)
if and only if there exists a w ∈ NG(a) so that hz,X = Ad(w)h∅.

Remark 11.9. It follows from Lemma 7.1 and Lemma 11.8 that an adapted point z ∈ Z
is admissible if and only if dim(hz,X ∩ a) = dim(ah) for every order regular element
X ∈ a.

Proof of Lemma 11.8. For every w ∈ NG(a) we have Ad(w)h∅ ∩ a = Ad(w)ah. There-
fore, it trivially follows that hz,X∩a = Ad(w)ah if hz,X = Ad(w)h∅ for somew ∈ NG(a),
and hence dim(hz,X ∩ a) = dim(ah). It remains to prove the other implication.

Assume that dim(hz,X ∩ a) = dim(ah). By Lemma 8.8 there exist an adapted point
y ∈ Z, an element g ∈ G and a face F of C so that hz,X = Ad(g)hy,F . It follows from
Lemma 8.3 that

Ng(hz,X) = hz,X +Ad(g)aF +Ad(g)Nm(hy,F).

LetHz,X be the connected subgroup ofGwith Lie algebra hz,X and let Γ be the open con-
nected subgroup of NG(hz,X)/Hz,X . The open connected subgroup of Ng(hz,X) is equal
to exp

(
Ad(g)aF

)
M0Hz,X , whereM0 is the open connected subgroup of gNM(hy,F)g

−1.
Like in (3.3) we have

exp
(
Ad(g)aF

)
M0 ∩Hz,X = exp

(
Ad(g)aF ∩ hz,X

)(
M0 ∩Hz,X

)
= g exp

(
aF ∩ hy,F

)
g−1

(
M0 ∩Hz,X

)
.

In view of Lemma 8.3 we have aF ∩ hy,F = ah, and hence

exp
(
Ad(g)aF

)
M0 ∩Hz,X = g exp

(
ah
)
g−1

(
M0 ∩Hz,X

)
.

It follows that

Γ ≃
(
exp

(
Ad(g)aF

)
M0

)
/
(
exp

(
Ad(g)aF

)
M0 ∩Hz,X

)
≃ g exp

(
aF ∩ a⊥h

)
g−1 ×M◦,
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where M0 is compact. In view of Proposition 5.2 (ii) the subalgebra hz,X is a-stable, and
hence a ⊆ Ng(hz,X). Since dim(hz,X∩a) = dim(ah), the group Γ contains a split abelian
subgroup of dimension dim(a/ah) and hence

dim
(
aF ∩ a⊥h

)
= dim

(
a/ah

)
.

This implies that F = C, and hence hz,X = Ad(g)h∅.
Note that h∅ contains the subalgebra nP . By the Bruhat decomposition of G we may

write g = nwn with n ∈ NP , w ∈ NG(a) and n ∈ NP . Then n normalizes h∅ and thus
hz,X = Ad(nw)h∅. Since both hz,X and Ad(w)h∅ are normalized by A, we even have
hz,X = Ad(w)h∅.

Lemma 11.10. Let α ∈ Σ. The following hold.

(i) If U ∈ gα \ {0} and V ∈ g−α \ {0}, then ad2(U)V ̸= 0.

(ii) If U ∈ gα \ {0} and V ∈ g−2α \ {0}, then ad4(U)V ̸= 0.

(iii) If U ∈ g2α \ {0} and V ∈ g−α \ {0}, then ad(U)V ̸= 0.

Proof. Assume that U ∈ gα. Let f be the Lie subalgebra of g generated by U and θU and
let

V := g−2α ⊕ g−α ⊕m⊕ Rα∨ ⊕ gα ⊕ g2α.

Note that f is isomorphic to sl(2,R) and that V is a representation of f. Now V decom-
poses as

V = V0 ⊕ Vα ⊕ V2α,

where V0 is a finite sum of copies of the trivial representation, Vα is a finite sum of copies
of the highest weight representation with highest weight α (i.e., f), and V2α is a finite sum
of copies of the highest weight-representation of f with highest weight 2α.

The kernel of ad(U) in Vα is equal to the space of highest weight vectors and hence is
contained in gα. This implies that the kernel of ad2(U) in Vα is contained in m⊕Rα∨⊕gα.
In a similar fashion we deduce that the kernel of ad2(U) in V2α is contained in gα ⊕ g2α.
The assertion in (i) now follows as g−α ⊆ Vα ⊕ V2α.

For (ii) we continue the analysis and conclude in the same manner as before that the
kernel of ad4(U) in V2α is contained in g−α ⊕ m⊕ Rα∨ ⊕ gα ⊕ g2α. The assertion now
follows as g−2α ⊆ V2α.

To prove (iii), assume that U ∈ g2α. Let e be the subalgebra of g generated by U and
θ(U) and let

V ′ := g−α ⊕ gα.

Now e is isomorphic to sl(2,R) and V ′ is a representation of e. It is a sum of copies
of the highest weight representation of e with highest weight 1

2
α. The kernel of ad(U)

consists of highest weight-vectors and hence is contained in gα. This proves the final
assertion.

We now prove the existence of admissible points under a very restrictive assumption
on Z.
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Lemma 11.11. Assume that the compression cone C of Z contains an open half-space.
Then every open P -orbit in Z contains an admissible point.

Proof. If C = a, then every adapted point is admissible. Therefore, we assume that C is
equal to a half-space. Let z ∈ Z be adapted. If z is admissible, then we are done. Assume
therefore that z is not admissible. In view of Lemma 11.8 there exists an order-regular
element X ∈ a so that ah ⊊ hz,X ∩ a. This implies that there exists a Y ∈ nQ so that the
limit R

(
Y + Tz(Y )

)
X

is a line in a◦. Now a ∈ suppz(Y ), and hence there exists a root
α ∈ Σ(Q) so that a ∈ suppz(g−α). It follows that α ∈ Mz. Since C is a half-space, the
negative dual cone −C∨ is a half-line. As −C∨ is generated by Mz, it follows that

Mz ⊆ R>0α. (11.2)

Note that α vanishes on ah. The root α may not be reduced. Without loss of generality we
may however assume that α is the shortest element in Rα∩Σ(Q) so that a ∈ suppz(g−α).

The fact that a occurs in the support of some element Y implies that there existX ∈ a◦

so that X /∈ h⊥z . It follows from Proposition 3.12 that the function Φz defined in that
proposition is non-trivial. The only roots in Σ(Q) that are non-positive on C are multiplies
of α, and hence by Lemma 8.6

Im (Φz) ⊆
⊕

β∈Σ(Q)∩Rα

gβ

We claim that in fact
Im (Φz) ⊆ gα +⊕g2α.

To prove the claim we use Lemma 8.5, from which it follows that

Im
(
T⊥
z

)
⊆ gα ⊕ g2α.

The claim now follows from (3.9). We define the maps

ϕk : a
◦
reg → gkα (k = 1, 2)

to be determined by Φz = ϕ1 + ϕ2. By assumption ϕ1 is not identically equal to 0. We
can derive explicit expressions for ϕ1 and ϕ2 from (3.9). Using that

Ad
(
exp(Y )

)
X =

∞∑
k=0

1

k!
adk(Y )X (X ∈ a, Y ∈ nQ),

we obtain for X ∈ a◦

T⊥
z (X) = Ad

(
exp

(
− ϕ1(X)− ϕ2(X)

))
X −X

= −[ϕ1(X) + ϕ2(X), X] +
1

2
[ϕ1(X) + ϕ2(X), [ϕ1(X) + ϕ2(X), X]]

= α(X)
(
ϕ1(X) + 2ϕ2(X)

)
− α(X)[ϕ1(X) + ϕ2(X), ϕ1(X) + 2ϕ2(X)]

= α(X)
(
ϕ1(X) + 2ϕ2(X)

)
.
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III. On the little Weyl group of a real spherical space

It follows that

ϕk(X) =
1

kα(X)
pkαT

⊥
z (X)

(
k ∈ {1, 2}, X ∈ a◦, α(X) ̸= 0

)
, (11.3)

where pkα : g → gkα is the projection along the Bruhat decomposition.
We claim that there exists an element X ∈ ker(α) ∩ a◦ so that pα

(
T⊥
z (X)

)
̸= 0. To

prove the claim we aim at a contradiction and assume that ker(α) ∩ a◦ ⊆ ker(pα ◦ T⊥
z ).

Since ϕ1 is not identically equal to 0 it follows from Lemma 8.5 that a ∈ suppz(g−α).
Therefore, not all of a◦ is contained in

(
G(Tz

∣∣
g−α

)
)⊥. Moreover, if X ∈ a◦ is not con-

tained in
(
G(Tz

∣∣
g−α

)
)⊥ then there exists a Y−α ∈ g−α so that

B
(
X, Y−α + Tz(Y−α)

)
̸= 0.

However,
B
(
X + T⊥

z (X), Y−α + Tz(Y−α)
)
= 0.

It follows that

B
(
T⊥
z (X), Y−α

)
= B

(
T⊥
z (X), Y−α + Tz(Y−α)

)
= B

(
X + T⊥

z (X), Y−α + Tz(Y−α)
)
−B

(
X, Y−α + Tz(Y−α)

)
̸= 0

For the first equality we used that T⊥
z (X) ∈ nQ and Tz(Y−α) ∈ q, so that

B
(
T⊥
z (X), Tz(Y−α)

)
= 0.

It follows that pα
(
T⊥
z (X)

)
̸= 0 and thus the map pα ◦T⊥

z is not identically equal to 0. As
ker(α) ∩ a◦ has codimension 1 in a◦, it follows that ker(α) ∩ a◦ = ker(pα ◦ T⊥

z ). Now

a◦ ∩ h⊥z = ker(T⊥
z ) ⊆ ker(pα ◦ T⊥

z ) = ker(α) ∩ a◦.

This implies that α vanishes on a◦ ∩ h⊥z and hence a◦reg ∩ h⊥z = ∅. This is in contradiction
with the assumption that z is adapted, and hence the claim is proven.

We now fix an element X ∈ ker(α) ∩ a◦ so that pα
(
T⊥
z (X)

)
̸= 0. Let Uα, Cα ∈ gα

and U2α, C2α ∈ g2α be so that

T⊥
z (X) = 2Uα + 4U2α and T⊥

z (α
∨) = 2Cα + 4C2α.

If t > 0 is sufficiently large, then X + 1
t
α∨ ∈ a◦reg. By (11.3) we then have for t≫ 1

ϕk
(
X +

1

t
α∨) = tUkα + Ckα.

For t ∈ R define
nt := exp

(
Cα + C2α + tUα + tU2α

)
. (11.4)

Note that for sufficiently large t > 0

nt = exp
(
Φz

(
X +

1

t
α∨)),
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11. Admissible points

and hence nt · z is adapted. We claim that nt · z is admissible for sufficiently large t > 0.
Let X ∈ a be order-regular. We will show that hnt·z,X ∩ a = ah for sufficiently large
t > 0. The claim then follows from Lemma 11.8 and Lemma 7.1.

Define

f := m⊕ a⊕
⊕

β∈Rα∩Σ

gβ and E :=
⊕

β∈Σ(Q)\Rα

g−β ⊕ gβ.

It follows from (11.2) that

Tz(g−β) ⊆
⊕

γ∈
(
β+Rα

)
∩
(
Σ(Q)∪{0}

) gγ (
β ∈ Σ(Q)

)
,

where g0 = m⊕ a. In particular, G
(
Tz
∣∣
g−β

)
is contained in f if and only if β ∈ R>0α. It

follows that hz decomposes as

hz = (lQ ∩ hz)⊕ G(Tz) = (lQ ∩ hz)⊕
(
f ∩ G(Tz)

)
⊕
(
E ∩ G(Tz)

)
.

Now f is a Lie subalgebra of g, which normalizes E and centralizes lQ ∩ hz. Therefore, as
nt ∈ exp(f), we have

hnt·z = Ad(nt)hz = (lQ ∩ hz)⊕
(
f ∩ Ad(nt)G(Tz)

)
⊕

(
E ∩ Ad(nt)G(Tz)

)
.

Since lQ, f and E are a-stable

hnt·z,X ∩ a = ah ⊕
(
a ∩

(
f ∩ Ad(nt)G(Tz)

)
X

)
.

It remains to prove that

a ∩
(
f ∩ Ad(nt)G(Tz)

)
X
= {0}. (11.5)

For the proof of (11.5) we distinguish between two cases: the case that 1
2
α is not a

root, and the case that 1
2
α is a root.

We first assume that 1
2
α is not a root. For Y = Y−α + Y−2α ∈ g−α and t ∈ R we set

P1(Y, t) := pα

(
Ad(nt)

(
Y + Tz(Y )

))
− t3

6
ad(Uα)

3Y−2α ∈ gα,

P2(Y, t) := p2α

(
Ad(nt)

(
Y + Tz(Y )

))
− t4

24
ad(Uα)

4Y−2α ∈ g2α.

Both P1 and P2 depend linearly on the first variable and are vector valued polynomial
functions in the second. The degrees of P1(Y, · ) and P2(Y, · ) are at most 2 and 3 respec-
tively. By Lemma 11.10 we have ad(Uα)

4Y−2α ̸= 0 if Y−2α ̸= 0 and ad(Uα)
2Y−α ̸= 0 if

Y−α. Therefore, for every Y ̸= 0 the polynomial function

PY : t 7→ t3

6
ad(Uα)

3Y−2α + P1(Y, t) +
t4

24
ad(Uα)

4Y−2α + P2(Y, t)
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III. On the little Weyl group of a real spherical space

is non-constant. Moreover, if we restrict to Y in the sphere

S := {Y ∈ g−α ⊕ g−2α : −B(Y, θY ) = 1},

then the vector-valued coefficients of PY are uniformly bounded. Therefore, there exists
an r > 0 so that PY (t) ̸= 0 for every Y ∈ S and t > r. We claim that (11.5) holds for
t > r.

To prove the claim, we note for every non-zero Y ∈ g−α ⊕ g−2α we have

(pα + p2α)
(
Ad(nt)

(
Y + Tz(Y )

))
= PY (t) ̸= 0.

Therefore, if α(X) > 0, then the limit(
RAd(nt)

(
Y + Tz(Y )

))
X

(11.6)

is contained in gα ⊕ g2α. If α(X) < 0, then (11.6) is equal to RY−2α if Y−2α ̸= 0 and
RY−α otherwise. In particular, the limit (11.6) is not contained in a. It is easily seen
from (5.1) that a limit of a subspace is spanned by the limits of all lines in the subspace.
Therefore, (

Ad(nt)
(
f ∩ G(Tz)

))
X

is spanned by the lines (11.6) with Y ∈ S. It follows that (11.5) holds, and thus we have
proven that nt · z is admissible for t≫ 1 in case 1

2
α is not a root.

We move on to the second case and assume that 1
2
α is a root. Now 2α is not a root

and therefore (11.4) simplifies to

nt = exp
(
Cα + tUα

)
.

For every Y = Y−α/2 + Y−α ∈ g− 1
2
α ⊕ g−α and t ∈ R

P 1
2
(Y, t) := p 1

2
α

(
Ad(nt)

(
Y + Tz(Y )

))
− t ad(Uα)Y−α/2 ∈ g 1

2
α,

P1(Y, t) := pα

(
Ad(nt)

(
Y + Tz(Y )

))
− t2

2
ad(Uα)

2Y−α

define functions that are linear in the first and polynomial in the second variable. In fact
P 1

2
(Y, · ) is constant and the degree of P1(Y, · ) is at most 1. By Lemma 11.10 we have

that ad(Uα)Y−α/2 ̸= 0 if Y−α/2 ̸= 0, and ad(Uα)
2Y−α ̸= 0 if Y−α ̸= 0. It follows that the

polynomial function

PY : t 7→(p 1
2
α + pα)

(
Ad(nt)

(
Y + Tz(Y )

))
= t ad(Uα)Y−α/2 + P 1

2
(Y, t) +

t2

2
ad(Uα)

2Y−α + P1(Y, t)

is non-constant. The same reasoning as in the previous case now shows that (11.5) holds
if 1

2
α is a root as well.
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12. The little Weyl group

Proof of Proposition 11.4. In view of the Lemmas 11.6 and 11.7 it suffices to prove the
existence of one admissible point in Z.

Let z ∈ Z be adapted. If z is admissible, then there is nothing left to prove. Thus we
assume that z is not admissible and use it to construct an admissible point.

Recall that ph is the projection a → a/ah. Now Az is not dense in a/ah by Lemma
11.7 (i). It follows from Lemma 11.7 (ii) that there exist a w ∈ Wz and a wall F of C so
that w · ph(F) is contained in the boundary of A. Let v ∈ N be so that vN∅ = w. By
Lemma 11.7 (iii) the wall ph(F) is contained in the boundary of Av−1·z. By replacing z
by v−1 · z, we may therefore assume that ph(F) is contained in the boundary of Az.

Let O = P · z. The compression cone of ZO,F contains the half-space a− + aF . (In
fact the compression cone is equal to this half-space.) Therefore we may apply Lemma
11.11 to the space ZO,F . Let y ∈ ZO,F satisfy hz,F = hO,Fy . The point y is adapted by
Proposition 10.4, and hence P · y is open. By Lemma 11.11 there exists an admissible
point y′ ∈ P · y. In view of Proposition 3.12 there exist m ∈ M , a ∈ A and Y ∈ a◦reg so
that y′ = ma exp

(
ΦO,F
y (Y )

)
· y.

Since the set of order-regular elements is dense in a, the complement of p−1
h (Az) is

equal to the closure of the set of order-regular elements in the complement of p−1
h (Az).

The boundary of p−1
h (Az) consists of elements X ∈ a that are not order-regular. There-

fore, the set of order-order regular elements in the complement of p−1
h (Az) is a union

of connected components of the set of order-regular elements. Note that there are only
finitely many such connected components. It follows that there exists a connected compo-
nent R of the set of order-regular elements, so that ph(R) is contained in the complement
of Az and R intersects with the interior of F .

Let z′ := ma exp
(
Φz(Y )

)
· z. We claim that ph(R) ⊆ Az′ . By Proposition 10.4 we

have hO,Fy′ = hz′,F . Then, in view of Proposition 5.2 (iii),

hz′,X = (hz′,F)X = (hO,Fy′ )X

for every X ∈ R. Since y′ is an admissible point in ZO,F , there exists an element v′ ∈ N
so that (hO,Fy′ )X = Ad(v′)h∅. It follows that ph(R) ⊆ Az′ . This proves the claim.

In view of Lemma 11.7 (iv) there exists a dense and open subset U of the set of
adapted points so that

Az ∪ ph(R) ⊆ Az′′ (z′′ ∈ U).

Let z′′ ∈ U . If z′′ is admissible, then we are done. If not, we replace z by z′′ and
repeat the above procedure to find another adapted point z′ with Az ⊊ Az′ . It follows
from Lemma 11.7 (ii) that after finitely many iterations this process ends, and thus we
find an admissible point in Z.

12 The little Weyl group

In this section we construct the little Weyl group of Z.
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III. On the little Weyl group of a real spherical space

We define

W := Wz (12.1)
= {wN∅ ∈ N /N∅ : w ∈ N and there exist X ∈ a so that hz,X = Ad(w)h∅},

where z ∈ Z is any admissible point. This set does not depend on the choice of z by
Proposition 11.4. We recall that ph is the projection a → a/ah.

Theorem 12.1. The set W is a subgroup of N /N∅. Moreover, W acts faithfully on a/ah
as a reflection group and is as such generated by the simple reflections in the walls of
ph(C). Moreover, ph(C) is a fundamental domain for the action of W on a/ah. Finally,
W is equal to the little Weyl group of Z as defined in [15, Section 9].

We will prove the theorem in a number of steps. We begin with the first assertion in
the theorem.

Proposition 12.2. W is a subgroup of N /N∅.

Proof. Let z ∈ Z be admissible. Let w ∈ W and let v ∈ N be so that w = vN∅. By
Proposition 7.2 the P -orbit Pv−1 · z is open, and hence v−1 · z is admissible; see Remark
11.2 (b). Let w′ ∈ W and let v′ ∈ N be so that w′ = v′N∅. In view of Proposition 7.2
there exists a m ∈M so that for every X ∈ Ad(vv′)C

Ad(v−1)hz,X = hv−1·z,Ad(v−1)X = Ad(v′m)h∅,

and hence hz,X = Ad(vv′m)h∅. Therefore, ww′ = vv′N∅ ∈ W . It follows that wW ⊆
W , and hence, since W is finite,

wW = W .

We thus see that W is closed under multiplication. As W is finite, it is a subgroup of
N /N∅.

It follows from Proposition 7.2, Proposition 11.4 and Lemma 11.7 that

a/ah =
⋃
w∈W

w · ph(C) (12.2)

and
w · ph(C) ∩ w′ · ph(C) = ∅ (w,w′ ∈ W , w ̸= w′). (12.3)

For an open P -orbit O in Z and a face F of C we write WO,F for the subgroup (12.1)
of N /N∅ for the spherical space ZO,F .

Lemma 12.3. Let O be an open P -orbit in Z and let F be a wall of C. Then WO,F is
a subgroup of W of order 2. Moreover, WO,F stabilizes ph(F). Finally, WO,F does not
depend on the open P -orbit O.
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Proof. Let R be a connected component of the set of order-regular elements in a so that
R intersects with the relative interior of F and R∩C = ∅. Let w ∈ W be the element so
that ph(R) ⊆ w · ph(C) and let v ∈ N be a representative of w.

Let z ∈ Z be admissible and let y ∈ ZO,F be so that hO,Fy = hz,F . By Proposition
10.4 the point y is adapted. It follows from Proposition 5.2 (iii) and Proposition 7.2 that
there exists an m ∈M so that for all X ∈ R

(hO,Fy )X = (hz,F)X = hz,X = Ad(vm)h∅,

and hence w = vN∅ ∈ WO,F .
The compression cone of ZO,F is given by CF = C + aF , see Proposition 10.5. Since

F is a wall, the space ph(aF) has codimension 1 in a/ah, and hence ph(CF) is an open
half-space. Therefore, also w · ph(CF) is an open half-space. Moreover, ph(CF) and
w · ph(CF) are disjoint, and thus

a/ah = ph(CF) ∪ w · ph(CF) and ph(CF) ∩ w · ph(CF) = ∅.

It follows that the group WO,F is of order 2. Since w is non-trivial, we have WO,F =
{1, w}

If R′ is another connected component of the set of order-regular elements in a so that
R′ intersects with the relative interior of F and R′ ∩ C = ∅, then there exists a w′ ∈ W
so that ph(R′) ⊆ w′ · ph(C). The arguments above show that WO,F = {1, w′} and it
follows that w = w′. Therefore, all connected components R′ of the set of order-regular
elements in a so that R′ intersects with the relative interior of F and R′ ∩ C = ∅ have
the property that ph(R′) ⊆ w · ph(C). This shows that the relative interior of ph(F) is
contained in w · ph(C) and hence ph(F) is a wall of w · ph(C). The element w stabilizes
ph(C) ∩ w · ph(C). The latter set is equal to the common wall ph(F).

Finally, if O′ is another open P -orbit in Z, then the arguments above yield an element
w′ ∈ W so that w′ · ph(C) ∩ ph(C) = ph(F). Now both w · C and w′ · C share the wall F
with C. It follows that w · C = w′ · C, and hence w′ = w.

In view of Lemma 12.3 we may for a wall F of C define

WF := WO,F ,

where O is any open P -orbit in Z. In the following lemma we identify the non-trivial
element in WF . The lemma heavily relies on Proposition 9.1.

Lemma 12.4. For every wall F of C there exists a sF ∈ N that acts on a/ah as the
reflection in the hyperplane aF/ah. Moreover,

WF = {eN∅, sFN∅}.

Proof. Let z ∈ Z be an admissible point and let α be an indecomposable element in Mz

so that (8.3) holds.
If α ∈ Σ ∪ 2Σ, then the simple reflection s in α is contained in the Weyl group W of

Σ and normalizes ah as α
∣∣
ah

= 0. Note that s acts on a/ah by reflecting in aF/ah.
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III. On the little Weyl group of a real spherical space

If α /∈ Σ ∪ 2Σ, then by Proposition 9.1 there exist β, γ ∈ Σ(Q) so that α = β + γ,
β and γ are orthogonal and span(β∨, γ∨) ∩ ah ̸= {0}. Let σβ ∈ W and σγ ∈ W be the
simple reflections in β and γ respectively. Then s := σβσγ acts on a/ah by reflecting in
kerα/ah = aF/ah.

Let sF ∈ N be a representative of s. It remains to prove that sFN∅ ∈ WF . Let
v ∈ N be a representative of the non-trivial element in WF . Let O = P · z and let y be
an admissible point in ZO,F . The compression cone CF is an open half-space. Therefore,
for every X ∈ CF we have

(hO,Fy )X = Ad(m)h∅ and (hO,Fy )−X = Ad(m′v)h∅

for some elements m,m′ ∈ M . Both h∅ and Ad(v)h∅ are a-stable. Let ι be the Plücker
embedding. If v1, . . . , vn ∈ g is a basis of h∅, then ι(h∅) = R(v1 ∧ · · · ∧ vn). Since h∅
is a-stable, we may assume that every vi is a joint eigenvector for ad(a). Now ι

(
h∅
)

is
a joint eigenspace for ad(a) with weight equal to the sum of the weights of v1, . . . , vn.
From (6.1) it follows that this weight is equal to −2ρQ, where ρQ is the half-sum of the
roots in Σ(Q) counted with multiplicity. Likewise, ad(a) acts on the line ι

(
Ad(v)h∅

)
with weight −2Ad∗(v)ρQ.

Let MO,F
y be the monoid (8.1) for the space ZO,F and the adapted point y. Then

MO,F
y ⊆ R>0α.

Therefore, if X ∈ CF and Y ∈ hO,Fy \ {0}, then (RY )−X is a line with eigenweight
differing by a non-zero multiple of α from an eigenweight of a line (RY ′)X with Y ′ ∈
hO,Fy \{0}. Hence, every a-weight that occurs in Ad(v)h∅ differs by a multiple of α from
an a-weight in h∅. It follows that Ad∗(v)ρQ = ρQ + rα for some r ∈ R \ {0}. Since the
lengths of Ad∗(v)ρQ and ρQ are equal, it follows that

∥ρQ∥2 = ∥ρQ∥2 + 2r⟨ρQ, α⟩+ r2∥α∥2. (12.4)

Because α is either a root in Σ(Q) or a sum of roots in Σ(Q), we have ⟨ρQ, α⟩ > 0.
Therefore, the equation (12.4) has precisely one non-zero solution r. As Ad∗(sF)ρQ ∈
ρQ + Rα and Ad∗(sF)ρQ ̸= ρQ, it follows that

Ad∗(v)ρQ = Ad∗(sF)ρQ.

Therefore, sFv−1 ∈ NLQ
(a). By Lemma 11.3 the latter group is equal to N∅, and hence

sFN∅ = vN∅.

Proof of Theorem 12.1. In view of Lemmas 12.3 and 12.4 the group Wrefl generated by
the simple reflections in the walls of ph

(
C
)

is a subgroup of W . It follows from (12.2) and
(12.3) that in fact Wrefl = W . In particular, ph(C) is a fundamental domain for the action
of W on a/ah. Comparison to [15, Section 9] shows that W is equal to the little Weyl
group. Indeed, in view of [15, Theorem 9.5, Corollary 9.6 & Corollary 12.5] the little
Weyl group is a reflection group acting on a/ah and is generated by the simple reflections
in the walls of the cone ph

(
C
)
.
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13 Spherical root system
In this section we attach a root system ΣZ to Z of which W is the Weyl group.

We recall the edge aE of the compression from (6.5).

Lemma 13.1. W acts trivially on the subspace aE/ah in a/ah.

Proof. The little Weyl group W is generated by simple reflections in the walls of ph(C).
Since aE/ah is contained in each of these walls, the simple reflections act trivially on
aE/ah. It follows that W acts trivially on aE/ah.

It follows from Lemma 13.1 that W acts on a/aE in a natural manner. We write pE
for the projection a → a/aE . If w ∈ W , then the action of w commutes with pE . It
follows from (12.3) that w · pE(C) = pE(C) if and only if w = e. Therefore, w acts
trivially on a/aE if and only if w = e.

We now come to the main result in this section.

Theorem 13.2. The group W is a crystallographic group, i.e., it is the Weyl group of a
root system ΣZ in (a/aE)

∗.

Proof. We will verify the criterion in Section VI. 2. 5 of [3]. For this we define

Λ := (a/aE)
∗ ∩ ZΣ(a).

Let z ∈ Z be adapted. We recall the monoid Mz from (8.1) and note that Mz ⊆ Λ. It
follows from Proposition 6.9 (i) and (8.1) that Λ has full rank in (a/aE)

∗.
It follows from Theorem 12.1 and Lemma 13.1 that W acts faithfully as a finite re-

flection group on a/aE . Moreover, since W is a subquotient of NG(a), it preserves the
lattice Λ. Thus by [3, Proposition 9 in Section VI.2.5] there exist a root system ΣZ in
(a/aE)

∗ for which W is the Weyl group.

The proof of Proposition 9 in Section VI. 2. 5 of [3] provides a construction of ΣZ .
Each reflection s in W determines a root as follows. Let Ds be the −1-eigenspace of s in
(a/aE)

∗. Then the primitive elements α, −α in Ds ∩Λ belong to ΣZ . All roots in ΣZ are
obtained in this manner. This root system is called the spherical root system of the real
spherical homogeneous space Z.

Remark 13.3.

(i) In the complex case, the root system constructed here is identical to the one in [14,
Section 6]. If Z is symmetric, then Theorem 6.7 in loc. cit. makes a comparison
between ΣZ and the restricted roots system Σr

Z of the complex symmetric space Z.
Namely, ΣZ is the reduced root system associated to 2Σr

Z .

(ii) Similarly to each real reductive symmetric space Z, a restricted root system Σr
Z is

attached in [22, Theorem 5]. This root system is in general not reduced. The root
system ΣZ is the reduced root system associated to 2Σr

Z .
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14 Reduction to quasi-affine spaces
Many results for quasi-affine real spherical homogeneous spaces hold true also for real
spherical spaces that are not quasi-affine. These results can be proven by a simple reduc-
tion to the quasi-affine case. In this section we drop the standing assumption that Z is
quasi-affine.

By Chevalley’s theorem there exists a real rational representation (π, V ) of G and a
vector vH ∈ V so that H is equal to the stabilizer of RvH . Let χ be the character with
which H acts on RvH . Set

G′ := G× R× and H ′ := {
(
h, χ(h)−1

)
∈ G′ : h ∈ H}.

Then
Z ′ := G′/H ′

is a quasi-affine real spherical homogeneous space. We denote the natural projection
Z ′ → Z by π.

The results in the previous sections apply to the space Z ′. Many of them imply the
analogous assertions for Z. We will list here the most relevant.

We define P ′ to be the minimal parabolic subgroup P × R× of G′. Define

M ′ :=M × {1}, A′ = A× R× and N ′
P := NP × {1}.

Then P ′ =M ′A′N ′
P is a Langlands decomposition of P ′.

A point z ∈ Z is called adapted (with respect to P = MANP ) if there exists an
adapted point z′ ∈ Z ′ (with respect to P ′ =M ′A′N ′

P ) so that π(z′) = z. Since

{e} × R× ⊆ A′

and the sets of adapted points in Z ′ are stable under multiplication by elements in A′, the
set π−1(z) consists of adapted points if and only if z is adapted.

For an adapted point z′ ∈ Z ′ let L′
Q = ZG′

(
a′ ∩ h⊥z′

)
and let Q′ = L′

QP
′. Define

Q := π(Q′) and LQ := π(L′
Q).

Then Q is a parabolic subgroup containing the minimal parabolic subgroup P , and (i)
and (ii) in Proposition 3.6 hold true for all adapted points z ∈ Z.

We set
h∅ := (lQ ∩ hz0) + nQ

for some adapted point z0 ∈ Z. We further define the compression cone of Z to be

C := {X ∈ a : hz,X = Ad(m)h∅ for some m ∈M}

where z ∈ Z is an adapted point. The compression cone C ′ for Z ′ is related to C by the
identity

C ′ = C × R ⊆ a× R.
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It follows from Proposition 6.5 that C does not depend on the adapted point z ∈ Z chosen
to define it.

We call an adapted point z ∈ Z admissible if for every order-regular element X ∈ a
there exists a w ∈ NG(a) so that hz,X = Ad(w)h∅. Then z is admissible if and only if
π−1(z) consists of admissible points in Z ′. It follows from Proposition 11.4 (i) that the
set of admissible points is open and dense in the set of adapted points in Z with respect
to the subspace topology. Define

N∅ := {w ∈ NG(a) : Ad(w)h∅ = Ad(m)h∅ for some m ∈M},

and

W := {wN∅ ∈ NG(a)/N∅ : w ∈ N and there exist X ∈ a so that hz,X = Ad(w)h∅},

where z is an admissible point in Z. Then π induces a bijection between W and the little
Weyl group W ′ of Z ′. In particular W is a finite group and acts on a/ah as a reflection
group. Let ph be the projection a → a/ah. Then W is generated by the simple reflections
in the walls of ph(C) and ph(C) is a fundamental domain for the action of W on a/ah.

If aE denotes the edge of C, then the edge of C ′ is given by a′E = aE × R. Therefore,
there is a canonical identification ϕ : a/aE → (a × R)/a′E . The map ϕ intertwines the
action of W and W ′. Finally, if ΣZ′ is the spherical root system of Z ′, then

ΣZ := {α ◦ ϕ : α ∈ ΣZ′}

is a root system, which is called the spherical root system of Z.
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Chapter IV

The most continuous part of the
Plancherel decomposition for a real
spherical space
Joint with Eitan Sayag.

Abstract

In this article we give a precise description of the Plancherel decomposi-
tion of the most continuous part of L2(Z) for a real spherical homogeneous
space Z. Our starting point is the recent construction of Bernstein morphisms
by Delorme, Knop, Krötz and Schlichtkrull. The most continuous part de-
composes into a direct integral of unitary principal series representations. We
give an explicit construction of theH-invariant functionals on these principal
series. We show that for generic induction data the multiplicity space equals
the full space of H-invariant functionals. Finally, we determine the inner
products on the multiplicity spaces by refining the Maaß-Selberg relations.
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1. Introduction

1 Introduction

In this paper we provide a complete description of the most continuous part of the Plancherel
decomposition for a unimodular real spherical homogeneous space.

Let Z := G/H , where G = G(R) is the group of real points of a connected reductive
algebraic group G defined over R and H = H(R) the set of real points of an algebraic
subgroup H of G. We assume that Z is unimodular and hence admits a positive G-
invariant Radon measure µZ . The basic problem in harmonic analysis on Z is to obtain
an explicit description of the Plancherel decomposition of the regular representation of G
on L2(Z, µZ) into a direct integral of irreducible unitary representations of G.

In the case that the group G is considered as a homogeneous space of G×G such an
explicit description of the Plancherel decomposition is found in the celebrated work of
Harish-Chandra [21], [22], [23]. For real reductive symmetric spaces it was obtained by
Delorme in [16] and independently by Van den Ban and Schlichtkrull in [8], [9].

Recall that the space Z = G/H is called symmetric in case H is an open subgroup of
the fixed point subgroup Gσ for an involutive automorphism σ : G → G. The represen-
tations of G occurring in the Plancherel decomposition of a reductive symmetric space
Z split into finitely many series according to the (class of) parabolic subgroup P ⊆ G
from which they are induced. The relevant parabolic subgroups of G are the so-called
σ-parabolics, namely those parabolic subgroups P for which P and σ(P ) are opposite
to each other. With a Langlands decomposition P = MPAPNP , with σ(AP ) = AP , the
part attached to P has the form of a direct integral of generalized principal series repre-
sentations. More specifically, these are induced representations IndGP (ξ ⊗ λ⊗ 1), where
ξ is in the discrete series of representations for the symmetric space MP/MP ∩H and λ
is a unitary character of aP = Lie(AP ) that vanishes on aP ∩ h. The part corresponding
to the minimal σ-parabolic subgroup Q is called the most continuous part of L2(Z). The
Plancherel decomposition of the most continuous part was determined for real reductive
symmetric spaces in the work of Van den Ban and Schlichtkrull in [7]. This was based
on the earlier works of Van den Ban on invariant linear functionals [1], [2]. The most
continuous part of L2(Z) decomposes as

L2
mc(Z) ≃

⊕̂
ξ∈M̂Q

∫ ⊕

i(aQ/aQ∩h)∗+
V ∗(ξ)⊗ IndG

Q
(ξ ⊗ λ⊗ 1) dλ,

where dλ is the Lebesgue measure on i(aQ/aQ∩h)∗ and i(aQ/aQ∩h)∗+ is a fundamental
domain for the stabilizer of (aQ/aQ ∩ h)∗ in the Weyl group. The multiplicity spaces
V ∗(ξ) are independent of λ. Moreover, V ∗(ξ) is non-zero only for finite dimensional
unitary representations ξ of MQ.

A homogeneous space Z is called real spherical if a minimal parabolic subgroup P
of G admits an open orbit in Z. All real reductive symmetric spaces are real spherical.
A remarkable property of the class of real spherical spaces is the fact that all irreducible
smooth representations of G admit a finite dimensional space of H-invariant functionals
by [33, Theorem C] and [37]. This property makes harmonic analysis on real spherical
spaces suitable for developing Plancherel theory.
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In this paper we provide an explicit Plancherel decomposition for the most continuous
part of L2(Z) for a real spherical space Z, thus generalizing the main result of [7].

Our starting point is the recent work of Delorme, Knop, Krötz and Schlichtkrull [17].
Their construction of Bernstein morphisms allows to decomposeL2(Z) into finitely many
blocks of representations, each attached to a so-called boundary degeneration of Z. The
block for the most degenerate of these boundary degenerations we call the most contin-
uous part of L2(Z). We show that, as in the symmetric case, the most continuous part
decomposes into a direct integral of principal series representations. To determine the
Plancherel decomposition of the most continuous part we construct linear functionals on
these principal series. For generic parameters our construction provides a basis for the
space of H-invariant linear functionals. We then show the key result that all H-invariant
functionals are tempered and the wave packets constructed using these functionals are
square integrable. Finally, by refining the Maaß-Selberg relations of [17], we obtain a
complete description of the inner product on the multiplicity spaces. This yields the full
description of the most continuous part of L2(Z).

Assuming that the twisted discrete series conjecture from [35, (1.3)] holds, the most
continuous part of L2(Z) exhausts L2(Z) in case Z is a complex spherical space, i.e.,
in case G and H are both complex. Thus, our construction is expected to yield the full
Plancherel formula for complex spherical spaces.

1.1 The most continuous part via Bernstein morphisms
To describe the most continuous part L2(Z)mc of L2(Z) and the results in this article
we recall some important invariants of the real spherical homogeneous space Z, bound-
ary degenerations of Z, twisted discrete series representations and finally the Bernstein
morphism, relating L2(Z) to twisted discrete series representations for boundary degen-
erations of Z.

We fix a minimal parabolic subgroup P and a well chosen (with respect to H) Lang-
lands decomposition P =MAN . Inside the Lie algebra a ofA one finds the compression
cone, which is an open cone C whose closure is finitely generated and contains ah := a∩h.
The cone C/ah ⊆ a/ah serves as a fundamental domain for a finite reflection group WZ ,
called the little Weyl group of Z. Attached to the little Weyl group is a root system ΣZ ,
called the spherical root system. The faces of the cone C are parameterized by subsets of
a simple system ΠZ of ΣZ , i.e., the sets

FI := C ∩
⋂
α∈I

ker(α) (I ⊆ ΠZ)

are precisely the faces of C.
In [28] a smooth G-equivariant compactification Ẑ(R) of Z(R) was constructed. For

every I ⊆ ΠZ and X contained in the relative interior of FI the limit

zI := lim
t→∞

exp(tX)H ∈ Ẑ(R)

exists and does not depend on the choice of X . The stabilizer of zI is a real algebraic
subgroup of G, and hence equals the set of real points of an algebraic subgroup ĤI of
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G defined over R. We note that AI := exp(spanFI) is a subgroup of ĤI(R). We set
ẐI := G/ĤI . Now Ẑ(R) admits a stratification in G-manifolds of the form ẐI(R)
where I ⊆ ΠZ . In the case where Z admits a wonderful compactification Ẑ, one has

Ẑ(R) = Z(R) ∪
⋃
I⊆ΠZ

ẐI(R).

In the general case there is a need to use multiple copies of G-manifolds of the form
ẐI(R).

We use these spaces to define the boundary degenerations. The group ĤI(R) acts
on the normal space of ẐI(R) at the point zI . The kernel of this representation on the
normal space is a normal real algebraic subgroup of ĤI(R), i.e., there exists a normal
algebraic subgroup HI of ĤI so that the kernel of the isotropy action of ĤI(R) on the
normal space of ẐI(R) at zI is equal to HI(R). The quotient ĤI(R)/HI(R) is abelian.
Its identity component is equal to AI/(AI ∩H).

We define the algebraic varieties

ZI := G · zI (I ⊆ Πz).

These varieties are called boundary degenerations of Z. The manifold ZI(R) is a finite
union of homogeneous spaces for G, each of which is real spherical and is unimodular.
The group AI acts from the right on ZI(R). The kernel of this action is AH := exp(ah).

The right-action of AI on ZI(R) induces a right-action on L2
(
ZI(R)

)
, which com-

mutes with the left-regular representation of G. The decomposition of L2
(
ZI(R)

)
with

respect to the right-action of AI yields a disintegration in unitary G-modules

L2
(
ZI(R)

)
=

∫ ⊕

ρ+i(aI/ah)∗
L2

(
ZI(R), χ

)
dχ.

Here ρ ∈ (a/ah)
∗ is an element so that the sections of the line bundle

ZI(R)×AI
Cχ → ZI(R)/AI .

with χ ∈ ρ+ i(aI/ah)
∗ are half-densities, L2

(
ZI(R), χ

)
is the space of square integrable

sections of this line bundle and dχ is the Lebesgue measure on ρQ + i(aI/ah)
∗.

The irreducible subrepresentations of L2
tds

(
ZI(R), χ

)
for any χ ∈ ρQ+ i(aI/ah)

∗ are
called twisted discrete series representations. Let L2

tds

(
ZI(R), χ

)
be the closure of the

span of all irreducible subrepresentations of L2
(
ZI(R), χ

)
. The spaces L2

tds

(
ZI(R), χ

)
depend measurably on the character χ. We define

L2
tds

(
ZI(R)

)
:=

∫ ⊕

ρQ+i(aI/ah)∗
L2
tds

(
ZI(R), χ

)
dχ.

The main result of [17] is the construction of a map

B :
⊕
I⊆ΠZ

L2
tds

(
ZI(R)

)
→ L2

(
Z(R)

)
(1.1)
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with the following properties: B is G-equivariant, surjective, isospectral, and for every
I ⊆ ΠZ the restriction

BI := B|
L2
tds

(
ZI(R)

) (1.2)

is a sum of partial isometries. The existence of such a map goes back to ideas of Bern-
stein and hence B is called the Bernstein morphism. The Bernstein morphism was first
constructed by Sakellaridis and Venkatesh for p-adic spherical spaces in [46].

In the case that G is split and under the assumption of a conjecture on the nature of
twisted discrete series representations, Delorme determined the kernel of the Bernstein
morphism in [15]. The kernel is described by so-called scattering operators. Even with
this description of the kernel of the Bernstein morphism, the decomposition of L2(Z)
remains very abstract. In fact, for general I ⊆ ΠZ very little is known about the nature
of the twisted discrete series of representations for ZI(R). However, for I = ∅ the repre-
sentation belonging to the twisted discrete series for Z∅(R) can be determined explicitly.
This allows for an explicit Plancherel decomposition of the subspace

L2
mc(Z) := Im

(
B∅

)
∩ L2(Z).

The space L2
mc(Z) decomposes in the largest continuous families of representations.

Therefore, L2
mc(Z) is called the most continuous part of L2(Z).

The boundary degeneration Z∅(R) equals a finite union of copies of one real spherical
homogeneous space for G which we denote by Z∅ = G/H∅. To be more precise, the
copies of Z∅ in Z∅(R) are parameterized by the open P -orbits in Z(R).

The local structure theorem of [31] applied to the spherical space Z, provides an
adapted parabolic subgroup Q ⊆ G and Langlands decomposition Q = MQAQNQ with
AQ ⊆ A. LetQ =MQAQNQ be the opposite parabolic. For a reductive symmetric space
Q is the minimal σ-parabolic subgroup. Now the space Z∅ can be explicitly described as

Z∅ = G/H∅, H∅ = (MQ ∩H)(A ∩H)NQ.

In this case A∅ = A. The fact that the subgroup H∅ satisfies

NQ ⊆ H∅ ⊆ Q

makes decomposing L2(Z∅) into a direct integral of irreducible unitary representation of
G easy. Indeed employing induction by stages we obtain

L2(Z∅) = IndGH∅
(1) = IndG

Q

(
IndQH∅

(1)
)
.

Moreover,
IndQH∅

(1) ≃ L2
(
MQ/MQ ∩H

)
⊗̂L2

(
A/A ∩H

)
.

The space L2
(
MQ/MQ ∩H

)
decomposes discretely as

L2
(
MQ/MQ ∩H

)
≃

⊕̂
ξ∈M̂Q

(V ∗
ξ )

MQ∩H ⊗ ξ
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Moreover, the multiplicity space (V ∗
ξ )

MQ∩H can only be non-zero for finite dimensional
unitary representations ξ of MQ. The space L2

(
A/A ∩H

)
decomposes as

L2
(
A/A ∩H

)
≃

∫ ⊕

i(a/ah)∗
Cλ dλ,

where Cλ is the 1-dimensional representation of A corresponding to λ ∈ i(a/ah)
∗ and

dλ is the Lebesgue measure on i(a/ah)∗. It follows that L2(Z∅) decomposes as a direct
integral of principal series representations IndG

Q
(ξ ⊗ λ ⊗ 1) with ξ an irreducible finite

dimensional unitary representation of MQ and λ ∈ i(a/ah)
∗. Two such representations

IndG
Q
(ξ ⊗ λ ⊗ 1) and IndG

Q
(ξ′ ⊗ λ′ ⊗ 1) are isomorphic if and only if there exists an

element w of the Weyl group so that λ′ = w · λ and ξ′ = w · ξ. We thus arrive at the
decomposition

L2(Z∅) ≃
⊕̂

ξ∈M̂Q,fu

∫ ⊕

i(a/ah)
∗
+

M∅,ξ ⊗ IndG
Q
(ξ ⊗ λ⊗ 1) dλ,

where M̂Q,fu denotes the set of equivalence classes of irreducible finite dimensional uni-
tary representations of MQ and i(a/ah)∗+ is a fundamental domain for the stabilizer of
i(a/ah)

∗ in the Weyl group. The space M∅,ξ is the so-called multiplicity space attached
to the representation IndG

Q
(ξ ⊗ λ ⊗ 1). It turns out to be independent of λ. It follows

from this description of the Plancherel decomposition that all irreducible unitary repre-
sentations occurring in L2(Z∅) belong to the twisted discrete series of representation for
Z∅. Furthermore, the twisted discrete series for Z∅ consists of the principal series repre-
sentations of the form IndG

Q
(ξ⊗λ⊗1) with λ ∈ i(a/ah)

∗ and (ξ, Vξ) a finite dimensional
unitary representation of MQ.

Invoking the formal properties of the Bernstein maps described above, we obtain a
decomposition of L2

mc(Z) as

L2
mc(Z) ≃

⊕̂
ξ∈M̂Q,fu

∫ ⊕

i(a/ah)
∗
+

Mξ,λ ⊗ IndG
Q
(ξ ⊗ λ⊗ 1) dλ. (1.3)

In this article we give a precise description of the Plancherel decomposition of L2
mc(Z),

which amounts to the explicit determination of the multiplicity spaces Mξ,λ with their
inner product structure and the Fourier transform that realizes the unitary equivalence
(1.3).

The elements of the multiplicity spaces can be interpreted as H-invariant continu-
ous linear functionals on the space of smooth vectors for principal series representations
IndG

Q
(ξ ⊗ λ⊗ 1). As such, they can be studied as V ∗

ξ -valued distributions on Z.

1.2 Main results
To formulate our results concerning the multiplicity spaces for the induced representation
IndG

Q
(ξ⊗λ⊗1) and the Plancherel decomposition of L2

mc(Z), we need some preparation.
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IV. The most continuous part of the Plancherel decomposition

For the proofs in the text it is more convenient to work with V ∗
ξ -valued distributions rather

than functionals. However, for clarity of exposition we state our results here in terms of
continuous linear functionals.

More is known about P -orbits in Z than about Q or Q-orbits. Therefore, instead of
representations induced fromQ, we rather first consider representations induced from the
minimal parabolic subgroup P . To describe the connection between the relevant represen-
tations induced from Q and representations induced from P , we fix a finite dimensional
unitary representation (ξ, Vξ) of MQ. Such a representation is necessarily trivial on the
connected subgroup of MQ with Lie algebra equal to the sum of all non-compact simple
ideals in the Lie algebra ofMQ. Therefore, for λ ∈ a∗Q,C the representation IndGQ(ξ⊗λ⊗1)

is a subrepresentation of IndGP (ξ
∣∣
M

⊗ λ + ρP,Q ⊗ 1), where ρP,Q is the half sum of all
roots of a that occur in P ∩ MQ. Moreover, for generic λ ∈ a∗Q,C the representations
IndG

Q
(ξ ⊗ λ⊗ 1) and IndGQ(ξ ⊗ λ⊗ 1) are equivalent.

We write HQ,ξ,λ, HQ,ξ,λ and HP,ξ,λ for the spaces of smooth vectors for the represen-
tations IndG

Q
(ξ ⊗ λ⊗ 1), IndGQ(ξ ⊗ λ⊗ 1) and IndGP (ξ

∣∣
M

⊗ λ+ ρP,Q ⊗ 1), respectively.
Now for generic λ ∈ a∗Q,C

HQ,ξ,λ ≃ HQ,ξ,λ ⊆ HP,ξ,λ.

Our concern is with H-invariant continuous linear functionals on HQ,ξ,λ ≃ HQ,ξ,λ. It is
a remarkable fact that every such functional on HQ,ξ,λ is obtained by restricting an H-
fixed continuous linear functional on HP,ξ,λ. The geometry of the orbits makes it more
convenient to first determine the H-fixed continuous functionals on HP,ξ,λ and with that
those on the HQ,ξ,λ, rather than considering functionals on HQ,ξ,λ directly.

The analysis ofH-fixed continuous linear functionals on HP,ξ,λ requires a closer study
of the P -orbits in Z. We now discuss some aspects of this. For z ∈ Z we denote by Hz

the stabilizer of z in G and by hz = Lie(Hz) its Lie algebra. For every element X ∈ a
the limit

hz,X := lim
t→∞

Ad
(
exp(tX)

)
hz (1.1)

exists in the Grassmannian manifold. Let O be a P -orbit in Z. The subspace aO :=
a ∩ hz,X with z ∈ O and X ∈ a− is an invariant of O as it is independent of the choices
of z and X . This allows us to define the rank of O by

rank(O) = dim(a/aO).

For every open P -orbit O we have aO = ah. The rank of each open orbit is therefore the
same; this is an invariant of Z called the rank of Z. The rank of any P -orbit is bounded
by rank(Z) and an orbit is called of maximal rank if rank(O) = rank(Z). The set of
maximal rank orbits is in general strictly larger than the set of open orbits. For example,
in the group case every P -orbit is of maximal rank. See Example 3.3. For our purposes
the set of maximal rank orbits O with aO = ah is of great importance. We denote this
set by (P\Z)ah . For many real spherical spaces the set of open P -orbits does not exhaust
(P\Z)ah . This is for example the case for Z = G/NP and Z = SO(5,C)/GL(2,C).

For any H-fixed continuous linear functional ℓ on HP,ξ,λ one can naturally attach a
V ∗
ξ -valued distribution µℓ on Z that is left-P equivariant. For such distributions on Z we

denote by (P\Z)ℓ the set of P -orbits in supp(µℓ) that are open in the relative topology
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of supp(µℓ). Our first result is a strong restriction on the support of the distributions µℓ
when the induction parameter λ is generic. Furthermore, we show that these distributions
do not admit transversal derivatives. More precisely, we prove the following:

Theorem A (Theorems 5.4, 5.2 & 6.4). There exists a finite union S of hyperplanes in
(a/ah)

∗ so that for λ ∈ (a/ah)
∗
C with Imλ /∈ S the H-fixed continuous linear functionals

ℓ on HP,ξ,λ satisfy the following.

(i) Only maximal rank orbits with aO = ah contribute to (P\Z)ℓ, i.e.,

(P\Z)ℓ ⊆ (P\Z)ah .

(ii) For each orbit O ∈ (P\Z)ℓ there exists a representative xO ∈ G and an ηO ∈
(V ∗

ξ )
MQ∩xOHx−1

O so that for every f ∈ HP,ξ,λ with

supp(f) ∩
⋃

O∈(P\Z)µ

∂O = ∅

we have the formula

ℓ(f) =
∑

O∈(P\Z)ℓ

∫
(x−1

O PxO∩H)\H

〈
ηO, f(xOh)

〉
dh,

where dh denotes an H-invariant Radon measure on (x−1
O PxO ∩H)\H . In partic-

ular, the distribution µℓ attached to the functional ℓ does not admit any transversal
derivatives.

(iii) Every non-zero H-fixed continuous linear functional ℓ on HP,ξ,λ restricts to a non-
zero H-fixed continuous linear functional on HQ,ξ,λ. In fact, the restriction map

HomH

(
HP,ξ,λ,C

)
→ HomH

(
HQ,ξ,λ,C

)
is an isomorphism.

The next result concerns the actual construction ofH-invariant continuous functionals
attached to maximal rank orbits. First, for each O ∈ (P\Z)ah we carefully choose a
representative xO ∈ G, see Section 6.4. Given an orbit O ∈ (P\Z)ah there exists a
shifted open cone ΓO ⊆ (a/ah)

∗ so that for all λ ∈ (a/ah)
∗
C with Reλ + ρP,Q ∈ ΓO the

integrals

ℓξ,λ,η(f) :=

∫
(x−1

O PxO∩H)\H

〈
η, f(xOh)

〉
dh (1.2)

are absolutely convergent for all η ∈ (V ∗
ξ )

MQ∩xOHx−1
O and f ∈ HP,ξ,λ. Moreover, when

viewed as V ∗
ξ -valued distributions onZ, each family λ 7→ ℓξ,λ,η extends to a meromorphic

family with parameter λ ∈ (a/ah)
∗
C. We set

V ∗(ξ) :=
⊕

O∈(P\Z)ah

(V ∗
ξ )

MQ∩xOHx−1
O .
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IV. The most continuous part of the Plancherel decomposition

Note that V ∗(ξ) is finite dimensional. We thus obtain a map

V ∗(ξ) → HomH

(
HP,ξ,λ,C

)
; η 7→ ℓξ,λ,η

with meromorphic dependence on λ ∈ (a/ah)
∗
C. After suitably normalizing these func-

tionals using amongst other things the long intertwining operator, see (6.1), we arrive at
a map

ℓ◦ξ,λ : V
∗(ξ) → HomH

(
HQ,ξ,λ,C

)
,

which is an isomorphism for generic λ. More precisely, the following hold.

Theorem B (Theorem 6.1 & Corollary 8.1).

(i) For every η ∈ V ∗(ξ) the map λ 7→ ℓ◦ξ,λ(η), considered as a family of V ∗
ξ -valued

distributions on Z, is meromorphic on (a/ah)
∗
C.

(ii) For every η ∈ V ∗(ξ) the map λ 7→ ℓ◦ξ,λ(η) is holomorphic on an open neighborhood
of i(a/ah)∗.

(iii) There exists a finite union S of proper subspaces of (a/ah)∗ so that ℓ◦ξ,λ is an iso-
morphism for λ ∈ (a/ah)

∗
C with Imλ /∈ S.

We now come to the determination of the multiplicity spaces. Each multiplicity space
Mξ,λ is naturally identified with a subspace of HomH(HQ,ξ,λ,C). However, an H-fixed
continuous linear functional ℓ on HQ,ξ,λ can only be contained in Mξ,λ if the generalized
matrix coefficients with ℓ are almost contained in L2(Z). To be more precise, a functional
ℓ can only contribute if it is tempered, i.e., if all generalized matrix coefficients with ℓ
define tempered functions on Z.

Theorem C (Theorem 7.2 & Theorem 7.1 and its Corollary 8.2). For λ ∈ i(a/ah)
∗

outside of a finite union of proper subspaces of i(a/ah)∗ every H-fixed continuous linear
functional on HQ,ξ,λ is tempered. In fact, for almost every λ ∈ i(a/ah)

∗ we have

Mξ,λ = HomH

(
HQ,ξ,λ,C

)
.

To state the main result of the article, Theorem 8.1, we define the Fourier transform
for a smooth function ϕ with compact support on Z

F (ϕ)(ξ, λ) ∈ V ∗(ξ)⊗HQ,ξ,λ ≃ HomC
(
V ∗(ξ∨),HQ,ξ,λ

)
by

F (ϕ)(ξ, λ)η :=

∫
Z

ϕ(gH)
(
g · ℓ◦ξ∨,−λ

)
(η) dgH

(
η ∈ V ∗(ξ∨)

)
.

On V ∗(ξ) there is a natural inner product induced by the inner product on Vξ. We nor-
malize this inner product by a factor of dim(Vξ).

Theorem D (Theorem 8.1). Let i(a/ah)∗+ be a fundamental domain for the stabilizer of
i(a/ah)

∗ in the Weyl group. Then the Fourier transform f 7→ Ff extends to a unitary
isomorphism

L2
mc(Z) →

⊕̂
ξ∈M̂Q,fu

∫ ⊕

i(a/ah)
∗
+

V ∗(ξ)⊗ IndG
Q
(ξ ⊗ λ⊗ 1) dλ.
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As mentioned before, the representations IndG
Q
(ξ ⊗ λ⊗ 1) are irreducible for generic

λ ∈ i(a/ah)
∗. Moreover, if ξ, ξ′ ∈ M̂Q,fu and λ, λ′ ∈ i(a/ah)

∗
+ are generic the represen-

tations IndG
Q
(ξ ⊗ λ ⊗ 1) and IndG

Q
(ξ′ ⊗ λ′ ⊗ 1) are not equivalent if (ξ, λ) ̸= (ξ′, λ′).

Therefore, the above decomposition of L2
mc(Z) is the Plancherel decomposition.

1.3 Methods of Proof and structure of the article

After setting up our notation in Section 2, we begin in Section 3 with the study of P -
orbits in Z. There are two main results. The first is Theorem 3.2, which is a structure
theorem for maximal rank orbits. It is a generalization of a structure theorem of Brion,
[11, Proposition 6 & Theorem 3], for complex spherical spaces. Theorem 3.2 is of cru-
cial importance for our construction of H-fixed distributions. The second main result in
Section 3 is Theorem 3.3. We define an equivalence relation on the P -orbits of maximal
rank. We then show that the Weyl group W of the root system of a in g naturally acts on
the set of equivalence classes. This action is transitive. The set of open orbits forms one
equivalence class; its stabilizer is the little Weyl group WZ . This result was first obtained
by Knop in [27] for complex spaces and by Knop and Zhgoon in [32] for spherical spaces
defined over a field of characteristic 0. Their results are more general than ours, but our
description of the action of W is tailor made for the way we apply it. The W -action is
applied at several places, most notably for the precise choice of the representatives xO
for the P -orbits in (P\Z)ah . Our approach to P -orbits on Z differs substantially from
the techniques used by Brion, Knop and Zhgoon. The main tool for our considerations
is the limit subalgebra hz,X from (1.1). Previously we used an analysis of these limit
subalgebras to give a construction of the little Weyl group in [39]. We heavily rely on the
results from that article for the two main results in Section 3.

In Section 4 we set up a dictionary between invariant functionals on the smooth vec-
tors of a principal series representation IndGS (ξ⊗λ⊗1) induced from a parabolic subgroup
S and a space D′(S : ξ : λ) of S-equivariant V ∗

ξ -valued distributions. Even though the
exposition of the results is easier in the language of functionals, as in Section 1.2, we
find it easier to work with distributions and that is what we chose to do throughout the
article. In Section 4.3 we describe the action of the intertwining operators on those distri-
butions as we were not able to locate such a description in the literature. The proofs for
these results are relegated to Appendix B. As was explained in Section 1.2, it is easier to
work with the minimal parabolic subgroup P , rather than directly with Q or Q. To facili-
tate this, we make a comparison between inductions from different parabolic subgroups,
when the induction data allows, in Sections 4.4 – 4.6.

In Section 5 we prove the first two assertions in Theorem A. For reductive symmetric
spaces the restrictions on the support and transversal derivatives of H-fixed distributions
in D′(P : ξ : λ) are obtained using Bruhat’s theory which he developed in his thesis.
See [1, Theorem 5.1] and [14, Théorème 1 in Section 3.3]. This approach relies heavily
on precise knowledge of all P -orbits in Z. For reductive symmetric spaces the P -orbits
are very well understood; a complete description of the P -orbits has been given by Mat-
suki in [40] and [41]. Unfortunately, for real spherical spaces such a description is not
available. We therefore resort to a different method, namely principal asymptotics, which
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IV. The most continuous part of the Plancherel decomposition

is a technical tool from [35, Theorem 5.1]. The method of principal asymptotics can
be considered as the analogue of the limit subalgebras (1.1) for H-fixed distributions in
D′(P : ξ : λ). Given such a distribution µ, an orbit O ∈ (P\Z)µ, a point z ∈ O and a
sufficiently regular X ∈ a−, the principal asymptotics of µ is a distribution µz,X defined
on a left-P invariant open neighborhood of e in G that is left P -equivariant and right in-
variant under the limit subalgebra hz,X . These last distributions are easier to analyse. An
immediate corollary is that the imaginary part of λ must vanish on aO, which implies the
first assertion in Theorem A, see Theorem 5.4. Moreover, µ has transversal derivatives
on O if and only if µz,X has transversal derivatives. The proof for the second assertion is
now essentially reduced to the case of NP -invariant distributions in D′(P : ξ : λ). For
the latter distributions the absence of transversal derivatives for generic λ is proved by an
analysis of the action of the center of U(g) in Theorem 5.2.

In Section 6 we construct the H-invariant distributions in D′(P : ξ : λ). By consider-
ing powers of matrix coefficients of finite dimensional H-spherical representations, one
easily sees that the integrals (1.2) are absolutely convergent if Reλ is in a certain shifted
cone. We thus find holomorphic families of H-fixed distributions with family parameter
λ. We then use the technique of Bernstein and Sato to extend these families to meromor-
phic families. This method is well known; it was for example used before by Olafsson in
[42, Theorem 5.1], Brylinski and Delorme [13, Proposition 4] and Frahm [20, Theorem
3.3].

For symmetric spaces there are other ways to obtain the meromorphic extension. We
mention here two methods of Van den Ban: [1, Theorem 5.10] using intertwining oper-
ators and [2, Theorem 9.1] using translation functors. The second method of Van den
Ban is arguably the best since it provides a rather explicit functional equation. See also
[14, Théorème 2] where this method was used by Carmona and Delorme. In our setting
neither the method based on intertwining operators, nor the method based on translation
functors is straightforwardly applicable since both require that the only orbits contribut-
ing in Theorem A (i) are the open orbits. For real spherical spaces with the wavefront
property, e.g. reductive symmetric spaces, only the open orbits contribute. We give a
short proof of this in Appendix A.

To construct the H-invariant distributions in D′(P : ξ : λ) on non-open P -orbits of
maximal rank we use an idea from [4, Theorem 7.1]. We mention here that a similar
construction for p-adic spherical spaces was done by Sakellaridis in [45, Section 4]. The
applicability of the idea heavily relies on the structure of maximal rank orbits. For reduc-
tive symmetric spaces this is readily obtained from the rich structure theory that exists
for these spaces. For real spherical spaces the necessary assertions were proven using
our methods concerning limits subalgebras in Theorem 3.2. Every maximal rank orbit O
is contained in an open P ′-orbit O′ for a certain minimal parabolic subgroup P ′. More-
over, O′ decomposes as a family of orbits of a unipotent subgroup of P ′ parameterized
by the points in O. This geometric decomposition translates on the level of distribu-
tions to a decomposition of the distributions we constructed before on open orbits into
the application of a standard intertwining operator on a distribution supported on O. The
outcome of this analysis is a construction of H-invariant distributions µ in D′(P : ξ : λ)
with (P\Z)µ = {O} by applying the inverse of a standard intertwining operator to a
H-invariant distribution in D′(P ′ : ξ : λ) constructed on an open orbit. As a corollary
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we find that the H-invariant distributions in D′(P : ξ : λ) fit into meromorphic families
with family parameter λ. All this is described in Proposition 6.2. With the rather ex-
plicit formulas for the distributions we obtain from Proposition 6.2 it is then shown that
the distributions constructed on P -orbits in (P\Z)ah actually are Q-equivariant, which
establishes assertion (iii) in Theorem A. See Theorem 6.4.

By combining Theorem 5.4, Theorem 5.2 and Theorem 6.4 we obtain in Theorem 6.3
a full description of D′(Q : ξ : λ)H for generic λ ∈ (a/ah)

∗
C. The remainder of Section 6

is devoted to a description of the action of the normalizer of H in A on D′(Q : ξ : λ) and
a proper normalization of the families of distributions we constructed. The latter results
in the assertions (i) and (iii) in Theorem B.

In section 7 we prove Theorem C. There are two main results. The first is Theorem
7.2, which asserts that for generic λ ∈ i(a/ah)

∗ all H-fixed distributions in D′(Q : ξ : λ)
are tempered. The proof begins with an a priori estimate, which is then improved in a
recursive process. For reductive symmetric spaces this was done by Van den Ban in [2,
Section 18] using a technique of Wallach from [49, Theorem 4.3.5]. For real spherical
spaces this method is not easily applicable. This is due to the lack of a good polar de-
composition. Instead we adapt the techniques developed in [18] for the construction of
the constant term map. In [18] only tempered eigenfunctions are considered. However
the techniques can be applied to non-tempered eigenfunctions as well and then used to
improve estimates and prove temperedness.

Once we have established the temperedness of the distributions, we move on to the
second main result in section 7: the square integrability of wave packets in Theorem 7.1.
The proof is similar to the analogous result for reductive symmetric spaces by Van den
Ban, Carmona and Delorme in [3]. Also this result relies heavily on the constant term
map. An important consequence, Corollary 8.2, is that for almost every λ ∈ i(a/ah)

∗ the
multiplicity space Mξ,λ is identical to D′(Q : ξ : λ)H , and hence can be identified with
V ∗(ξ) in view of Theorem B (iii).

In Section 8 we prove the Plancherel decomposition ofL2
mc(Z). The abstract Plancherel

decomposition provides V ∗(ξ) for almost every λ ∈ i(a/ah)
∗ with an inner product. To

prove Theorem D it remains to show that this inner product is independent of λ and up to
a factor of dim(Vξ) equal to the inner product induced from the one on Vξ. This we do in
Section 8. We first prove the required identity for the space Z = Z∅ by a direct compu-
tation in Theorem 8.1. The result for Z∅ can in view of the Maaß-Selberg relations [17,
Theorem 9.6] be used to determine the inner products for Z itself. In order to apply the
Maaß-Selberg relations we have to determine the constant terms of all distributions. We
give explicit formulas in Proposition 8.1 and 8.2. If Z has the wavefront property, then
the Maaß-Selberg relations from [17, Theorem 9.6] suffice to determine the inner prod-
uct on V ∗(ξ). For the group case, and more generally for reductive symmetric spaces,
this was done in [17, Sections 14 & 15]. For general real spherical spaces a refinement
of the Maaß-Selberg relations is needed. This refinement is obtained in Corollaries 8.2
and 8.1. For the proof we construct suitable G-invariant differential operators on Z using
Knop’s Harish-Chandra homomorphism from [26]. We then determine the Plancherel
decomposition of L2

mc(Z) in Theorem 8.1.
Assertion (ii) in Theorem A is an easy corollary to Theorem 8.1. For reductive sym-

metric spaces this was proven in [6, Theorem 1]. Finally, we provide in Corollary 8.4 an
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IV. The most continuous part of the Plancherel decomposition

explicit form for the so-called scattering operators introduced by [15] in the case G is a
split real reductive group. Our formulas are written in terms of the standard intertwining
operators acting on H-fixed linear functionals.
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2 Setup and notation
Groups are indicated by capital roman letters. Their Lie algebras are denoted by the
corresponding lower-case fraktur letter.

Let G be a connected reductive algebraic group defined over R and set G := G(R).
Let H be an algebraic subgroup of G defined over R and set H := H(R). We write
Z = G/H . If z ∈ Z, then the stabilizer subgroup of Z is indicated by Hz and its Lie
algebra by hz.

We set GC := G(C) and HC := H(C). If E is a real vector space, then we write EC
for its complexification.

Throughout the article we fix a minimal parabolic subgroup P of G and a Langlands
decomposition P = MAN . We assume that Z is real spherical, i.e., there exists an open
P -orbit in Z. We further assume that Z is unimodular. In view of [17, Lemma 12.7] the
space Z is quasi-affine.

Let θ be a Cartan involution of G so that A is θ-stable. We denote the corresponding
involution on the Lie algebra g by θ as well and write K for the fixed point subgroup of
θ. Note that K is a maximal compact subgroup of G.

If Q is a parabolic subgroup of G, then we write NQ for the unipotent radical of Q
and NQ for the unipotent radical θNQ of the opposite parabolic subgroup θQ.

We write Σ for the root system of a in g. If Q is a parabolic subgroup containing A,
then we define Σ(Q) to be subset of Σ of roots α so that the root space gα is contained in
nQ. We define ρQ to be the element of a∗ given by

ρQ(X) =
1

2
tr ad(X)

∣∣
nQ
.

Further, we write a− for the open negative Weyl chamber with respect to Σ(P ).
We fix an Ad(G)-invariant bilinear formB on g so that −B( · , θ · ) is positive definite.

For E ⊆ g, we define
E⊥ =

{
X ∈ g : B(X,E) = {0}

}
.

For the notation for function spaces we follow the book of Schwartz [48]. In partic-
ular, spaces of compactly supported smooth, smooth and Schwartz functions are denoted
by D, E and S respectively. Their strong duals are as usual indicated by a ′.
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3. P -Orbits of maximal rank

If N is a connected and simply connected subgroup of G so that its Lie algebra n is a
nilpotent subalgebra of g, then we equip N with the Haar-measure dn given by the pull-
back of the Lebesgue measure on n along the exponential map. This we do in particular
for the group A and the unipotent radicals NQ of parabolic subgroups Q. Every compact
subgroup we equip with the normalized Haar measure. We do this in particular for the
groups K and M . We normalize the Haar measure dg on G so that∫

G

ϕ(g) dg =

∫
K

∫
A

∫
NP

a2ρPϕ(kan) dn da dk
(
ϕ ∈ D(G)

)
.

In view of the Local structure theorem, see Proposition 3.1, there exists a parabolic sub-
group Q containing A and a point z ∈ Z, so that P · z is open and

NQ ×M/(M ∩Hz)× A/(A ∩Hz) → P · z; (n,m, a) 7→ nma · z

is a diffeomorphism. Let a0 = a∩ (a∩hz)
⊥ and A0 = exp(a0). Then the group MA0NQ

is unimodular. We normalize the invariant Radon measure on Z by∫
Z

ϕ(z) dz =

∫
NQ

∫
M

∫
A0

ϕ(nma · z) da dmdn
(
ϕ ∈ D(Z)

)
.

The Haar measure on H we normalize by requiring that∫
G

ϕ(g) dg =

∫
Z

∫
H

ϕ(gh) dh dgH
(
ϕ ∈ D(G)

)
.

Finally, we normalize the Lebesgue measure i(a/a ∩ hz)
∗ so that

ϕ(e) =

∫
i(a/a∩hz)∗

∫
A/(A∩Hz)

ϕ(a)aλ da dλ
(
ϕ ∈ D

(
A/(A ∩Hz)

))
.

3 P -Orbits of maximal rank

3.1 The local structure theorem
In this section we give a reformulation of the local structure theorem, which follows from
[31, Theorem 2.3] and its constructive proof.

Proposition 3.1. There exists a parabolic subgroupQ with P ⊆ Q, a Levi decomposition
Q = LQNQ with A ⊆ LQ, and for every open P -orbit O in Z a point z ∈ O so that the
following assertions hold.

(i) Q · O = O.

(ii) Q ∩Hz = LQ ∩Hz.

(iii) The map
NQ × LQ/LQ ∩Hz → Z;

(
n, l(LQ ∩Hz)

)
7→ nl · z

is a diffeomorphism onto O.
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IV. The most continuous part of the Plancherel decomposition

(iv) The sum lQ,nc of all non-compact simple ideals in lQ is contained in hz.

(v) There exists an X ∈ a ∩ h⊥z so that LQ = ZG(X) and α(X) > 0 for all α ∈ Σ(Q).

Remark 3.2. The existence of an X ∈ a ∩ h⊥z with LQ = ZG(X) has the following
consequence. Let α ∈ Σ. Then gα ⊆ lQ if and only if α∨ ∈ a ∩ hz.

3.2 Adapted points
We now recall the notion of adapted points and some relevant results from [39].

Following [39] we say that a point z ∈ Z is adapted (to the Langlands decomposition
P =MAN ) if the following two conditions are satisfied.

(i) P · z is open in Z, i.e., p+ hz = g,

(ii) There exists an X ∈ a ∩ h⊥z so that Zg(X) = lQ.

See Definition 3.3 and Remark 3.4 (b) in [39]. It follows from Proposition 3.1 that every
open P -orbit in Z contains an adapted point. Moreover, the set of adapted points is
MA-stable.

The Lie subalgebra a∩hz is the same for all adapted points z by [39, Corollary 3.17].
We denote this subalgebra by ah and refer to the dimension of a/ah as the rank of Z.

Adapted points have several of the properties that are listed in the local structure
theorem, Proposition 3.1. The following proposition is a combination of Proposition 3.6
and Remark 3.7 (b) in [39].

Proposition 3.1. Let z ∈ Z be adapted. Then the following hold.

(i) Q ∩Hz = LQ ∩Hz,

(ii) lQ,nc ⊆ hz

(iii) The map

M/(M ∩Hz)× a/ah → LQ/(LQ ∩Hz);(
m(M ∩Hz), X + ah

)
7→ m exp(X)(LQ ∩Hz)

is a diffeomorphism.

(iv) The map

NQ × LQ/(LQ ∩Hz) → Z;
(
n, l(LQ ∩Hz)

)
7→ nl · z

is a diffeomorphism onto P · z.

The adapted points in a given open P -orbit are up to MA-translation parameterized
by Q-regular elements in a ∩ a⊥h , i.e., by elements X ∈ a ∩ a⊥h so that Zg(X) = lQ. The
following proposition follows directly from [39, Proposition 3.12].

Proposition 3.2. Let O be an open P -orbit in Z. Let X ∈ a ∩ a⊥h . If Zg(X) = lQ, then
there exists an adapted point z ∈ O so that X ∈ h⊥z . Moreover, if z′ ∈ O is another
adapted point so that X ∈ h⊥z′ , then there exist m ∈M and a ∈ A so that z′ = ma · z.
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3.3 Limits of subspaces
In this section we discuss limits of subspaces of g in the Grassmannian and their proper-
ties.

For k ∈ N let Gr(g, k) be the Grassmannian of k-dimensional subspaces of the Lie
algebra g.

We say that an element X ∈ a is order-regular if

α(X) ̸= β(X)

for all α, β ∈ Σ with α ̸= β.
If X ∈ a is order-regular, then in particular α(X) ̸= −α(X) and therefore α(X) ̸= 0

for every α ∈ Σ. This implies that order-regular elements in a are regular. The name
order-regular refers to the fact that every order-regular element X ∈ a determines a
linear order ≥ on Σ by setting

α ≥ β if and only if α(X) ≥ β(X)

for α, β ∈ Σ.
The following proposition is taken from [35, Lemma 4.1] and [39, Proposition 5.2].

Proposition 3.1. Let E ∈ Gr(g, k) and let X ∈ a. The limit

EX := lim
t→∞

Ad
(
exp(tX)

)
E,

exists in the Grassmannian Gr(g, k). If λ1 < λ2 < · · · < λn are the eigenvalues and
p1, . . . , pn the corresponding projections onto the eigenspaces Vi of ad(X), then EX is
given by

EX =
n⊕
i=1

pi
(
E ∩

i⊕
j=1

Vj
)
. (3.1)

The following hold.

(i) If E is a Lie subalgebra of g, then EX is a Lie subalgebra of g.

(ii) If X ∈ a is order-regular, then EX is a-stable.

(iii) Let R ⊆ a be a connected component of the set of order-regular elements in a. If
X ∈ R and Y ∈ R, then

(
EX

)
Y
= EY . In particular, ifX, Y ∈ R, thenEX = EY .

(iv) If g, g′ ∈ G and
lim
t→∞

exp(tX)g exp(−tX) = g′,

then (
Ad(g)E

)
X
= Ad(g′)EX

(v) Let EC,X be the limit of Ad
(
exp(tX)

)
EC for t → ∞ in the Grassmannian of

k-dimensional complex subspaces in the complexification gC of g. Then

EC,X = (EX)C.
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IV. The most continuous part of the Plancherel decomposition

We note that if X is not order-regular, then EX need not be stable under the action of
a, even if X is regular.

For z ∈ Z and X ∈ a we define

hz,X := (hz)X .

3.4 Compression cone

We may and will assume that the point eH ∈ G/H = Z is adapted. We define

h∅ := (lQ ∩ h)⊕ nQ.

For z ∈ Z, we define the cone

Cz := {X ∈ a : hz,X = Ad(m)h∅ for some m ∈M}.

By [39, Proposition 6.5] the cones Cz are the same for all adapted points z ∈ Z. We
therefore may define

C := Cz,

where z is any adapted point in Z. We call C the compression cone of Z.
In the following proposition we list some of the properties of the compression cone

from [39, Section 6].

Proposition 3.1.

(i) Let z ∈ Z. If P · z is not open, then Cz = ∅. If P · z is open, then a− ⊆ Cz ⊆ C.

(ii) C = C + ah.

(iii) C is a finitely generated cone.

The edge of C we denote by aE , i.e.,

aE := C ∩ −C. (3.1)

Note that ah ⊆ aE , but that in general aE may be strictly larger. We recall from [29,
Section 6] that Z is called wavefront if

C = a− + ah.

For wavefront spaces Z we have aE = ah. All reductive symmetric spaces are wavefront,
i.e., all spacesG/H withH an open subgroup of the fixed point subgroup of an involutive
automorphism of G.
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3.5 Rank of a P -orbit
In this section we define the rank of a P -orbit in Z. We begin with a lemma.

Lemma 3.1. Let z ∈ Z. The set a ∩ hp·z,X is the same for all p ∈ P and X ∈ a−.

Proof. Let X ∈ a− and p ∈ P . Further, let pa : p → a be the projection along the
decomposition p = m⊕ a⊕ nP . In view of (3.1)

a ∩ hp·z,X = pa
(
hp·z ∩ p

)
.

Note that pa is invariant under the adjoint action of P on p. As

hp·z ∩ p = Ad(p)hz ∩ p = Ad(p)
(
hz ∩ p

)
,

it follows that
a ∩ hp·z,X = pa

(
hz ∩ p

)
.

The right-hand side is independent of p and X .

Let O be a P -orbit in Z. Lemma 3.1 allows us to define the set

aO := a ∩ hz,X

where z is any point O and X is any element in a−. We call the dimension of a/aO the
rank of the orbit O.

Remark 3.2. If O is an open P -orbit, then it follows from Proposition 3.1 (ii) that

aO = ah.

3.6 P -Orbits of maximal rank
The main result in this section is the following proposition, which will be crucial in this
article.

Proposition 3.1. Let O ∈ P\Z. Then

rank(O) ≤ rank(Z).

Let X ∈ a− be order-regular and let z ∈ O. Then rank(O) = rank(Z) if and only if
there exists a w ∈ NG(a) so that

hz,X = Ad(w)h∅. (3.1)

If (3.1) holds, then
aO = Ad(w)ah (3.2)

and there exists an open P -orbit O′ in Z so that

w−1 · O ⊆ O′.
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IV. The most continuous part of the Plancherel decomposition

We say that a P -orbit O in Z is of maximal rank if rank(O) = rank(Z).

Remark 3.2.

(a) Fix a P -orbit O of maximal rank, a point z ∈ O and an order-regular element X ∈
a−. The element w ∈ NG(a) in (3.1) is not unique. It follows from [39, Lemma
10.3] that the stabilizer of h∅ in NG(a) is equal to NLQ

(a). Therefore, the equality
(3.1) only determines the coset wNLQ

(a) ∈ NG(a)/NLQ
(a). The element w may be

chosen so that

Ad∗(w)Σ(P ) ∩
(
− Σ(P )

)
= Ad(w)∗Σ(Q) ∩

(
− Σ(P )

)
. (3.3)

To see this, consider the group L′
Q = (LQ ∩ H)A. L′

Q is reductive and normalizes
h∅. Since P ∩ wL′

Qw
−1 and w(P ∩ L′

Q)w
−1 are both minimal parabolic subgroups

of wL′
Qw

−1 containing A, there exists a v ∈ NwL′
Qw

−1(a) so that

vw(P ∩ L′
Q)w

−1v−1 = P ∩ wLQw−1 = P ∩ vwL′
Qw

−1v−1.

Let w′ = vw. Then

w′NPw
′−1 = w′((NP ∩ L′

Q)NQ

)
w′−1 = (NP ∩ w′LQw

′−1)w′NQw
′−1.

If now w is replaced by w′, then it follows that both (3.1) and (3.3) hold.

(b) Fix an order-regular element X ∈ a− and a P -orbit O in Z of maximal rank. The
element w ∈ NG(a) in (3.1) depends on the choice of the point z ∈ O. Indeed, it
follows from Proposition 3.1 (iv) that

hman·z,X = Ad(m)hz,X (m ∈M,a ∈ A, n ∈ NP ).

Therefore,

hman·z,X = Ad(mw)h∅ (m ∈M,a ∈ A, n ∈ NP )

if z ∈ O satisfies (3.1). Note that the coset wZG(a) ∈ NG(a)/ZG(a) = W is
independent of z ∈ O.

(c) Fix a P -orbit O in Z of maximal rank and a point z ∈ O. The element w ∈ NG(a)
in (3.1) depends on the choice of the order-regular element X ∈ a−, as can be seen
in the following example.

Example 3.3. Assume that G = ‵G × ‵G for an reductive group ‵G, and H =
diag(‵G). Let ‵P be a minimal parabolic subgroup of ‵G with Langlands decom-
position ‵P = ‵M ‵A‵N and let ‵P = ‵M ‵A‵N be opposite to ‵P . We write P for the
minimal parabolic subgroup ‵P × ‵P of G. Let R be a set of representatives for the
Weyl group of ‵G in N‵G(

‵a). Then R is in bijection with P\G/H via the map

R → P\G/H; w 7→ O(w) := P (e, w)H.
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3. P -Orbits of maximal rank

Now fix w ∈ R and let z be the point (e, w)H in O(w). Let X1, X2 ∈ ‵a−(‵P ). We
assume that X := (X1,−X2) ∈ a− is order-regular. Then for all α, β ∈ Σ(‵g, ‵a)

α(X1) ̸= β(X2).

The limit subalgebra hz,X is equal to

{(Y,Ad(w)Y ) : Y ∈ ‵m⊕‵a}⊕
⊕

α∈Σ(‵g,‵a)
α(X1)>−w·α(X2)

(
‵gα×{0}

)
⊕

⊕
α∈Σ(‵g,‵a)

α(X1)<−w·α(X2)

(
{0}×‵gw·α

)
.

From this formula it follows that every P -orbit in G/H is of maximal rank.

If w = e, so that O(w) is the open P orbit in G/H , then

hz,X = diag(‵m⊕ ‵a)⊕
(
‵n× {0}

)
⊕
(
{0} × ‵n

)
=: h∅

is independent of the choice of X . For other orbits hz,X does depend on X . We
illustrate this by considering the most extreme case: the closed P -orbit in G/H . Let
w ∈ R represent the longest Weyl group element, so that O(w) is the closed orbit.
Every choice of X1 and X2 corresponds to a unique positive system ‵Σ+ of Σ(‵g, ‵a)
satisfying.

α(X1) > −w · α(X2) (α ∈ ‵Σ+). (3.4)

Vice versa, given a positive system ‵Σ+ of Σ(‵g, ‵a), we may choose X1 and X2 so
that (3.4) holds. If (3.4) is satisfied, then

hz,X = {(Y,Ad(w)Y ) : Y ∈ ‵m⊕ ‵a} ⊕
⊕
α∈‵Σ+

(
‵gα × {0}

)
⊕

⊕
α∈‵Σ+

(
{0} × ‵gα

)
.

In this case there exists a v ∈ N‵G(
‵a) so that

hz,X = Ad(v, wv)h∅.

Note that v is a representative for the element of the Weyl group mapping Σ(‵P ) to
‵Σ+.

For the proof of Proposition 3.1 we need a slight strengthening of [39, Lemma 10.8].

Lemma 3.4. Let z ∈ Z and let X ∈ a be order regular. Then dim(ah) ≥ dim(hz,X ∩ a)
if and only if there exists a w ∈ NG(a) so that hz,X = Ad(w)h∅. In that case

a ∩ hz,X = Ad(w)ah.

The proof for the lemma is essentially the same as the proof of [39, Lemma 10.8]; in
the proof the equality dim(ah) = dim(hz,X ∩ a) can straightforwardly be replaced by the
inequality dim(ah) ≥ dim(hz,X ∩ a).
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IV. The most continuous part of the Plancherel decomposition

Proof of Proposition 3.1. Let z ∈ O and X ∈ a−. If rank(O) ≥ rank(Z), then

dim(hz,X ∩ a) = dim(aO) ≤ dim(ah).

By Lemma 3.4 there exists a w ∈ NG(a) so that hz,X = Ad(w)h∅. Moreover, if hz,X =
Ad(w)h∅ for some w ∈ NG(a), then

aO = hz,X ∩ a = Ad(w)h∅ ∩ a = Ad(w)ah,

and hence rank(O) = rank(Z).
It remains to prove the existence of an open P -orbit O′ in Z so that w · O ⊂ O′. We

first prove that w−1 · z lies in an open P -orbit. As g = p+ h∅ we have

hz,X +Ad(w)p = Ad(w)
(
h∅ + p

)
= g.

It follows that for sufficiently large t > 0 we have

Ad
(
exp(tX)

)
hz +Ad(w)p = g.

As Ad(w)p and g are both A-stable, it follows that

hz +Ad(w)p = g.

Therefore, wPw−1 · z is open in Z, and hence Pw−1 · z is open in Z.
Now set O′ = Pw−1 · z. Let n ∈ NP . In view of Proposition 3.1 (iv) we have

hn·z,X = Ad(w)h∅.

By the argument above, the P -orbit Pw−1n · z is open. It follows that w−1NP · z is
contained in the union of all open P -orbits in Z. As w−1N · z is connected, intersects
with O′ and the boundary of O′ only contains non-open P -orbits, it follows that w−1N ·z
is contained in O′. Moreover, since MA is a normal subgroup of NG(a) we have

Pw−1man · z = Pw−1n · z = O′

for all m ∈M , a ∈ A and n ∈ NP . This proves the last assertion.

3.7 Weakly adapted points
Let X ∈ a. If O is a P -orbit of maximal rank, then we say that X is O-regular if
X ∈ a ∩ a⊥O and α(X) ̸= 0 for all roots α ∈ Σ that do not vanish on a ∩ a⊥O. We say
that a point z ∈ Z is weakly adapted (to the Langlands decomposition P =MAN ) if the
following two conditions are satisfied.

(i) The P -orbit O = P · z is of maximal rank.

(ii) There exists an O-regular element in a ∩ h⊥z .
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Note that an adapted point z ∈ Z is also weakly adapted.
The weakly adapted points in a given maximal rank P -orbit admit a similar parametriza-

tion as the adapted points in Proposition 3.2.

Proposition 3.1. Let O ∈ P\Z be of maximal rank. The following hold.

(i) For every O-regular element X ∈ a there exists a weakly adapted point z ∈ O so
that X ∈ h⊥z . Moreover, if z′ ∈ O is another adapted point so that X ∈ h⊥z′ , then
there exist m ∈M and a ∈ A so that z′ = ma · z.

(ii) Let z ∈ O be weakly adapted and w ∈ NG(a). If there exists an X ∈ a− so that
hz,X = Ad(w)h∅, then w−1 · z is adapted.

For the proof of the proposition we need the following lemma. We write pa : g → a
for the projection onto a along the root space decomposition.

Lemma 3.2. Let O be a P -orbit of maximal rank and let z ∈ O. Let w ∈ NG(a) be so
that hz,X = Ad(w)h∅ for some order-regular element X ∈ a−. Then

pa
(
(p+Ad(w)q) ∩ hz

)
= aO.

Proof. It follows from (3.1) that

pa(p ∩ hz) = a ∩ hz,X = aO,

where X is any element in a−. Therefore,

aO ⊆ pa
(
(p+Ad(w)q) ∩ hz

)
.

We move on to the other inclusion. Let Y ∈ p + Ad(w)q and assume that Y ∈ hz.
We will prove that pa(Y ) ∈ aO. We decompose Y as

Y = Yp + Y0 + Y−,

where Yp ∈ p, Y0 ∈ Ad(w)lQ,nc and Y− ∈ Ad(w)nQ ∩ nP .
In view of Proposition 3.1 the P -orbit Pw−1 · z is open. Therefore, there exists a n ∈

NQ so that the connected subgroup LQ,nc with Lie algebra lQ,nc is contained inHnw−1·z. It
follows that Ad(wn−1)lQ,nc ⊆ hz. Note that Ad(w)lQ,nc ⊆ Ad(wn−1)lQ,nc + Ad(w)nQ.
Therefore, there exists a Y ′ ∈ Ad(w)nQ so that Y0 + Y ′ ∈ Ad(wn−1)lQ,nc ⊆ hz. Note
that pa(Y0 + Y ′) ∈ Ad(w)ah = aO. By subtracting Y0 + Y ′ from Y we may thus without
loss of generality assume that Y0 = 0, i.e.,

Y = Yp + Y−.

Let X ∈ a− be order-regular and satisfy hz,X = Ad(w)h∅. The line (RY )X is a-stable
and contained in Ad(w)h∅. Note that Y− is a linear combination of eigenvectors of ad(X)
with strictly positive eigenvalues, whereas Yp is a linear combination of eigenvectors with
non-positive eigenvalues. It follows that Y− = 0 as (RY )X would otherwise be a line in
Ad(w)nQ ∩ nP , which would be in contradiction with the fact that (RY )X is contained
in Ad(w)h∅. Now Y ∈ p ∩ hz and hence pa(Y ) ∈ pa(p ∩ hz) = aO.
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IV. The most continuous part of the Plancherel decomposition

Proof of Proposition 3.1. Let z0 ∈ O and let X ∈ a be O-regular. Let X ′ ∈ a− be
order-regular. By Proposition 3.1 there exists a w ∈ NG(a) so that hz0,X′ = Ad(w)h∅. It
follows from Lemma 3.2 that

X ∈
(
(p+Ad(w)q) ∩ hz0

)⊥
= (nP ∩ Ad(w)nQ) + h⊥z0 .

In particular, there exists a Y ∈ nP ∩ Ad(w)nQ so that X + Y ∈ h⊥z0 . Since X is O-
regular, it follows from (3.2) that α(X) ̸= 0 for every α ∈ Σ so that α|a∩Ad(w)a⊥h

̸= 0. As
the roots of a in nP ∩ Ad(w)nQ do not vanish on a ∩ Ad(w)a⊥h , this implies that there
exists a n ∈ NP ∩ wNQw

−1 so that Ad(n)X = X + Y . Set z = n−1 · z0. Then

X ∈ Ad(n−1)h⊥z0 = h⊥z .

This proves the first assertion in (i).
We move on to the second assertion in (i). Let z′ ∈ O be another point so that

X ∈ h⊥z′ . By Proposition 3.1 the points w−1 · z and w−1 · z′ lie in the same open P -orbit.
Moreover,

Ad(w−1)X ∈ h⊥w−1·z ∩ h⊥w−1·z′ .

By Proposition 3.2
w−1 · z′ ∈MAw−1 · z.

As MA is a normal subgroup of NG(a), it follows that

z′ ∈ wMAw−1 · z =MA · z.

This concludes the proof of (i).
It remains to prove (ii). Assume that z is weakly adapted and there exists an X ∈

a− so that hz,X = Ad(w)h∅. By Proposition 3.1 the P -orbit through w−1 · z is open.
Moreover, as a ∩ h⊥z contains O-regular elements, the set

a ∩ h⊥w−1·z = Ad(w−1)
(
a ∩ h⊥z

)
contains elementsX so that α(X) ̸= 0 for all Σ(Q). It follows thatw−1 ·z is adapted.

3.8 Structure of orbits of maximal rank
In this section we show that the P -orbits of maximal rank admit a structure theorem that
is similar to the local structure theorem for open P -orbits. We begin with a decomposition
of NP .

Proposition 3.1. Let O ∈ P\Z be of maximal rank and w ∈ NG(a). Assume that there
exist a point z ∈ O and an order-regular element X ∈ a− so that

hz,X = Ad(w)h∅.

Then for every y ∈ O the multiplication map

(NP ∩ wNQw
−1)× (NP ∩Hy) → NP ; (n, nH) 7→ nnH (3.1)

is a diffeomorphism.
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Proof. We prove the assertion first for y = z. It follows from (3.1) in Proposition 3.1 that

(nP ∩ hz)X = nP ∩ hz,X = nP ∩ Ad(w)h∅.

Since
g = Ad(w)nQ ⊕ (Ad(w)h∅ +m+ a),

and this decomposition is compatible with the root space decomposition of g, it follows
that

nP = (nP ∩ Ad(w)nQ)⊕ (nP ∩ hz)X .

Hence, for sufficiently large t > 0

nP = (nP ∩ Ad(w)nQ)⊕ Ad
(
exp(tX)

)
(nP ∩ hz)

As nP and nP ∩ Ad(w)nQ are both a-stable, it follows, that

nP = (nP ∩ Ad(w)nQ)⊕ (nP ∩ hz)

and thus (3.1) is a local diffeomorphism onto an open neighborhood of e inNP . It remains
to show that (3.1) is a bijection.

The intersection (NP ∩ wNQw
−1) ∩ (NP ∩ Hz) is an algebraic subgroup of NP of

dimension 0. The only such subgroup is the trivial one. Therefore, (3.1) is injective.
By [44, Theorem 2] both NP · z and (NP ∩ wNQw

−1) · z are closed submanifolds of
Z. Since the image of (3.1) is open in NP , the set (NP ∩wNQw

−1) · z is a relatively open
subset of NP · z. Hence, (NP ∩ wNQw

−1) · z is open and closed in NP · z. As NP · z is
connected, it follows that

(NP ∩ wNQw
−1) · z = NP · z. (3.2)

From this we conclude that (3.1) is surjective and this concludes the proof of the propo-
sition for z = y.

Let now y ∈ O and let m ∈ M , a ∈ A and n ∈ NP be such that y = man · z.
The identity (3.2) shows that we may choose n ∈ NP ∩ wNQw

−1. Since the groups
(NP ∩ wNQw

−1) and NP are normalized by MA(NP ∩ wNQw
−1), the assertion in the

proposition now follows from the case z = y.

Theorem 3.2. Let O ∈ P\Z be of maximal rank and z ∈ O weakly adapted. Let
w ∈ NG(a) be so that

hz,X = Ad(w)h∅

for some order-regular X ∈ a−. Then aO = Ad(w)ah ⊆ hz. Moreover, Pw−1 · z is open
and the maps

NQ ×M/(M ∩Hw−1·z)× A/ exp(ah) → Pw−1 · z; (n,m, a) 7→ nmaw−1 · z
(3.3)

(NP ∩ wNQw
−1)×M/(M ∩Hz)× A/ exp(aO) → O; (n,m, a) 7→ nma · z (3.4)

(NP ∩ wNQw
−1)×O → wPw−1 · z; (n, x) 7→ n · x (3.5)

are diffeomorphisms.
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IV. The most continuous part of the Plancherel decomposition

Remark 3.3. The diffeomorphism (3.4) may be viewed as a structure theorem for a P -
orbit of maximal rank. For complex spherical spaces this structure theorem was first
proven by Brion in [11, Proposition 6 & Theorem 3]. For our purposes the diffeomor-
phism (3.5) will be of particular importance for the construction of distributions in Sec-
tion 6.

Proof of Theorem 3.2. In view of Proposition 3.1 (ii) the P -orbit through w−1 · z is open
and w−1 · z is adapted. The map (3.3) is a diffeomorphism by Proposition 3.1.

It follows from Proposition 3.1 that

w−1 · O ⊆ Pw−1 · z.

In view of Proposition 3.1

O = (NP ∩ wNQw
−1)MA · z,

and hence
w−1 · O = (w−1NPw ∩NQ)MAw−1 · z

Since (3.3) is a diffeomorphism, the map

(w−1NPw∩NQ)×M/(M ∩Hw−1·z)×A/ exp(ah) → w−1O; (n,ma) 7→ nmaw−1 · z

is a diffeomorphism. As aO = Ad(w)ah, this implies that (3.4) is a diffeomorphism.
Finally, the map (3.5) is a diffeomorphism since (3.3), (3.4) and the product map

(NP ∩ wNQw
−1)× (NP ∩ wNQw

−1) → wNQw
−1

are diffeomorphisms.

3.9 Admissible points and the little Weyl group
Following [39, Definition 10.1] we call a point z ∈ Z admissible if it is adapted and if for
every order-regular elementX ∈ a there exists aw ∈ NG(a) so that hz,X = Ad(w)h∅. By
[39, Proposition 10.4] the set of admissible points is open and dense in the set of adapted
points in Z (with respect to the subspace topology). In particular, every open P -orbit in
Z contains an admissible point. We may and will assume that the point eH ∈ G/H ∈ Z
is admissible.

We define the groups
N := NG(a) ∩NG(ah) (3.1)

and

Z := {w ∈ NG(a) : Ad(w)h∅ = Ad(m)h∅ for some m ∈M} = NLQ
(a) (3.2)

Note that Z is a normal subgroup of N . For an admissible point z ∈ Z we set

W := {w ∈ NG(a) : hz,X = Ad(wm)h∅ for some X ∈ a and m ∈M}. (3.3)
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3. P -Orbits of maximal rank

By [39, Proposition 10.4] the set W does not depend on the choice of the admissible
point. Furthermore, by [39, Theorem 11.1] it is a subgroup of N . The quotient group

WZ := W/Z

is equal to the little Weyl group of Z as defined in [28]. The little Weyl group acts on
a/ah as a finite reflection group. The set C/ah is a fundamental domain for this action.

Let aE be the edge of C, i.e.,

aE := C ∩ −C.

The little Weyl group acts trivially on aE/ah. See [39, Lemma 12.1]. Moreover, by [28,
Proposition 10.3] and [39, Theorem 12.2] the little Weyl group is the Weyl group of a
root system in (a/aE)

∗. This root system is called the spherical root system. We will
indicate it by ΣZ .

For our purposes the following characterization of W is important.

Proposition 3.1. Let z ∈ Z be admissible and let w ∈ NG(a). Then Pw−1 · z is open if
and only if w ∈ W . In that case w−1 · z is admissible.

Proof. The assertion follows from [39, Proposition 7.2] and the equivariance of limits of
subalgebras

hw−1·z,X = Ad(w−1)hz,Ad(w)X (X ∈ a).

If Z is wavefront, then the W = N and the little Weyl group is equal to WZ = W/Z .
See Proposition A.1 in Appendix A.

3.10 Weakly admissible points
We call a point z ∈ Z weakly admissible if it is weakly adapted and for every order-
regular element X ∈ a there exists a w ∈ NG(a) so that hz,X = Ad(w)h∅. Note that
every admissible point is weakly admissible.

Proposition 3.1. Let z ∈ Z. If z is weakly admissible, then w · z is weakly admissible for
every w ∈ NG(a).

Remark 3.2. As the set of admissible points is (relatively) open and dense in the set
of adapted points, it follows from the proposition and Proposition 3.1 (ii) that the set of
weakly admissible points is open and dense (with respect to the subspace topology) in
the set of weakly adapted points.

Proof of Proposition 3.1. Assume that z is weakly admissible and w ∈ NG(a). If X ∈ a
is order-regular then Ad(w)X is also order-regular. Therefore, there exists a w′ ∈ NG(a)
so that hz,Ad(w−1)X = Ad(w′)h∅, and hence

hw·z,X = Ad(w)hz,Ad(w−1)X = Ad(ww′)h∅.

153



IV. The most continuous part of the Plancherel decomposition

By Proposition 3.1 O := Pw ·z has maximal rank. It remains to prove that w ·z is weakly
adapted.

Let O′ = P · z. Since z is weakly adapted, we have aO′ ⊆ hz by Theorem 3.2, and
hence Ad(w)aO′ ⊆ hw·z. Let X ∈ a−. Then

Ad(w)aO′ ⊆ a ∩ hw·z,X = aO.

As both aO′ and aO are conjugate to ah, these two spaces are of equal dimension. There-
fore, Ad(w)aO′ = aO. Since z is weakly adapted, there exists O′-regular elements in
a∩ h⊥z . It follows that there exist O-regular elements in a∩ h⊥w·z = Ad(w)

(
a∩ h⊥z

)
. This

proves that w · z is weakly adapted.

Proposition 3.3. Let z ∈ Z be weakly admissible, let X ∈ a be order-regular and let
w ∈ NG(a). Then hz,X = Ad(wm)h∅ for some m ∈ M if and only if Pw−1 · z is open
and X ∈ Ad(w)C.

Proof. We have
Ad(w)−1hz,X = hw−1·z,Ad(w−1)X .

By Proposition 3.1 the point w−1 · z is weakly admissible. In view of Proposition 3.1
the limit subalgebra hw−1·z,Ad(w−1)X is equal to Ad(m)h∅ for some m ∈ M if and only if
w−1 · z is open and Ad(w−1)X ∈ C.

3.11 An action of the Weyl group
We write (P\Z)max for the subset of P\Z consisting of all P -orbits in Z of maximal
rank and (P\Z)open for set of all open P -orbits in Z.

Proposition 3.1. Let O1,O2 ∈ (P\Z)max, and let z1 ∈ O1 and z2 ∈ O2 be weakly
admissible. Let further X1, X2 ∈ a be order-regular, and let m ∈ M . If hz1,X1 =
Ad(m)hz2,X1 , then hz1,X2 = Ad(m)hz2,X2 .

Proof. Let w ∈ NG(a) be so that hz1,X1 = Ad(w)h∅. By Proposition 3.1 (ii) the point
w−1 · z1 is adapted. In view of Proposition 3.1 it is also weakly admissible, and hence
w−1 · z1 is admissible. Moreover,

hw−1·z1,Ad(w−1)X1
= Ad(w−1)hz1,X1 = h∅,

and hence Ad(w−1)X1 ∈ C. Let v ∈ W be so that Ad(w−1)X2 ∈ Ad(v)C. Then
v−1w−1 · z1 is admissible by Proposition 3.1. As Ad(v−1w−1)X2 ∈ C, it follows that
there exists an m1 ∈M so that

hz1,X2 = Ad(wv)hv−1w−1·z,Ad(v−1w−1)X2
= Ad(m1wv)h∅.

In the same way we find
hz2,X2 = Ad(m2wv)h∅

for some m2 ∈M . Now
hz1,X2 = Ad(m1m

−1
2 )hz2,X2 .
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3. P -Orbits of maximal rank

The latter is equal to Ad(m)hz2,X2 if and only if

m ∩ hz1,X2 = Ad(m)
(
m ∩ hz2,X2

)
. (3.1)

It thus suffices to prove the latter.
We claim that

m ∩ hz,X = m ∩ hz (3.2)

for all weakly adapted points z ∈ Z and all order-regular elements X ∈ a. To prove the
claim we first consider an adapted point z ∈ Z. Then (3.2) follows from Proposition 3.1
if X ∈ a−. Since the limit hz,X is the same for all X ∈ C, (3.2) also holds for X ∈ C.
If X ∈ a is any order-regular element, then there exists a u ∈ W so that Ad(u)X ∈ C.
Then

m ∩ hz,X = m ∩ Ad(u−1)hu·z,Ad(u)X = Ad(u−1)
(
m ∩ hu·z,Ad(u)X

)
.

By Proposition 3.1 the point u · z is adapted. Therefore,

Ad(u−1)
(
m ∩ hu·z,Ad(u)X

)
= Ad(u−1)

(
m ∩ hu·z

)
= m ∩ hz.

This proves (3.2) in case z ∈ Z is adapted. Let now z ∈ Z be weakly adapted. Then
there exists a u ∈ NG(a) so that u · z is adapted. In that case

m ∩ hz,X = Ad(u−1)
(
m ∩ hu·z,Ad(u)X

)
= Ad(u−1)

(
m ∩ hu·z

)
= m ∩ hz.

This proves the claim (3.2).
The required identity (3.1) follows from (3.2) as hz1,X1 = Ad(m)hz2,X1 and hence

m ∩ hz1,X2 = m ∩ hz1,X1 = Ad(m)
(
m ∩ hz2,X1

)
= Ad(m)

(
m ∩ hz2,X2

)
.

If O ∈ P\Z and X ∈ a−, then up to M -conjugacy the limits hz,X do not depend on
the point z ∈ O, see Remark 3.2 (b). In view of Proposition 3.1 we may thus define an
equivalence relation ∼ on (P\Z)max by requiring that

O1 ∼ O2

if and only if for a given order-regular element X ∈ a there exists weakly admissible
points z1 ∈ O1 and z2 ∈ O2 so that

hz1,X = hz2,X .

The equivalence relation does not depend on the choice of the order-regular element
X ∈ a.

Remark 3.2.

(a) If O ∈ P\Z, then by Proposition 3.1 the limit subalgebra hz,X for a given order-
regular element X ∈ a− does not depend on z ∈ O up to M -conjugacy. Moreover,
hm·z,X = Ad(m)hz,X for every m ∈M . Therefore, two P -orbits O1,O2 of maximal
rank are equivalent if and only if there exists an order-regular elements X ∈ a−,
points z1 ∈ O1 and z2 ∈ O2, and an m ∈M so that hz1,X = Ad(m)hz2,X .
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IV. The most continuous part of the Plancherel decomposition

(b) Let X ∈ a− be order-regular. If z ∈ Z, then by Proposition 3.1 the limit subalgebra
hz,X is an M -conjugate of h∅ if and only if P · z is open. Therefore, if O1 ∈ P\Z is
open and O2 ∈ (P\Z)max, then O1 ∼ O2 if and only if O2 is open. In particular, the
set (P\Z)open of all open P -orbits in Z forms an equivalence class.

We denote the equivalence classes of ∼ by [·] and recall the subgroup W of NG(a)
from (3.3).

Theorem 3.3. For any v ∈ NG(a) and any O ∈ (P\Z)max, the equivalence class [Pv ·z]
is independent of the choice of the weakly admissible point z ∈ O. For w ∈ W and
O ∈ (P\Z)max we may thus set

w · [O] = [Pv · z],

where v ∈ NG(a) is any representative of w and z ∈ O is any weakly admissible point.
The map

W × (P\Z)max/∼ → (P\Z)max/∼

thus obtained defines an action of W on (P\Z)max/∼. This action has the following
properties.

(i) W acts transitively on (P\Z)max/∼.

(ii) The stabilizer of the equivalence class (P\Z)open is equal to W/MA.

(iii) Let w ∈ W and let v ∈ NG(a) be a representative for w. If X ∈ a ∩ a⊥h satisfies
Zg(X) = lQ, and z1, . . . , zn is a set of admissible points representing the open
P -orbits in Z with

X ∈ a ∩ h⊥zi (1 ≤ i ≤ n),

then
Pw · zi ̸= Pw · zj (1 ≤ i < j ≤ n)

and
w · (P\Z)open = {Pw · zi : 1 ≤ i ≤ n}.

In particular, the cardinalities of the equivalence classes are all equal, i.e, for every
O ∈ (P\Z)max the cardinality of [O] is equal to the number of open P -orbits in Z.

(iv) If w ∈ W and O ∈ (P\Z)max, then aO′ = Ad(w)aO for every O′ ∈ w · [O].

The action of W on (P\Z)max lifts to an action of NG(a). In later sections we will
use interchangeably the actions ofW andNG(a) on (P\Z)open and use the same notation
without further indication.

Remark 3.4.

(a) Let P ⊆ G be a minimal parabolic subgroup defined over R and let Z be an algebraic
G-variety. Assume that Z is real spherical, i.e., that P admits an open orbit in Z. In
[32] Knop and Zhgoon constructed an action of W on the set of P -orbits O in Z with
the property that O(R) ̸= ∅. If Z is an open G-orbit in Z(R), then each equivalence
class in (P (R)\Z)max corresponds to one P -orbit O of maximal rank in Z with the
property that O(R) ̸= ∅. The construction of Knop and Zhgoon then coincides with
the W -action on (P\Z)max/ ∼ from Theorem 3.3.
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3. P -Orbits of maximal rank

(b) If P admits only one open orbit in Z, then each equivalence class of ∼ consists of
precisely one P -orbit in Z. The above action then yields a transitive action of W on
(P\Z)max. This is in particular the case if G and H are both complex groups; the
latter action then coincides with Knop’s W -action on P\Z from [27] restricted to the
set of maximal rank orbits.

(c) Assume that in each open P -orbit in Z the set of adapted points is precisely equal
to one MA-orbit, equivalently if there exists a z ∈ Z so that P · z is open and
a ∩ a⊥h ⊆ h⊥z . Then every adapted point is admissible. If O is an open orbit in Z,
z ∈ O is adapted, and w = vMA ∈ W , then the orbit

w · O := Pv · z (3.3)

does not depend on the choice of z. In view of Proposition 3.1 the map

W × (P\Z)max → (P\Z)max; (w,O) 7→ w · O (3.4)

defines an action of W on (P\Z)max. This action is a refinement of the action of W
on (P\Z)max/ ∼ defined in Theorem 3.3. The condition that in each open P -orbit
in Z the set of adapted points forms one MA-orbit is in particular satisfied in case Z
is symmetric, i.e., in case H is an open subgroup of the fixed point subgroup of an
involutive automorphism of G.

Proof of Theorem 3.3. Recall from Proposition 3.1 that the set of weakly admissible points
is stable under NG(a). In particular, if O ∈ (P\Z)max and z ∈ O is weakly admissible,
then Pw · z ∈ (P\Z)max for all w ∈ NG(a).

Let O ∈ (P\Z)max and let z1, z2 ∈ O be weakly admissible. Let further w ∈ NG(a).
We claim that

Pw · z1 ∼ Pw · z2. (3.5)

By Remark 3.2 (b) there exists an m ∈ M so that for all X ∈ a− we have hz1,X =
Ad(m)hz2,X . After replacing z2 by m · z2 we may assume that hz1,X = hz2,X for all
X ∈ a−. By Proposition 3.1 the limits hz1,X and hz2,X are equal for all order-regular
X ∈ a. Fix now an order-regular X ∈ a and let w ∈ NG(a). Then Ad(w−1)X is
order-regular, and hence

hw·z1,X = Ad(w)hz1,Ad(w−1)X = Ad(w)hz2,Ad(w−1)X = hw·z2,X .

This proves the claim (3.5).
From the claim it follows that for a given weakly adapted point z0 and v ∈ NG(a) we

have [Pv · z] = [Pv · z0] for all weakly adapted point z ∈ P · z0. This proves the first
assertion in the theorem and we thus obtain an action of W on (P\Z)max.

We move on to prove the listed properties of this action. It follows from Proposi-
tion 3.1 that the action is transitive, and from Proposition 3.1 that the stabilizer of the
equivalence class of open P -orbits is equal to W/MA.

We move on to prove (iii). Let w ∈ W , let v ∈ NG(a) be a representative for w and
let X ∈ a ∩ a⊥h satisfy Zg(X) = lQ. Every open P -orbit admits by Proposition 3.2 an
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IV. The most continuous part of the Plancherel decomposition

admissible point z with X ∈ a∩ h⊥z . This point is unique up to translation by an element
in MA. Let z1, . . . , zn be a set of adapted point representing the open P -orbits in Z and
assume that

X ∈ a ∩ h⊥zi (1 ≤ i ≤ n).

Then Pv · zi ∈ w · (P\Z)open for all 1 ≤ i ≤ n. Moreover, the points v · z1, . . . , v · zn
are weakly admissible and

Ad(w)X ∈ a ∩ h⊥v·zi (1 ≤ i ≤ n).

If Pv · zi = Pv · zj for some 1 ≤ i < j ≤ n, then it follows from Proposition 3.1 (i) that
zi ∈MA·zj , which leads to a contradiction. We conclude that the orbits Pv·z1, . . . Pv·zn
are pairwise distinct. It now suffices to show that the number of orbits in w · (P\Z)open
does not exceed the number of open orbits.

Let z ∈ Z be any point so that [P · z] = w · (P\Z) and let Y ∈ a−. There exists a
u ∈ NG(a) so that hz,Y = Ad(u)h∅. By Proposition 3.1 the assignment

O 7→ Pu−1 · O (3.6)

maps w · (P\Z)open to (P\Z)open. We claim that this map is injective.
Let O,O′ ∈ w · (P\Z)open be so that Pu−1 · O = Pu−1 · O′. By Proposition 3.1

(i) there exist weakly adapted points z ∈ O and z′ ∈ O′ so that Ad(u)X ∈ h⊥z and
Ad(u)X ∈ h⊥z′ . Now u−1 · z and u−1 · z′ are adapted points in the same open orbit. It
follows from Proposition 3.1 (i) that u−1 ·z ∈MAu−1 ·z′. This implies that z ∈MA ·z′,
and hence

O = P · z = P · z′ = O′.

This proves the injectivity of (3.6) and hence (iii).
Finally, we prove (iv). Let O ∈ (P\Z)max and w ∈ W . If z ∈ O is weakly admissi-

ble, then for every order-regular element X ∈ a we have aO = a ∩ hz,X . Since

a ∩ hw·z,X = Ad(w)
(
a ∩ hz,Ad(w−1X)

)
= Ad(w)aO (X ∈ a order-regular)

it follows that aPw·z = Ad(w)aO. This proves (iv).

4 Distribution vectors of principal series representations

4.1 Basic Definitions
For a parabolic subgroup S of G with Langlands decomposition S = MSASNS and a
representation ξ of MS on a Hilbert space Vξ and λ ∈ a∗S,C, we define C∞(S : ξ : λ) to
be the space smooth vectors in the principal series representation induced from S with
induction data ξ ⊗ λ ⊗ 1, i.e., the space of smooth Vξ-valued functions f on G with the
property that

f(manx) = aλ+ρSξ(m)f(x) (m ∈MS, a ∈ AS, n ∈ NS, x ∈ G).
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Recall that K is a maximal compact subgroup of G. The pairing

C∞(S : ξ∨ : −λ)× C∞(S : ξ : λ) → C; (χ, f) 7→
∫
K

(
χ(k), f(k)

)
dk

is non-degenerate and G-equivariant. We thus obtain a G-equivariant inclusion

C∞(S : ξ∨ : −λ) ↪→ C∞(S : ξ : λ)′.

For a smooth manifold M and a Hilbert space V we define E(M, V ) to be the vector
space of all smooth functions M → V , and D(M, V ) to be the subspace of E(M, V )
consisting of all functions with compact support. We write D′(M, V ) for the continuous
dual of D(M, V ). Note that in case M is an open subset of G, there is a natural injec-
tion E(M, V ∗) ↪→ D′(M, V ) (using the Haar measure on G to identify densities with
functions).

Let L∨ and R∨ be the contragredients of the left-regular representation L and the
right-regular representation R, respectively. We define D′(S : ξ : λ) to be the subspace
of D′(G, Vξ) consisting of all distributions µ such that

L∨(man)µ = aλ−ρSξ∨(m−1)µ (m ∈MS, a ∈ AS, n ∈ NS). (4.1)

Let V be a Hilbert space. We write D′(G, V )H for the subspace of D′(G, V ) of
distributions that are invariant under the right-regular representation of H on D′(G, V ),
i.e.,

D′(G, V )H = {µ ∈ D′(G, V ) : R∨(h)µ = µ for all h ∈ H}.

If ϕ ∈ D(G, V ), then in view of the identification Z = G/H the function

gH 7→
∫
H

ϕ(gh) dh

defines an element of D(Z, V ). The map D(G, V ) → D(Z, V ) thus obtained is continu-
ous. Moreover, the induced map

D′(Z, V ) → D′(G, V )H ; µ 7→
(
ϕ 7→ µ

(∫
H

ϕ( ·h) dh
))

(4.2)

is a topological isomorphism. We will use this isomorphism to identify D′(Z, V ) with
D′(G, V )H . Finally, we define the space

D′(Z, S : ξ : λ) = D′(Z, Vξ) ∩ D′(S : ξ : λ).

4.2 Distribution vectors versus functionals
Let S = MSASNS , (ξ, Vξ) and λ ∈ a∗S,C be as before. In this section we compare the
spaces C∞(S : ξ : λ)′ and D′(S : ξ : λ). We follow for this the analysis in [14, Section
2.3].
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IV. The most continuous part of the Plancherel decomposition

Let ψ0 ∈ D(G) satisfy∫
MS

∫
AS

∫
NS

a2ρSψ0(manx) dn da dm = 1 (x ∈ G).

One may for instance take ψ0 ∈ D(G) to be right K-invariant and satisfying∫
G

ψ0(x)a
2ρS
S (x) dx = 1,

where aS : G→ AS is the map given by

x ∈ NSaS(x)MSK (x ∈ G).

For µ ∈ D′(S : ξ : λ), let ωSξ,λµ ∈ C∞(S : ξ : λ)′ be given by(
ωSξ,λµ

)
(f) = µ(ψ0f)

(
f ∈ C∞(S : ξ : λ)

)
.

The map
ωSξ,λ : D′(S : ξ : λ) → C∞(S : ξ : λ)′ (4.1)

we thus obtain is a topological isomorphism; it is easily seen that the map

θSξ,λ : C
∞(S : ξ : λ)′ → D′(S : ξ : λ),

which for η ∈ C∞(S : ξ : λ)′ and ϕ ∈ D(G, Vξ) is given by(
θSξ,λη

)
(ϕ) = η

(
x 7→

∫
MS

∫
AS

∫
NS

a−λ+ρSξ(m−1)ϕ(manx) dn da dm
)
, (4.2)

is the inverse of ωSξ,λ. In particular it follows that ωSξ,λ does not depend on the choice of
the function ψ0. Note that θSξ,λ intertwines the representation π∨

S:ξ:λ on C∞(S : ξ : λ)′

with R∨ on D′(S : ξ : λ). The restriction of ωSξ,λ to D′(S : ξ : λ)H is a G-equivariant
isomorphism to the space of H-fixed functionals on C∞(S : ξ : λ).

4.3 Intertwining operators
Let S =MSASNS , (ξ, Vξ) and λ ∈ a∗S,C be as before. For u ∈ U(g) we set

pS,ξ,λ,u : E(G, Vξ) → [0,∞]; ϕ 7→
∫
G

∥aS(x)−λ+ρS R(u)ϕ(x)∥ξ dx

and endow the space

VS,ξ,λ :=
{
ϕ ∈ E(G, Vξ) : pS,ξ,λ,u(ϕ) <∞ for every u ∈ U(g)

}
,

with the Fréchet topology induced by the seminorms pS,ξ,λ,u. Note that D(G, Vξ) ⊆
VS,ξ,λ. Further, for two parabolic subgroups S1 and S2 of G with AS1 = AS2 = AS , we
write

A(S2 : S1 : ξ : λ) : C
∞(S1 : ξ : λ) → C∞(S2 : ξ : λ)

for the standard Knapp-Stein intertwining operators and define

A(S2 : S1 : ξ : λ) := θS2
ξ,λ ◦ A(S1 : S2 : ξ : λ)

∗ ◦ ωS1
ξ,λ.

We assume that AS ⊆ A and identify a∗S,C with the annihilator of mS ∩ a in a∗C.

160



4. Distribution vectors of principal series representations

Proposition 4.1. Let S1, S2, ξ and λ be as above. The following diagram commutes.

D′(S1 : ξ : λ)
A(S2:S1:ξ:λ) //

ω
S1
ξ,λ

��

D′(S2 : ξ : λ)

ω
S2
ξ,λ

��
C∞(S1 : ξ : λ)

′

θ
S1
ξ,λ

OO

A(S1:S2:ξ:λ)∗ // C∞(S2 : ξ : λ)
′

θ
S2
ξ,λ

OO

Assume that λ ∈ a∗S,C satisfies

⟨Reλ, α⟩ > 0
(
α ∈ Σ(a : S2) ∩ −Σ(a : S1)

)
,

Then for every ϕ ∈ VS2,ξ,λ and every x ∈ G the integral∫
NS2

∩NS1

ϕ(nx) dx

is absolutely convergent and the function
∫
NS2

∩NS1
ϕ(n · ) dx thus obtained is an element

of VS1,ξ,λ. Moreover, the map

VS2,ξ,λ → VS1,ξ,λ; ϕ 7→
∫
NS2

∩NS1

ϕ(n · ) dn

is continuous. Finally, if µ ∈ D′(S1 : ξ : λ), then µ extends to a continuous linear
functional on VS1,ξ,λ, and the distribution A(S2 : S1 : ξ : λ)µ ∈ D′(S2 : ξ : λ) is given
by [

A(S2 : S1 : ξ : λ)µ
]
(ϕ) = µ

(∫
NS2

∩NS1

ϕ(n · ) dn
) (

ϕ ∈ VS2,ξ,λ

)
. (4.1)

For the proof of the proposition we refer to Appendix B.

We define an inner product ⟨·, ·⟩S,ξ,λ on C∞(S : ξ : λ) by

⟨ϕ, ψ⟩S,ξ,λ =
∫
K

⟨ϕ(k), ψ(k)⟩ξ dk
(
ϕ, ψ ∈ C∞(S : ξ : λ)

)
, (4.2)

where ⟨·, ·⟩ξ is the inner product on Vξ. We consider parabolic subgroup S1 and S2 with
AS1 = AS2 = AS ⊆ A as before. The adjoint of A(S2 : S1 : ξ : λ) with respect to (4.2)
is given by

A(S2 : S1 : ξ : λ)
† = A(S1 : S2 : ξ : −λ)

The composition A(S2 : S1 : ξ : λ) ◦ A(S1 : S2 : ξ : λ) is an intertwining operator from
C∞(S1 : ξ : λ) to itself. It is therefore given by multiplication by a scalar. As in [24,
§14.6] we choose a meromorphic function on a∗S,C

λ 7→ γ(S1 : S2 : ξ : λ)
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IV. The most continuous part of the Plancherel decomposition

that is real and non-negative on a∗S and satisfies the identity of meromorphic operators

A(S2 : S1 : ξ : λ) ◦ A(S1 : S2 : ξ : λ) = γ(S2 : S1 : ξ : λ)γ(S1 : S2 : ξ : λ)Id.

We may choose these functions so that for all λ ∈ a∗S,C

γ(S1 : S2 : ξ : λ) = γ(S2 : S1 : ξ : −λ),

γ(S1 : S2 : ξ : λ) = γ(S1 : S2 : ξ
′ : λ) (ξ′ ≃ ξ, λ ∈ a∗S,C)

for every ξ′ equivalent to ξ, and

γ
(
vS1v

−1 : vS2v
−1 : v · ξ : Ad∗(v)λ

)
= γ(S1 : S2 : ξ : λ)

for every v ∈ NG(aS). Here v · ξ is the representation of MS with representation space
Vξ given by

(v · ξ)(m) = ξ(v−1mv) (m ∈MS).

If we normalize the intertwining operators with these γ-functions as

A◦(S1 : S2 : ξ : λ) :=
1

γ(S1 : S2 : ξ : λ)
A(S1 : S2 : ξ : λ),

then we obtain the identities

A◦(S3 : S1 : ξ : λ) = A◦(S3 : S2 : ξ : λ) ◦ A◦(S2 : S1 : ξ : λ)

for all parabolic subgroups S1, S2, S3 with AS1 = AS2 = AS3 = AS ⊆ A, λ ∈ (aS)
∗
C and

unitary representations ξ of MS1 =MS2 =MS3 =MS . In particular,

A◦(S1 : S2 : ξ : λ)
−1 = A◦(S2 : S1 : ξ : λ),

and hence the operator A◦(S1 : S2 : ξ : λ) is unitary if λ ∈ ia∗S .
For v ∈ NG(aS) we define the intertwining operator

Iv(S : ξ : λ) : D′(S : ξ : λ) → D′(S : v · ξ : Ad∗(v)λ)

by
Iv(S : ξ : λ) := L∨(v) ◦ A(v−1Sv : S : ξ : λ)

and the corresponding normalized intertwining operator

I◦
v (S : ξ : λ) : D′(S : ξ : λ) → D′(S : v · ξ : Ad∗(v)λ)

by

I◦
v (S : ξ : λ) :=

1

γ(v−1Sv : S : ξ : λ)
Iv(S : ξ : λ).

We note that

I◦
v (S : w · ξ : w · λ) ◦ I◦

w(S : ξ : λ) = I◦
vw(S : ξ : λ)

(
v, w ∈ NG(aS)

)
.

The family of operators λ 7→ I◦
v (S : ξ : λ) is meromorphic. There exists a locally finite

union H of complex affine hyperplanes in a∗S,C of the form {λ ∈ a∗S,C : λ(α∨) = c} for
some α ∈ Σ(S) and c ∈ R, so that for all unitary representations ξ of MS the poles of the
families λ 7→ Iv(S : ξ : λ) and λ 7→ I◦

v (S : ξ : λ) lie on H.
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4. Distribution vectors of principal series representations

4.4 Comparison between induction from different parabolic subgroups
Let S and T be parabolic subgroups of G and assume that S ⊆ T . Let S = MSASNS

T = MTATNT be Langlands decompositions of S and T , respectively, and assume that
AT ⊆ AS ⊆ A. Observe that S ∩ MT is a parabolic subgroup of MT . Moreover,
a = aT ⊕ (mT ∩ a). We identify a∗T as a subspace a∗ by extending the functionals by 0
on mT ∩ a. Note that

ρS∩MT
= ρS − ρT .

Let (ξ, Vξ) be a representation of MT on a Hilbert space and assume that

MT ∩NS ⊆ ker(ξ).

Let further λ ∈ a∗T,C. There is a natural MT -equivariant embedding

i : ξ ↪→ IndMT
MT∩S(ξ|MS

⊗ ρT − ρS ⊗ 1),

see [1, Lemma 4.4]. Concretely, the map i from Vξ into C∞(MT ∩S : ξ|MS
: ρT − ρS) of

smooth vectors for the principal series representation on the right-hand side is given by

i(v)(mT ) = ξ(mT )v, (v ∈ Vξ, mT ∈MT ).

Let λ ∈ a∗T,C. Using induction by stages, we obtain a G-equivariant embedding

IndGT (ξ ⊗ λ⊗ 1) ↪→ IndGS (ξ|MS
⊗ (λ+ ρT − ρS)⊗ 1).

On the level of smooth vectors this results in a G-equivariant embedding

i#ξ,λ : C
∞(T : ξ : λ) ↪→ C∞(S : ξ|MS

: λ+ ρT − ρS),

which is the natural inclusion map. Note that i#ξ∨,−λ extends to a continuous inclusion

D′(T : ξ : λ) ↪→ D′(S : ξ|MS
: λ− ρT + ρS).

Using the isomorphisms from Section 4.2, we now arrive at the following result.

Proposition 4.1. Let λ ∈ a∗T,C and let (ξ, Vξ) be a representation of MT on a Hilbert
space and assume that MT ∩NS ⊆ ker(ξ). There exists a G-equivariant injective map

C∞(T : ξ : λ)′ ↪→ C∞(S : ξ|MS
: λ− ρT + ρS)

′

so that
D′(T : ξ : λ) �

� //

ωT
ξ,λ

��

D′(S : ξ|MS
: λ− ρT + ρS)

ωS
ξ|MS

,λ−ρT+ρS

��
C∞(T : ξ : λ)′

θTξ,λ

OO

� � // C∞(S : ξ|MS
: λ− ρT + ρS)

′

θS
ξ|MS

,λ−ρT+ρS

OO

is a commuting diagram.
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IV. The most continuous part of the Plancherel decomposition

4.5 LQ,nc-spherical representations of MQ

Let Q = MQAQNQ be the Langlands decomposition of Q with AQ ⊆ A. Then LQ =
MQAQ. We recall that lQ,nc is the sum of the simple ideals of non-compact type in
lQ. We write LQ,nc for the connected subgroup of LQ with Lie algebra lQ,nc. Note that
LQ,nc ⊆MQ.

We first look at a few properties of MQ and LQ,nc which will be needed in this and
later sections.

Lemma 4.1.

(i) LQ,nc is a closed normal subgroup of MQ.

(ii) MQ =MLQ,nc ≃M ×M∩LQ,nc
LQ,nc.

(iii) The group ML,nc acts trivially on MQ/ML,nc.

(iv) Let z ∈ Z be a weakly adapted point and w ∈ NG(A) so that hz,X = Ad(w)h∅ for
some order-regular elementX ∈ a−. ThenwLQ,ncw−1 ⊆MQ∩Hz. Ifw normalizes
ah, or equivalently if aP ·z = ah, then LQ,nc ⊆MQ ∩Hz.

Proof. Since mQ is reductive, there exists an ideal mQ,c complementary to lQ,nc. The
group LQ,nc is equal to the connected component of ZMQ

(mQ,c) and therefore LQ,nc is
closed. As mQ = m + lQ,nc the set MLQ,nc is open. Moreover, since M is compact
and LQ,nc is closed, MLQ,nc is also closed. From the fact that M intersects with every
connected component of MQ assertion (ii) now follows.

The subalgebra lQ,nc is an M -stable ideal of mQ. Assertion (i) therefore follows from
(ii).

Since LQ,nc is normal in MQ, it acts trivially on the quotient MQ/LQ,nc, and hence
(iii) follows.

Finally we prove (iv). Let O be a P -orbit in Z of maximal rank and let z ∈ O be
weakly admissible. We select a regular element X ∈ a−. Then there exists a w ∈ NG(a)
so that hz,X = Ad(w)h∅. By Proposition 3.1 (ii) the point w−1 · z is adapted. Therefore,
lQ,nc ⊆ hw−1·z = Ad(w−1)hz, and hence Ad(w)lQ,nc ⊆ hz. The assertion now follows as
LQ,nc is connected. By Remark 3.2 the roots of a in lQ,nc are precisely those roots that
vanish on a ∩ a⊥h . If w normalizes ah, then it follows that w normalizes lQ,nc and hence
LQ,nc.

Given a continuous representation of MQ in a Fréchet space V , we denote its space of
smooth vectors by V ∞ and equip it with the structure of a continuous FréchetMQ-module
in the usual way. The continuous linear dual we denote by V ∞′.

Corollary 4.2. Let (ξ, Vξ) be an irreducible continuous representation ofMQ in a Fréchet
space V such that

(V ∞
ξ

′)LQ,nc ̸= 0.

Then ξ|LQ,nc
is trivial and ξ|M is irreducible. In particular, ξ is finite dimensional and

unitarizable. In particular this is the case if

(V ∞
ξ

′)Hz ̸= {0}.
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4. Distribution vectors of principal series representations

for some weakly adapted point z in a P -orbit O in Z with aO = ah.

Proof. The proof is the same as the one for [4, Corollary 4.4]. For convenience we give it
here. Let η ∈ (V ∞

ξ
′)LQ,nc . If η ̸= 0, then there is a unique injective continuous linearMQ-

equivariant map j : V ∞ → E(MQ/LQ,nc) such that j∗δ = η, with δ denoting the Dirac
measure of MQ/LQ,nc at eLQ,nc. It follows from Lemma 4.1 (iii) that LQ,nc acts trivially
E(MQ/LQ,nc) and hence on V ∞. We conclude that LQ,nc ⊆ ker(ξ). By application of
Lemma 4.1 (ii) it follows that ξ|M is irreducible. The final assertion follows from Lemma
4.1 (iv).

Let M̂Q,fu be the set of equivalence classes of finite dimensional irreducible unitary
representations of MQ.

Corollary 4.3. Every representation in M̂Q,fu restricts to the trivial representation on
LQ,nc. The restriction map ξ 7→ ξ|MQ

:= ξ|M induces an injection

M̂Q,fu ↪→ M̂.

The image of this injection equals{
[ξ] ∈ M̂ : ξ

∣∣
M∩LQ,nc

is trivial
}
.

Proof. Since the LQ,nc is connected semisimple of the non-compact type, the restriction
of a representation from M̂Q,fu to LQ,nc is trivial. The remaining assertions follow from
Lemma 4.1.

4.6 Comparison between induction from P and Q
The following proposition follows directly from Corollary 4.2 and the comparison of
induction from different parabolic subgroups in Section 4.4.

Proposition 4.1. Let ξ be a representation of MQ on a Hilbert space Vξ and λ ∈ a∗Q,C.
Assume that

(V ∞
ξ

′)LQ,nc ̸= {0}.
Then ξ is finite dimensional, ξ|M is irreducible and

D′(Q : ξ : λ) ⊆ D′(P : ξ|M : λ+ ρP − ρQ).

Moreover, there exists a natural inclusion

C∞(Q : ξ : λ)′ ↪→ C∞(P : ξ|M : λ+ ρP − ρQ)
′

so that
D′(Q : ξ : λ) �

� //

ωQ
ξ,λ

��

D′(P : ξ|M : λ+ ρP − ρQ)

ωP
ξ|M,λ+ρP−ρQ

��
C∞(Q : ξ : λ)′

θQξ,λ

OO

� � // C∞(P : ξ|M : λ+ ρP − ρQ)
′

θP
ξ|M,λ+ρP−ρQ

OO
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is a commuting diagram. In particular this is the case if

(V ∞
ξ

′)Hz ̸= {0}.

for some weakly adapted point z contained in a P -orbit O of maximal rank in Z with
aO = ah.

The following describes D′(Q : ξ : λ) as a subspace of D′(P : ξ|M : λ+ ρP − ρQ).

Lemma 4.2. Let σ ∈ M̂ be so that σ|M∩LQ,nc
is trivial, and let λ ∈ a∗Q,C. Let ξ be the

representation ofMQ so that ξ|LQ,nc
is trivial and ξ|M = σ. If µ ∈ D′(P : σ : λ+ρP−ρQ)

satisfies
L∨(n)µ = µ (n ∈MQ ∩NP ),

then µ ∈ D′(Q : ξ : λ).

Proof. Let Gµ be the closed subgroup of G consisting of elements g ∈ G so that

L∨(g)µ = µ.

Since MQ = MLQ,nc, see Lemma 4.1, it suffices to prove that LQ,nc ⊆ Gµ. The latter
follows from the assumptions as LQ,nc is the smallest closed subgroup of G containing
MQ ∩NP and MQ ∩NP .

5 Support and transversal degree

Throughout this section we fix σ ∈ M̂ and λ ∈ a∗C. In this section we study the support
and transversal derivatives of distributions in D′(Z, P : σ : λ).

5.1 Transversal degree
Let M be a smooth submanifold of G and let U be an open subset of G.

We fix a set of smooth vector fields v1, . . . , vn on U so that at every point y ∈ M∩U

TyG = Rv1(y)⊕ · · · ⊕ Rvn(y)⊕ TyM.

For a multi-index β in n-variables, let ∂β be the differential operator

C∞(U : V ) → C∞(U : V )

given by
∂βϕ = v1 · · · v1︸ ︷︷ ︸

β1 times

· · · vn · · · vn︸ ︷︷ ︸
βn times

(ϕ)
(
ϕ ∈ C∞(U : V )

)
.

Let µ ∈ D′(G, V ) and assume that suppµ = M ∩ U . It follows from [48, p. 102]
that for every multi-index β there exists a distribution µβ ∈ D′(M∩ U, V ) such that for
all ϕ ∈ D(U, V )

µ(ϕ) =
∑
β

µβ
(
∂βϕ

)
.
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5. Support and transversal degree

This decomposition of µ is unique. Let kU = max{|β| : µβ ̸= 0}. The transversal degree
of µ at a point y ∈ M, is defined to be the minimum of the numbers kU , where U runs
over all neighborhoods of y in G. The transversal degree is independent of the choice of
the vector fields vi.

For a distribution µ ∈ D′(Z, P : σ : λ) let (P\Z)µ be the set of O ∈ P\Z with the
property that there exists an open neighborhood U of O in G such that

suppµ ∩ U = O.

The proof for the following proposition can be found in Remark 5.2 in [35].

Proposition 5.1. Let µ ∈ D′(Z, P : σ : λ). Then

suppµ =
⋃

O∈(P\Z)µ

O.

Let µ ∈ D′(Z, P : σ : λ) and let O ∈ (P\Z)µ. Then the transversal degree of µ
at z ∈ O does not depend on z ∈ O, see [35, Lemma 5.5]. Therefore, we may define
the transversal degree of µ at the orbit O to be the transversal degree of µ at any point
z ∈ O. We write trdeg O(µ) for the transversal degree of µ at O.

5.2 Principal asymptotics
In this section we introduce are main tool, principal asymptotics from [35], to analyse the
support and transversal degree of distributions in D′(Z, P : σ : λ) and use to obtain some
first restrictions on the support and transversal derivatives for given λ and σ.

Let X ∈ a− be order-regular and let z ∈ Z. We define the a-stable subalgebra

nz,X := hz,X ∩ nP

and write N z,X for the connected subgroup of G with Lie algebra equal to nz,X . Let nzX
be an a-stable complementary subspace to nz,X in nP , so that

nP = nz,X ⊕ nzX .

We define Σ(nzX ; a) to be the set of roots of a in nzX and ρO,X ∈ a∗ by setting

ρO,X(Y ) =
1

2
tr
(
ad(Y )

∣∣
nz,X

)
(Y ∈ a).

Note that for m ∈M , a ∈ A and n ∈ NP we have

nman·z,X = Ad(m)nz,X ,

and thus Σ(nzX ; a) and ρO,X only depend on O, not on the choice for z ∈ O.
Let e1, . . . , en be a basis of nzX consisting of joint eigenvectors for the action of ad(a)

on nzX . For a multi-index β, let κβ ∈ N0Σ(n
z
X ; a) be the a-weight of eβ11 · · · eβnn ∈ U(nP ),
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IV. The most continuous part of the Plancherel decomposition

where U(nP ) denotes the universal enveloping algebra of nP . We write ∂β for the differ-
ential operator on PN that for ϕ ∈ E(PN, V ) is given by

(
∂βϕ

)
(pn) :=

∂β1

∂xβ11
· · · ∂

βn

∂xβnn
ϕ
(
p exp(

n∑
i=1

xiei)n
)∣∣∣
xi=0

(p ∈ P, n ∈ N).

The following theorem was proven in [35]; see Theorem 5.1 and its proof and Corol-
lary 5.3. We formulate the results here using distributions instead of functionals, for
which we use the identifications in Section 4.

Proposition 5.1. Let µ ∈ D′(Z, P : σ : λ) and let O ∈ (P\Z)µ. We fix a point z ∈ O
and identify µ with an Hz-invariant distribution in D′(P : σ : λ) as in section 4, for
which we, with abuse of notation, also write µ. Let X ∈ a− be order regular and satisfy

κβ(X) ̸= κγ(X) (5.1)

for any two multi-indices β, γ with |β|, |γ| ≤ trdeg O(µ) and κβ ̸= κγ . Then there exist
a left-P -invariant open neighborhood Ω of e in G, a κ ∈ N0Σ(n

z
X ; a), and a unique

non-zero distribution µz,X ∈ D′(Ω, Vσ), so that

lim
t→∞

et
(
λ+ρP+2ρO,X−κ

)
(X)R∨( exp(tX)

)
µ = µz,X .

Here the limit is with respect to weak-∗ topology on D′(Ω, Vσ). The distribution µz,X is
given by the following. For every multi-index β with κβ = κ there exists a cβ ∈ V ∗

σ such
that for all ϕ ∈ D(Ω, Vσ)

µz,X(ϕ) =
∑
β

κβ=κ

∫
M

∫
A

∫
NP

∫
Nz,X

a−λ+ρP
(
σ∨(m)cβ, ∂

βϕ(mann)
)
dn dn da dm.

Finally, µz,X has the following properties.

(i) L∨(man)µz,X = aλ−ρPσ∨(m−1)µz,X for every m ∈M , a ∈ A and n ∈ NP .

(ii) R∨(Y )µz,X =
(
− λ− ρP − 2ρO,X + κ

)
(Y )µz,X for every Y ∈ a.

(iii) R∨(Y )µz,X = 0 for every Y ∈ hz,X .

(iv) The following are equivalent:

(a) trdeg O(µ) ̸= 0

(b) the transversal degree of µz,X (w.r.t. the submanifold PN z,X ∩ Ω of G) at any
point in suppµz,X is non-zero.

(c) κ ̸= 0.
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Corollary 5.2. Let µ ∈ D′(Z, P : σ : λ) and let O ∈ (P\Z)µ. Let X ∈ a− satisfy (5.1).
Then

λ
∣∣
aO

∈
(
− ρP − 2ρO,X + N0Σ(n

z
X ; a)

)∣∣
aO
. (5.2)

Moreover, trdeg O(µ) ̸= 0 if and only if there exists a non-zero element κ ∈ N0Σ(n
z
X ; a)

so that
λ
∣∣
aO

∈
(
− ρP − 2ρO,X + κ

)∣∣
aO
.

Remark 5.3. If O is of maximal rank, then ρO,X can be explicitly determined. Let z ∈ O
and X ∈ a−. By Proposition 3.1 there exists a w ∈ NG(a) so that hz,X = Ad(w)h∅. In
view of Remark 3.2 (a) we may choose w so that (3.3) is satisfied. The latter guarantees
that

Ad(w)(nP ∩ lQ) ⊆ nP ,

and hence

nz,X = Ad(w)nP ∩ nP , nzX = Ad(w)nP ∩ nP = Ad(w)nQ ∩ nP .

It follows that
ρO,X = −1

2
ρwPw−1 − 1

2
ρP .

In particular (5.2) can be rewritten as

λ
∣∣
aO

∈
(
Ad∗(w)ρP + N0

(
− Σ(P ) ∩ Ad∗(w)Σ(Q)

))∣∣∣
aO
.

Proof of Corollary 5.2. The functional ρO,X only depends on the connected component
of the set of order-regular elements in a in which X is chosen. Every connected compo-
nent of the set of order-regular elements in a contains elements X that satisfy κβ(X) ̸=
κγ(X) for any two multi-indices β, γ with |β|, |γ| ≤ trdeg O(µ) and κβ ̸= κγ . The claim
therefore follows from (ii) and (iii) in Theorem 5.1.

For O ∈ P\Z we set

HO :=
{
λ ∈ a∗C : λ

∣∣
aO

∈ 1

2
ZΣ

∣∣
aO

}
and we define

Hnm :=
⋃

O∈P\Z
rank(O)<rank(Z)

HO.

Here nm stands for not maximal. Then Hnm is a locally finite set of complex affine
subspaces in a∗C of codimension at least 1. Note that if λ ∈ HO, then Im (λ) ∈ (a/aO)

∗.

Theorem 5.4. Let σ ∈ M̂ and λ ∈ a∗C. The following assertions hold true.

(i) Let µ ∈ D′(Z, P : σ : λ). If O ∈ (P\Z)µ, then λ ∈ HO.

(ii) If λ /∈ Hnm, then for all µ ∈ D′(Z, P : σ : λ)

(P\Z)µ ⊆ (P\Z)max.

Proof. The assertions follow directly from Corollary 5.2.
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5.3 P -Orbits of maximal rank and transversal degree
We now focus on P -orbits of maximal rank in (P\Z)µ and use the principal asymptotics
for these orbits to obtain further restrictions on the support and the transversal derivatives.

Let Z(g) be the center of the universal enveloping algebra U(g) of g and let t be a
maximal abelian subalgebra in m. We fix a positive system Σ+

m of the root system of it
in m and write ρm for the corresponding half-sum of positive roots. We further write WC
for the Weyl group of the root system ΣC of (a+ it)C in gC. Let γ be the Harish-Chandra
homomorphism γ : Z(g) → Sym

(
(a⊕ it)C

)WC ≃ C
[
(a⊕ it)∗

]WC .

Proposition 5.1. Let λ ∈ a∗C and σ ∈ M̂ . Further, let µ ∈ D′(Z, P : σ : λ) and let
O ∈ (P\Z)µ. Assume that O is of maximal rank. Let Λσ ∈ it∗ be the highest-weight of
σ. If trdeg O(µ) ̸= 0, then there exists a non-zero element ν ∈ N0Σ(P ) and a dominant
Σm-integral weight Λ ∈ it∗ so that

WC · (λ+ Λσ + ρm) = WC ·
(
λ+ Λ+ ρm + ν

)
.

Moreover, if Xν ∈ a satisfies B(Xν , · ) = ν, then Xν /∈ aO.

Proof. Let z ∈ O and X ∈ a− be as in Proposition 5.1. By Proposition 3.1 there exists
a w ∈ NG(a) so that hz,X = Ad(w)h∅. In view of Remark 3.2 (a) we may choose w so
that (3.3) is satisfied. Then

ρO,X = −1

2
ρwPw−1 − 1

2
ρP ,

see Remark 5.3. In view of Proposition 5.1 there exists a left-P -invariant open neighbor-
hood Ω of e in G, a κ ∈ Σ(Ad(w)nP ∩nP ; a) and non-zero distribution µz,X ∈ D′(Ω, Vσ)
so that (i) – (iv) in Proposition 5.1 hold. In particular,

R∨(Y )µz,X = 0 (Y ∈ Ad(w)nP ). (5.1)

and
R∨(Y )µz,X =

(
− λ+ ρwPw−1 + κ

)
(Y )µz,X (Y ∈ a). (5.2)

Moreover, for every multi-index β with κβ = κ there exists a unique cβ ∈ V ∗
σ such that

for all ϕ ∈ D(Ω, Vσ)

µz,X(ϕ) =
∑
β

κβ=κ

∫
M

∫
A

∫
NP

∫
wNPw−1∩NP

a−λ+ρP
(
σ∨(m)cβ, ∂

βϕ(mann)
)
dn dn da dm.

(5.3)
The representation D′(P : ξ : λ) admits an infinitesimal character, which via the Harish-
Chandra isomorphism is identified with −(λ+ Λσ + ρm). Therefore,

R∨(u)µ = γ(u)
(
− (λ+ Λσ + ρm)

)
µ

(
u ∈ Z(g)

)
.

Since the elements of Z(g) commutate with the adjoint action of G, we find for all u ∈
Z(g)

γ(u)
(
− (λ+ Λσ + ρm)

)
µz,X = lim

t→∞
et
(
λ+ρP+2ρO,X−κ

)
(X)R∨( exp(tX)

)
R∨(u)µ

= R∨(u)µz,X . (5.4)
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5. Support and transversal degree

We will prove the proposition by computing R∨(u)µz,X using the formula (5.3) for µz,X .
For this we first look at the action of M on µz,X .

Let m0 ∈M . By (5.3) we have for every ϕ ∈ D(Ω, Vσ)

R∨(m0)µz,X(ϕ)

=
∑
β

κβ=κ

∫
M

∫
A

∫
NP

∫
wNPw−1∩NP

a−λ+ρP
(
σ∨(m)cβ, ∂

β
(
R(m−1

0 )ϕ
)
(mann)

)
dn dn da dm.

The Haar-measure on each of the groups wNPw
−1 ∩ NP , NP and A is invariant under

conjugation by m0, and hence the right-hand side is equal to∑
β

κβ=κ

∫
M

∫
A

∫
NP

∫
wNPw−1∩NP

a−λ+ρP

× ∂β1

∂xβ11
· · · ∂

βn

∂xβnn

(
σ∨(mm0)cβ, ϕ

(
man exp

( n∑
i=1

xiAd(m0)ei
)
n
))∣∣∣

xi=0
dn dn da dm.

For multi-indices β and β′, let χββ′ :M → C be determined by

∂β
(
ψ ◦ Cm

)
=

∑
β′

χββ′(m)∂β
′
ψ

(
ψ ∈ C∞(wNPw

−1 ∩NP ),m ∈M
)
.

Here Cm denotes conjugation by m. If we denote trdeg O(µ) by k and write S for the
set of multi-indices of length at most k, then the representation χ of M on CS that for all
multi-indices β ∈ S is given by(

χ(m)v
)
β
=

∑
β′

χββ′(m)vβ′
(
m ∈M, v = (vβ′)β′∈S ∈ CS

)
is isomorphic to the adjoint representation of M on

⊕k
l=0

(
Ad(w)nP ∩ nP

)⊗l.
Let c ∈ CS ⊗ V ∗

σ ≃ (V ∗
σ )

S be the element of which the β’th component is equal to cβ
for each β ∈ S. Then for all ϕ ∈ D(Ω, Vσ)

R∨(m0)µz,X(ϕ) =
∑
β

κβ=κ

∫
M

∫
A

∫
NP

∫
wNPw−1∩NP

a−λ+ρP (5.5)

×
(
σ∨(m)

((
χ⊗ σ∨)(m0)c

)
β
, ∂βϕ(mann)

)
dn dn da dm.

The center Z(g) is contained in

Z(m⊕ a)⊕ U(g)Ad(w)nP =
(
Z(m)⊗ Sym(a)

)
⊕ U(g)Ad(w)nP .

Let u ∈ Z(g). There exist vm,1, . . . , vm,k ∈ Z(m) and va,1, . . . , va,k ∈ Sym(a) ≃ C[a∗]
so that

u−
k∑
j=1

vm,j ⊗ va,j ∈ U(g)Ad(w)nP .
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IV. The most continuous part of the Plancherel decomposition

We may assume that δj := va,j
(
− λ + ρwPw−1 + κ

)
is for every 1 ≤ j ≤ k either equal

to 0 or to 1. In view of (5.1), (5.2) and (5.5) we have for all ϕ ∈ D(Ω, Vσ)

R∨(u)µz,X(ϕ) =
k∑
j=1

δj
∑
β

κβ=κ

∫
M

∫
A

∫
NP

∫
wNPw−1∩NP

a−λ+ρP

×
(
σ∨(m)

((
χ⊗ σ∨)(vm,j)c)

β
, ∂βϕ(mann)

)
dn dn da dm.

Let Ξχ⊗σ∨ ⊆ (it)∗ be the set of lowest weights of χ⊗σ∨ and let γm : Z(m) → Sym(tC) ≃
C[t∗] be the Harish-Chandra homomorphism for m. Then

(
χ⊗σ∨)(vm,j) acts diagonaliz-

ably on CS⊗V ∗
σ with eigenvalues γm(vm,j)(η− ρm) for η ∈ Ξχ⊗σ∨ . From (5.4) it follows

that R∨(u)µz,X is a multiple of µz,X . It follows from the uniqueness of the element c that
there exists an η ∈ Ξχ⊗σ∨ so that

δj
(
χ⊗ σ∨)(vm,j)c = δjγm(vm,j)(η − ρm)c (1 ≤ j ≤ k).

Therefore,

R∨(u)µz,X =
k∑
j=1

δjγm(vm,j)(η − ρm)µz,X

=
k∑
j=1

(
va,j

(
− λ+ ρwPw−1 + κ

))(
γm(vm,j)(η − ρm)

)
µz,X

= γ(u)
(
− λ+ κ+ η − ρm

)
µz,X ,

and hence by (5.4)

γ(u)
(
− λ− Λσ − ρm

)
µz,X = γ(u)

(
− λ+ κ+ η − ρm)µz,X .

As µz,X ̸= 0 and this identity holds for all u ∈ Z(g), the first assertion now follows with
ν = −κ and Λ = −η. The second assertion follows from the Remarks 3.2 and 5.3.

Theorem 5.2. Let λ ∈ a∗C, σ ∈ M̂ and µ ∈ D′(Z, P : σ : λ). Let O ∈ (P\Z)µ be of
maximal rank. The following assertions hold true.

(i) Imλ ∈ (a/aO)
∗. Assume that Imλ is regular in the sense that if w ∈ WC stabilizes

Imλ, then w normalizes aO + it and acts trivially on (a+ it)/(aO + it). Then

trdeg O(µ) = 0.

(ii) If trdeg O(µ) = 0 and v ∈ NG(a) satisfies (3.3) and hz,X = Ad(v)h∅ for some
z ∈ O and order-regular element X ∈ a−, then

Reλ ∈ ρvPv−1 + (a/aO)
∗ = Ad∗(v)

(
ρP + (a/ah)

∗)
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6. Construction and properties of H-fixed distribution vectors

Proof. Let O ∈ (P\Z)µ be of maximal rank and assume that trdeg O(µ) ̸= 0. Let Λσ ∈
it∗ be the highest-weight of σ. By Proposition 5.1 there exists a non-zero ν ∈ N0Σ(P ), a
dominant Σm-integral element Λ ∈ it∗, and a w ∈ WC so that

w ·
(
λ+ Λσ + ρm

)
= λ+ Λ+ ρm + ν.

Moreover, the element Xν ∈ a so that B(Xν , · ) = ν is not contained in aO.
Note that WC stabilizes the real subspace (a⊕ it)∗ of (a⊕ it)∗C. Therefore,

w ·
(
Reλ+ Λσ + ρm

)
= Reλ+ Λ+ ρm + ν (5.6)

and
w · Imλ = Imλ. (5.7)

Furthermore, it follows from Corollary 5.2 that Imλ ∈ (a/aO)
∗. Now assume that Imλ

satisfies the regularity condition stated in (i). In view of (5.7) the element w normalizes
aO+ it and acts trivially on

(
(a+ it)/(aO+ it)

)∗. Let a⊥O be the Killing orthocomplement
of aO in a. Then (a + it)/(aO + it) is identified with a⊥O via the Killing form and hence
w acts trivially on a⊥O. It follows from (5.6) that

(Reλ+ ν)
∣∣
a⊥O

= w · (Reλ+ Λσ + ρm)
∣∣
a⊥O

= Reλ
∣∣
a⊥O

and thus ν|a⊥O = 0. This is in contradiction with Xν /∈ aO. We thus conclude that
trdeg O(µ) = 0. This proves (i).

Assertion (ii) follows from Corollary 5.2 and Remark 5.3.

6 Construction and properties ofH-fixed distribution vec-
tors

In this section we construct meromorphic families of distributions in D′(Z, P : σ : λ)
and study some of their properties.

6.1 H-spherical finite dimensional representations

We write ZC for the complexification G(C)/H(C) of Z. Note that Z naturally embeds
into ZC. We further write C[Z](P ) for the multiplicative monoid of functions f : Z → C
so that

(a) there exists a non-zero regular function ϕ on ZC so that f = ϕ
∣∣
Z

,

(b) there exists a ν ∈ a∗ so that

f(man · z) = aνf(z) (m ∈M,a ∈ A, n ∈ N).
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IV. The most continuous part of the Plancherel decomposition

It follows from [29, Lemma 5.6] that C[Z](P ) is finitely generated.
For every function f ∈ C[Z](P ) there exists a finite dimensional representation (π, V ),

an H-fixed vector vH ∈ V and a MN -fixed vector v∗ ∈ V ∗ for the contragredient
representation π∨ of π such that f is the matrix-coefficient of vH and v∗. If π has lowest
weight ν ∈ a∗, then v∗ is a highest weight vector of π∨ with weight −ν. Note that for
m ∈M , a ∈ A, n ∈ NP , g ∈ G and h ∈ H

f(mangh) = v∗
(
π(mangh)vH

)
= aνv∗

(
π(g)vH

)
= aνf(g). (6.1)

We define Λ to be the monoid of a-weights ν that occur in C[Z](P ), i.e., Λ is the monoid of
lowest a-weights of finite dimensional representations π with V H ̸= {0} and (V ∗)MN ̸=
{0}. It follows from (6.1) that

Λ ⊆ (a/ah)
∗.

The rank of the lattice generated by Λ is equal to rank(Z), see the proof of [29, Proposi-
tion 3.13].

We define the submonoid C[Z](P )
+ of C[Z](P ) by

C[Z](P )
+ :=

{
f ∈ C[Z](P ) : f−1(C \ {0}) =

⋃
O∈P\Z
O open

O
}
.

By [29, Lemma 3.6] the set C[Z](P )
+ is non-empty. Furthermore, we write Λ+ for the

submonoid of Λ corresponding to C[Z](P )
+ . We note that C[Z](P )

+ C[Z](P ) = C[Z](P )
+ , and

hence Λ+ + Λ = Λ+. As C[Z](P )
+ is non-empty, the submonoid Λ+ has full rank.

Lemma 6.1. Let z ∈ Z be adapted, let σ ∈ M̂ and let η ∈ (V ∗
σ )

M∩Hz . Then there exists
a ν ∈ (a/ah)

∗ and a regular function fη : Z → V ∗
σ so that fη(z) = η and

fη(man · z′) = aνσ∨(m)fη(z
′) (m ∈M,a ∈ A, n ∈ NP , z

′ ∈ Z).

Proof. We may assume that (V ∗
σ )

M∩Hz ̸= {0}. It suffices to prove the existence of a
regular function ϕ : ZC → C so that ϕ is NP,C-invariant and σ∨ occurs as a direct
summand in the representation of M generated by ϕ. Let z ∈ Z be adapted. We define
the algebras

A :=
{
ϕ : ZC → C : ϕ is regular and ϕ(n · z′) = ϕ(z′) for all n ∈ NPC , z

′ ∈ ZC
}

and
AM :=

{
M/(M ∩Hz) ∋ m 7→ ϕ(m · z) : ϕ ∈ A

}
In order to prove the existence of a function ϕ with the properties mentioned above, it
suffices to prove that AM is dense in C

(
M/(M ∩ Hz)

)
. For this we use the Stone-

Weierstrass theorem.
Note that AM is a subalgebra of C

(
M/(M ∩Hz)

)
, is closed under complex conjuga-

tion and contains the unit, i.e., the constant function 1. By the Stone-Weierstrass theorem
AM is dense in C

(
M/(M ∩Hz)

)
if AM separates points in M/(M ∩Hz). For the latter

it suffices to prove that A separates points in M · z ⊆ Z.
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6. Construction and properties of H-fixed distribution vectors

Let m1,m2 ∈M and assume that m1 · z ̸= m2 · z. By [44, Theorem 2] the NP -orbits
NPm1 ·z andNPm2 ·z are closed in Z. The spaceNP\Z is isomorphic to the quasi-affine
space G/NP ×diag(G) Z and

A ≃ C[G/NP × Z]diag(G).

Therefore, also D1 := diag(G) ·
(
eNP ×m1 · z

)
and D2 := diag(G) ·

(
eNP ×m2 · z

)
are closed. It is an straightforward corollary of the main result in [10] that then D1 and
D2 are also Zariski closed. Let I1 and I2 be the ideals of C[G/NP × Z] of functions
vanishing on D1 and D2, respectively. As m1 · z ̸= m2 · z and z is adapted, it follows
from the local structure theorem, Proposition 3.1 that D1 and D2 are disjoint. Together
with the fact that D1 and D2 are Zariski-closed this implies that

C[G/NP × Z] = I1 + I2.

Since D1 and D2 are diag(G)-orbits, the ideals I1 and I2 are diag(G)-stable. As diag(G)
is reductive, it follows that

C[G/NP × Z]diag(G) = Idiag(G)
1 + Idiag(G)

2 .

In particular, there exist a ϕ1 ∈ Idiag(G)
1 and a ϕ2 ∈ Idiag(G)

2 so that ϕ1+ϕ2 is the constant
function 1. Now ϕ2(m1 · z) = 1 and ϕ2(m2 · z) = 0. We thus conclude that A separates
points in M · z ⊆ Z.

6.2 Construction on open P -orbits
In this section we construct meromorphic families of distributions in D′(Z, P : σ : λ)
with support equal to the closure of an open P -orbit. For an adapted point z ∈ Z,
λ ∈ ρP + (a/ah)

∗
C, a finite dimensional representation (σ, Vσ) of M , and η ∈ (V ∗

σ )
M∩Hz

we define the function
ϵz(P : σ : λ : η) : Z → V ∗

σ

by {
ϵz(P : σ : λ : η)(nma · z) = a−λ+ρPσ∨(m)η, (n ∈ NQ, a ∈ A,m ∈M);
ϵz(P : σ : λ : η)(y) = 0, (y /∈ P · z).

We note that in view of Proposition 3.1 this function is well defined.
Let Γ be the cone in (a/ah)

∗ generated by Λ, i.e.,

Γ =
∑
λ∈Λ

R≥0λ.

Since Λ has full rank, the interior of Γ is non-empty.

Proposition 6.1. Let z ∈ Z be adapted. Let (σ, Vσ) be a finite dimensional unitary
representation of M . Assume that η is a non-zero M ∩ Hz-fixed vector in V ∗

σ . For
λ ∈ ρP −Γ+ i(a/ah)

∗ the function ϵz(P : σ : λ : η) is measurable and bounded on every
compact subset of G.
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IV. The most continuous part of the Plancherel decomposition

Proof. Let O = P · z. Note that O is open. The function ϵz(P : σ : λ : η) is continuous
outside of the set ∂(O), which has measure 0 in G. Therefore, ϵz(P : σ : λ : η) is
measurable. Now let λ ∈ ρP − Γ + i(a/ah)

∗. Let f1, . . . , fr be a set of generators of
C[Z](P ) with fi(z) = 1 , and let λ1, . . . , λr be the corresponding set of generators of Λ.
Let ν1, . . . , νr ∈ C with Re νi ≥ 0 be such that

ρP − λ =
r∑
i=1

νiλi.

Then

ϵz(P : σ : λ : η) =
( r∏
j=1

f
νj
j

)
ϵz(P : σ : ρP : η).

Therefore,

∥ϵz(P : σ : λ : η)(x)∥σ =
( r∏
j=1

|fj(x)|Re νj
)
∥ϵz(P : σ : ρP , η)(x)∥σ.

As

∥ϵz(P : σ : ρP , η)(x)∥σ =

{
∥η∥σ, (x ∈ O)
0, (x /∈ O),

the function ϵz(P : σ : ρP , η) is bounded. Since the functions fj are continuous, it
follows that ϵz(P : σ : λ : η) is bounded on every compact subset of G.

For every adapted point z ∈ Z, finite dimensional unitary representation (σ, Vσ) of
M , non-zero M ∩ Hz-fixed vector η in V ∗

σ , and λ ∈ ρP − Γ + i(a/ah)
∗, the function

ϵz(P : σ : λ : η) defines in view of Proposition 6.1 a distribution µz(P : σ : λ : η) in
D′(Z, P : σ : λ) given by

µz(P : σ : λ : η) : D(Z, Vσ) → C; ϕ 7→
∫
Z

(
ϵz(P : σ : λ : η)(x), ϕ(x)

)
dx. (6.1)

It follows from Proposition 3.1, that for all ϕ ∈ D(Z, Vσ)

µz(P : σ : λ : η)(ϕ) (6.2)

=

∫
NQ

∫
M/M∩Hz

∫
A/A∩Hz

a−λ+ρP−2ρQ
(
σ∨(m)η, ϕ(nma · z)

)
dmdn da.

It is easily seen that for a given adapted point z ∈ Z, finite dimensional representation σ
of M , and M ∩Hz-fixed vector η in V ∗

σ , the family

ρP − Γ + i(a/ah)
∗ ∋ λ 7→ µz(P : σ : λ : η)

is a holomorphic family of distributions in D′(Z, Vσ). We will show that this family
extends meromorphically to all of (a/ah)∗C. To do so we use the theorem of Bernstein and
Sato. Our proof is similar to that of [42, Theorem 5.1].
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6. Construction and properties of H-fixed distribution vectors

Proposition 6.2. Let z ∈ Z be adapted. Let (σ, Vσ) be a finite dimensional unitary
representation of M and let η be a non-zero M ∩Hz-fixed vector in V ∗

σ . The family

ρP − Γ + i(a/ah)
∗ ∋ λ 7→ µz(P : σ : λ : η)

of distributions in D′(Z, Vσ) defined in (6.1) is holomorphic and extends to a meromor-
phic family on ρP + (a/ah)

∗
C. There exists a locally finite union H of complex affine

hyperplanes in (a/ah)
∗
C of the form

{λ ∈ (a/ah)
∗
C : λ(X) = a} for some X ∈ a and a ∈ R, (6.3)

so that the poles of the family λ 7→ µz(P : σ : λ : η) lie on ρP +H. For λ ∈ ρP +(a/ah)
∗
C

outside of the set ρP +H the distribution µz(P : σ : λ : η) thus obtained is contained in
D′(Z, P : σ : λ).

Proof. Let ν1, . . . , νr ∈ Λ be a basis of (a/ah)∗ and let f1, . . . , fr ∈ C[Z](P ) be so that

fj(man · z) = aνj (1 ≤ j ≤ r,m ∈M,a ∈ A, n ∈ NP ).

Note that each fj is real valued and thus f 2
j is non-negative. For

λ ∈
r∑
j=1

R≥0νj + i(a/ah)
∗,

we define

φλ :=
r∏
j=1

(
f 2
j

)uj : Z → C,

where uj ∈ C is determined by

λ = 2
r∑
j=1

ujνj.

By the theorem of Bernstein (see [13, Appendice A]) there exists for every 1 ≤ j ≤ r a
polynomial function bj on (a/ah)

∗
C and a differential operator Dj on Z with coefficients

in C[Z][λ], so that for all λ ∈
∑r

j=1R≥1νj + i(a/ah)
∗

Djφ
λ = bj(λ)φ

λ−νj . (6.4)

Furthermore, there exists a locally finite union H′ of complex affine hyperplanes of the
form (6.3) in (a/ah)

∗
C so that the zero’s of the polynomials bj are contained in H′.

We now write O for the open P -orbit P ·z and 1O for its characteristic function. Let n
be the maximum of the degrees of the differential operators Dj . Let further f0 ∈ C[Z](P )

+

and let γ ∈ Λ+ be its weight. Then for all λ ∈ (n+ 1)γ +
∑r

j=1 R≥0νj we have

φλ = fn+1
0 φλ−(n+1)γ.
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IV. The most continuous part of the Plancherel decomposition

Since f0 vanishes on ∂O and φλ−(n+1)γ is continuous, it follows that φλ1O is at least n
times continuously differentiable. From (6.4) it then follows that for all

λ ∈ (n+ 1)γ +
r∑
j=1

R≥1νj

and every 1 ≤ j ≤ r

Dj

(
φλ1O

)
=

(
Djφ

λ
)
1O = bj(λ)φ

λ−νj1O.

By means of this functional equation the family

λ 7→ φO,λ := φλ1O

can be extended to a meromorphic family of distributions on Z. The poles of this family
lie on H′.

Let σ ∈ M̂ and η ∈ (V ∗
σ )

M∩Hz . By Lemma 6.1 there exists a regular function
fη : Z → V ∗

σ and a ν ∈ (a/ah)
∗ so that

fη(man · z) = aνσ∨(m)η (m ∈M,a ∈ A, n ∈ NP ).

Now for λ ∈ ρP − ν −
∑r

j=1R≥0νj + i(a/ah)
∗

ϵz(P : σ : λ : η) = φO,ρP−λ−νfη.

It follows that for these λ the distribution µz(P : σ : λ : η) is given by

µz(P : σ : λ : η)(ϕ) = φO,ρP−λ−ν
((
fη, ϕ

)) (
ϕ ∈ D(Z, Vσ)

)
,

where
(
fη, ϕ

)
is short-hand notation for the function Z → C, z′ 7→

(
fη(z

′), ϕ(z′)
)
. As

λ 7→ φO,ρP−λ−ν is a meromorphic family of distributions, it follows that µz(P : σ : λ : η)
extends to a meromorphic family of distributions in D′(Z, Vσ). The poles of this family
lie on ρQ − ν −H′. Moreover, µz(P : σ : λ : η) is contained in D′(Z, P : σ : λ) for all
λ ∈ ρP + (a/ah)

∗
C outside of the poles of the family as this is true for all λ in the open

subset ρP − Γ + i(a/ah)
∗ of ρP + (a/ah)

∗
C.

6.3 Construction on P -orbits of maximal rank
In this section we apply standard intertwining operators to the construction of meromor-
phic families on open P -orbits from the previous section to obtain meromorphic families
whose support equals the closure of a P -orbit of maximal rank.

Lemma 6.1. Let w ∈ NG(a) be so that (3.3) holds. Let σ ∈ M̂ . Then for λ in
Ad(w)∗

(
ρP + (a/ah)

∗
C
)

outside of a locally finite set of complex affine hyperplanes of
the form

{λ ∈ Ad(w)∗
(
ρP + (a/ah)

∗
C
)
: λ(X) = c} for some X ∈ a and a ∈ R (6.1)

the intertwining operator

A(wPw−1 : P : σ : λ) : D′(P : σ : λ) → D′(wPw−1 : σ : λ)

is an isomorphism.
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6. Construction and properties of H-fixed distribution vectors

Proof. Let l be the length of w and let P = P0, · · · , Pl = wPw−1 be a sequence of
minimal parabolic subgroups so that A ⊆ Pj and Pj and Pj+1 are adjacent for every j.
For 0 ≤ j < l let αj ∈ Σ(a) be the reduced root such that

Σ(Pj+1, a) ∩ Σ(Pj, a) ⊆ {αj, 2αj}.

The rank one standard intertwining operators A(Pj : Pj+1 : σ : λ) are isomorphisms for
λ in ρP + (a/aO)

∗
C outside a locally finite union Hj of complex affine hyperplanes of the

form {λ ∈ a∗C : λ(α∨
j ) = c} with c ∈ Q. See for example [35, Proposition B.1]. From

[47, Théorème 1] it now follows that A(P : wPw−1 : σ : λ) is an isomorphism for

λ ∈
(
ρP + (a/aO)

∗
C

)
\
l−1⋃
j=0

Hj.

The same then holds for A(P : wPw−1 : σ : λ)∗ and A(wPw−1 : P : σ : λ).
Since (3.3) is assumed to hold, we have

{αj : 0 ≤ j < l} ⊆ Σ(wPw−1, a) ∩ Σ(P , a) = Σ(wQw−1, a) ∩ Σ(P , a).

In view of Remark 3.2 α∨
j /∈ Ad(w)ah for all j. Therefore, the intersection of Hj with

Ad(w)∗
(
ρP + (a/ah)

∗
C
)

is for every 1 ≤ j ≤ l − 1 a locally finite union of affine hyper-
planes of the form (6.1).

We now come to construction of distributions on maximal rank orbits.

Proposition 6.2. Let w ∈ NG(a) be so that (3.3) holds. Let further O ∈ w · (P\Z)open
and let z ∈ O be weakly adapted. Now the wPw−1-orbit wPw−1 · z is open in Z and
z is adapted to wPw−1 = MAwNPw

−1. Let (σ, Vσ) be a finite dimensional unitary
representation of M and let η be a M ∩Hz-fixed vector in V ∗

σ . The assignment

λ 7→ µz(P : σ : λ : η) := A(wPw−1 : P : σ : λ)−1µz(wPw
−1 : σ : λ : η) (6.2)

defines a meromorphic family on ρwPw−1 + (a/aO)
∗
C = Ad(w)∗

(
ρP + (a/ah)

∗
C
)

of distri-
butions in D′(Z, P : σ : λ). These distributions have the following properties.

(i) If
λ ∈ ρwPw−1 − Ad∗(w)Γ + i(a/aO)

∗ = Ad(w)∗
(
ρP − Γ + i(a/ah)

∗),
then the distribution µz(P : σ : λ : η) is for ϕ ∈ D(G, Vσ) given by the absolutely
convergent integral

µz(P : σ : λ : η)(ϕ) (6.3)

=

∫
NP∩wNQw−1

∫
M/M∩Hz

∫
A/A∩Hz

a−λ+Ad∗(w)ρP−2Ad∗(w)ρQ

×
(
σ∨(m)η, ϕ(nma · z)

)
da dmdn.
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(ii) There exists a locally finite union H of complex affine hyperplanes of the form

{λ ∈ (a/aO)
∗
C : λ(Y ) = a} for some Y ∈ a and a ∈ R (6.4)

in (a/aO)
∗
C, so that the poles of the family λ 7→ µz(P : σ : λ : η) lie on ρwPw−1 +H.

(iii) For every λ ∈ ρwPw−1 +
(
(a/aO)

∗
C \ H

)
and η ∈ (V ∗

σ )
M∩Hz \ {0} we have

suppµz(P : σ : λ : η) = O.

(iv) Up to scaling the distributions µz(P : σ : λ : η) do not depend on the choice of w,
i.e., if w′ ∈ NG(a) satisfies (3.3) and w · (P\Z)open = w′ · (P\Z)open, then there
exists a c > 0 so that

µz(P : σ : λ : η) = cA(w′Pw′−1
: P : σ : λ)−1µz(w

′Pw′−1
: σ : λ : η)

as a meromorphic identity on ρwPw−1 + (a/aO)
∗
C.

Remark 6.3. For reductive symmetric spaces the distributions µz(Q : ξ : λ : η) from
Proposition 6.2 were constructed in [4]. The proof uses the same crucial point: the geo-
metric decomposition (3.5) in Theorem 3.2 translates to a decomposition of a distribution
µz(P : σ : λ : η) for an adapted point z, as constructed in Section 6.2, into an inter-
twining operator and a distribution that transforms under a conjugate minimal parabolic
subgroup wPw−1 and is supported on the closure of a non-open wPw−1-orbit. In [4] the
objects under consideration are H-invariant functionals on C∞(P : σ : λ); we consider
here distributions in D′(Z, P : σ : λ). The resulting analysis is formally the same. How-
ever, we choose here to look at distributions rather than functionals since in this way we
can avoid working with densities.

Proof. In view of Proposition 6.2 the family (6.2) is a meromorphic family of distribu-
tions in D′(Z, P : σ : λ). It follows from Proposition 6.2 and Lemma 6.1 that the poles
of this family lie on a locally finite union of complex affine hyperplanes of the form (6.4).
This proves (ii).

We move on to (i). Let λ ∈ Ad(w)∗
(
ρP − Γ + i(a/ah)

∗) and ϕ ∈ D(Z, Vσ). By
Proposition 3.1 the wPw−1-orbit wPw−1 · z is open. Moreover, if P = MANP is
replaced by wPw−1 =MA(wNPw

−1), then the point z is adapted. Therefore, it follows
from Proposition 6.1 that the integral∫
wNQw−1

∫
M/M∩Hz

∫
A/A∩Hz

∫
K

|
(
η, ϕ(knma · z)

)
| dk a−Reλ+Ad∗(w)ρP−2Ad∗(w)ρQ da dmdn

is absolutely convergent. The product map

(wNQw
−1 ∩NP )× (wNQw

−1 ∩NP ) → wNQw
−1; (n, n) 7→ nn

is a diffeomorphism with Jacobean equal to the constant function 1. Therefore, we may
replace the integral over wNQw

−1 by a repeated integral, the first over wNQw
−1 ∩ NP
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6. Construction and properties of H-fixed distribution vectors

and the second over wNQw
−1 ∩NP . For ϕ ∈ D(Z, Vσ) we set

χz(P : σ : λ : η)(ϕ)

:=

∫
NP∩wNQw−1

∫
M/M∩Hz

∫
A/A∩Hz

a−λ+Ad∗(w)ρP−2Ad∗(w)ρQ

×
(
σ∨(m)η, ϕ(nma · z)

)
da dmdn.

It follows from Fubini’s theorem that the integral χz(P : σ : λ : η)(Lgϕ) is absolutely
convergent for almost every g ∈ G, and the resulting function

I(ϕ) : g 7→ χz(P : σ : λ : η)(Lgϕ)

is locally integrable on G. We claim that the integral is absolutely convergent for every
g ∈ G and that I(ϕ) is smooth. Indeed, in view of [19, Théorème 3.1] we may write ϕ is
a finite sum of convolutions ψ ∗χ with ψ ∈ D(G) and χ ∈ D(Z, Vσ). It follows from the
above analysis that the integral ∫

G

ψ(y)I(χ)(y−1g) dy

is absolutely convergent for every g ∈ G. Moreover, it depends smoothly on g and by
Fubini’s theorem it is equal to I(ψ ∗ χ)(g). This proves the claim. It is now easily seen
that Ad(w)∗

(
ρP − Γ + i(a/ah)

∗) ∋ λ 7→ χz(P : σ : λ : η) defines a holomorphic family
of distributions in D′(Z, Vσ).

We claim that χz(P : σ : λ : η) ∈ D′(Z, P : σ : λ). To prove the claim, we first note
that

L∨(ma)χz(P : σ : λ : η) = aλ−ρPσ∨(m−1)χz(P : σ : λ : η)

for every m ∈M and a ∈ A. To prove the claim it thus suffices to show that

L∨(n)χz(P : σ : λ : η) = χz(P : σ : λ : η) (n ∈ NP ). (6.5)

Let M0 be a submanifold of M so that

M0 →M/(M ∩Hz); m0 7→ m0(M ∩Hz)

is a diffeomorphism onto an open and dense subset of M/(M ∩ Hz) and let dµ be the
pull back of the invariant measure on M/(M ∩Hz) along this map. Let further A0 be a
closed subgroup of A so that

A0 → A/(A ∩ wHzw
−1); a0 7→ a0(A ∩ wHzw

−1)

is a diffeomorphism. For every p ∈ P the map

NP ∩ wNQw
−1 → NP/(NP ∩Hp·z); n 7→ n(NP ∩Hp·z) (6.6)
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IV. The most continuous part of the Plancherel decomposition

is a diffeomorphism by Proposition 3.1. We normalize theNP -invariant measure dp·zν on
NP/NP ∩ Hp·z so that its pull-back along (6.6) is the Haar measure on NP ∩ wNQw

−1.
After changing the order of integration we get for all ϕ ∈ D(G, Vσ)

χz(P : σ : λ : η)(ϕ)

=

∫
M0

∫
A0

∫
NP /(NP∩Hma·z)

a−λ+Ad∗(w)ρP−2Ad∗(w)ρQ (6.7)

×
(
σ∨(m)η, ϕ(nma · z)

)
dνma·z(n) da dµ(m).

The identity (6.5) follows from the invariance of the measures on the homogeneous spaces
NP/NP ∩Hp·z. We have thus proven the claim that χz(P : σ : λ : η) ∈ D′(Z, P : σ : λ).

We move on to show that χz(P : σ : λ : η) = µz(P : σ : λ : η). By (3.3) and (4.1)
we have for all ϕ ∈ D(G, Vσ)[
A(wPw−1 : P : σ : λ)χz(P : σ : λ : η)

]
(ϕ)

=

∫
NP∩wNQw−1

∫
NP∩wNQw−1

∫
M/M∩Hz

∫
A/A∩Hz

a−λ+Ad∗(w)ρP−2Ad∗(w)ρQ

×
(
σ∨(m)η, ϕ(nnma · z)

)
da dmdn dn

=

∫
wNQw−1

∫
M/M∩Hz

∫
A/A∩Hz

a−λ+Ad∗(w)ρP−2Ad∗(w)ρQ

×
(
σ∨(m)η, ϕ(nma · z)

)
da dmdn.

The right-hand side is equal to µz(wPw−1 : σ : λ : η)(ϕ), and hence

A(wPw−1 : P : σ : λ)χz(P : σ : λ : η) = A(wPw−1 : P : σ : λ)µz(P : σ : λ : η).

It follows that (6.3) holds for λ ∈ Ad(w)∗
(
ρP −Γ+ i(a/ah)

∗) for which the intertwining
operator A(wPw−1 : P : σ : λ) is an isomorphism. In view of Lemma 6.1 this is the case
for λ outside of a locally finite union of hyperplanes. Since χz(P : σ : λ : η) depends
holomorphically and µz(P : σ : λ : η) meromorphically on λ, the identity (6.3) holds in
fact for all λ ∈ Ad(w)∗

(
ρP − Γ + i(a/ah)

∗).
We move on to prove (iii). Assume that η ̸= 0. From (6.3) it follows that

suppµz(P : σ : λ : η) ⊆ O.

Since the support of µz(P : σ : λ : η) is a union of P -orbits in Z, it suffices to prove that
the restriction of µz(P : σ : λ : η) to the open subset Z \ ∂O is non-zero. The right-hand
side of (6.3) defines for every λ ∈ Ad(w)∗

(
ρP −Γ+ i(a/ah)

∗) a non-zero distribution on
Z \ ∂O. Moreover, the dependence on λ is holomorphic, and hence the right-hand side
of (6.3) defines a holomorphic family of distributions on Z \ ∂O with family parameter
λ ∈ Ad(w)∗

(
ρP − Γ + i(a/ah)

∗). As this family coincides on a non-empty open subset
of Ad(w)∗

(
ρP − Γ + i(a/ah)

∗) with the meromorphic family

λ 7→ µz(P : σ : λ : η)
∣∣
Z\∂O,
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6. Construction and properties of H-fixed distribution vectors

it follows that µz(P : σ : λ : η)
∣∣
Z\∂O ̸= 0 for all λ for which µz(P : σ : λ : η) is defined.

This proves (iii).
Finally we prove (iv). Let w′ ∈ NG(a) satisfy (3.3) and w · (P\Z)open = w′ ·

(P\Z)open. Because of meromorphical continuation, it suffices to prove the uniqueness
for λ in the open subset Ad∗(w)

(
ρP −Γ+ i(a/ah)

∗) of Ad∗(w)
(
ρP +(a/ah)

∗
C
)
. For these

λ the distribution µz(P : σ : λ : η) is given by the right-hand side of (6.7). It follows
from Proposition 3.1 that there exists a γ : M × A → R>0 so that for every ψ ∈ D(Z),
m ∈M and a ∈ A∫

NP /(NP∩Hma·z)

ψ(nma · z) dνma·z(n) = γ(m, a)

∫
NP∩w′NQw′−1

ψ(n′ma · z) dn′.

The function

M × A→ R>0; (m, a) 7→ γ(m, a)

γ(e, e)

is a character of M × A. Therefore, there exists a c > 0 and a ν ∈ a∗ so that

γ(m, a) = caν (m ∈M,a ∈ A).

It follows that,

µz(P : σ : λ : η)(ϕ)

= c

∫
NP∩w′NQw′−1

∫
M/M∩Hz

∫
A/A∩Hz

a−λ+Ad∗(w)ρP−2Ad∗(w)ρQ+ν

×
(
σ∨(m)η, ϕ(nma · z)

)
da dmdn.

Since w′ satisfies (3.3), we have w′NPw
′−1 ∩ NP = w′NQw

′−1 ∩ NP . Now for every
ϕ ∈ D′(G, Vσ)[

A(w′Pw′−1 : P : σ : λ)µz(P : σ : λ : η)
]
(ϕ)

= c

∫
w′NQw′−1∩NP

∫
NP∩w′NQw′−1

∫
M/M∩Hz

∫
A/A∩Hz

a−λ+Ad∗(w)ρP−2Ad∗(w)ρQ+ν

×
(
σ∨(m)η, ϕ(nma · z)

)
da dmdn

= c

∫
w′NQw′−1

∫
M/M∩Hz

∫
A/A∩Hz

a−λ+Ad∗(w)ρP−2Ad∗(w)ρQ+ν

×
(
σ∨(m)η, ϕ(nma · z)

)
da dmdn.

Since A(w′Pw′−1 : P : σ : λ)µz(P : σ : λ : η) is a distribution in D′(w′Pw′−1 : σ : λ),
ν must satisfy

−λ+Ad∗(w)ρP − 2Ad∗(w)ρQ + ν = −λ+Ad∗(w′)ρP − 2Ad∗(w′)ρQ.

Thus, in view of (6.2), we have

A(w′Pw′−1 : P : σ : λ)µz(P : σ : λ : η) = cµz(w
′Pw′−1 : σ : λ : η).

This concludes the proof of (iv).
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Let O ∈ P\Z be of maximal rank and let z ∈ O be weakly adapted. Assume that
aO = ah. Let ξ ∈ M̂Q. We recall from Corollary 4.2 that if (V ∞′)Hz ̸= {0}, then ξ|LQ,nc

is trivial, ξ is finite dimensional and unitarizable and ξ|M is irreducible. For ξ ∈ M̂Q and
η ∈ (V ∗

ξ )
MQ∩Hz we define the meromorphic family of distributions

µz(Q : ξ : λ : η) := µz(P : ξ|M : λ+ ρP − ρQ : η)

with family parameter λ ∈ (a/ah)
∗
C.

Theorem 6.4. For every z, ξ, η as above, the assignment

(a/ah)
∗
C ∋ λ→ µz(Q : ξ : λ : η)

defines a meromorphic family of distributions in D′(Z,Q : ξ : λ). The poles of the family
lie on a locally finite union of complex affine hyperplanes of the form

{λ ∈ (a/ah)
∗
C : λ(Y ) = a} for some Y ∈ a \ ah and a ∈ R.

Let O ∈ P\Z satisfy aO = ah and let z ∈ O be weakly adapted. Let w ∈ NG(a) be so
that (3.3) holds and [O] = w · (P\Z)open. If

λ ∈ ρwQw−1 − Ad∗(w)Γ + i(a/ah)
∗ = Ad(w)∗

(
ρQ − Γ + i(a/ah)

∗),
then the distribution µz(Q : ξ : λ : η) is for ϕ ∈ D(G, Vξ) given by the absolutely
convergent integral

µz(Q : ξ : λ : η)(ϕ) (6.8)

=

∫
NQ∩wNQw−1

∫
M/M∩Hz

∫
A/A∩Hz

a−λ−Ad∗(w)ρQ
(
ξ∨(m)η, ϕ(nma · z)

)
da dmdn.

Proof. We first prove that µz(Q : ξ : λ : η) ∈ D′(Z,Q : ξ : λ). By Proposition 6.2
we have µz(Q : ξ : λ : η) ∈ D′(P : ξ|M : λ + ρP − ρQ). In view of Lemma 4.2 and
meromorphicity it suffices to show that µz(Q : ξ : λ : η) is left-MQ ∩ NP -invariant for
λ ∈ ρwQw−1 − Ad∗(w)Γ + i(a/ah)

∗.
The fact that aO = ah implies w ∈ N = NG(a)∩NG(ah). In view of Remark 3.2 the

element w normalizes LQ,nc and hence also MQ. Since (3.3) is assumed to hold, w even
normalizes MQ ∩NP . The point w−1 · z is adapted. Therefore,

LQ,nc = wLQ,ncw
−1 ⊆ wHw−1zw

−1 = Hz. (6.9)

In particular,
MQ ∩NP ⊆ Hz.

We claim that MQ ∩ NP normalizes NP ∩ wNQw
−1. In fact, MQ has this property.

As NP = (NP ∩MQ)NQ, we have

NP ∩ wNQw
−1 = NQ ∩ wNQw

−1. (6.10)

The claim is now proven by observing that MQ normalizes NQ and hence also wNQw
−1.

As M and A normalize MQ∩NP , MQ∩NP normalizes NP ∩wNQw
−1, it is follows

from (6.9) and (6.3) that µz(Q : ξ : λ : η) is left-MQ ∩NP -invariant. This concludes the
proof that µz(Q : ξ : λ : η) ∈ D′(Z,Q : ξ : λ).

The remaining assertions follow directly from Proposition 6.2 and (6.10).
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6. Construction and properties of H-fixed distribution vectors

Remark 6.5. Let O ∈ P\Z be of maximal rank and z ∈ O weakly adapted. If aO = ah,
then there exists a positive Hz-invariant Radon measure on (Hz ∩ Q)\Hz. To prove this
it suffices to show that Hz ∩Q is unimodular. The modular character of Hz ∩Q is given
by

∆ : Hz ∩Q→ R>0; h 7→
∣∣ det (Ad(h)∣∣

hz∩q

)∣∣
Let w ∈ N be so that (3.3) and [O] = w · (P\Z)open. In view of (6.9), Proposition 3.1
and Theorem 3.2 we have

Hz ∩Q = LQ,nc(Hz ∩ P ) = LQ,nc(M ∩Hz)(A ∩H)(NP ∩Hz)

= LQ,nc(M ∩Hz)(A ∩H)(NQ ∩Hz).

Since LQ,nc is semisimple, M ∩Hz is compact and NQ ∩Hz is unipotent, the restriction
of ∆ to each of these three subgroups is trivial. It thus remains to show that the restriction
to A ∩H is trivial as well.

As A ∩ H is contained in the center of LQ it centralizes LQ,nc(M ∩ Hz)(A ∩ H).
Therefore,

∆(a) =
∣∣ det (Ad(a)∣∣

nQ∩hz

)∣∣ (a ∈ A ∩Hz).

It follows from Proposition 3.1 and (6.10) that the multiplication map

(NQ ∩ wNQw
−1)× (NQ ∩Hz) → NQ; (n, nH) 7→ nnH

is a diffeomorphism. Moreover, this map is A ∩Hz-equivariant, and hence

∆(a) =
∣∣∣ det

(
Ad(a)

∣∣
nQ

)
det

(
Ad(a)

∣∣
nQ∩Ad(w)nQ

)∣∣∣ = a2ρQ

aρQ+Ad∗(w)ρQ
(a ∈ A ∩Hz).

As A ∩ Hz is connected, w centralizes this subgroup. It follows that ∆ is the trivial
character and hence that Hz ∩ Q is unimodular. This concludes the proof of the claim
that (Hz ∩Q)\Hz admits a positive Hz-invariant Radon measure.

The invariant measure allows to describe the distributions µz(Q : ξ : λ : η) as a
functional on C∞(Q : ξ : λ). To do so, let g ∈ G be so that gH = z. We use (4.2)
to identify D′(Z,Q : ξ : λ) with D′(Q : ξ : λ)H . Recall the map ωQξ,λ from (4.1).
A straightforward computation shows that for a suitable normalization of the invariant
measure on (H ∩ g−1Qg)\H(

ωQξ,λµz(Q : ξ : λ : η)
)
(f) =

∫
(H∩g−1Qg)\H

(
η, f(gh)

)
dh

(
f ∈ C∞(Q : ξ : λ)

)
.

The distributions µz(P : σ : λ : η) from Proposition 6.2 with z a weakly adapted point
contained in a P -orbit O in Z with aO ̸= ah, can be similarly description as functionals
on C∞(P : σ : λ). However, in this generality not all homogeneous spaces (Hz ∩P )\Hz

admit positive Hz-invariant Radon measures. To remedy this, one has to consider the
elements in C∞(P : σ : λ) as smooth densities; see [4, Lemma 3.1].
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IV. The most continuous part of the Plancherel decomposition

6.4 A description of D′(Q : ξ : λ)H

In this section we give a precise description of D′(Q : ξ : λ)H for a finite dimensional
unitary representation ξ of MQ and λ ∈ i(a/ah)

∗ outside of a union of finitely many
proper subspaces. We identify distributions on Z with H-invariant distributions on G via
the map (4.2). We recall that the point eH ∈ Z = G/H is chosen to be admissible.

We define
(P\Z)ah := {O ∈ (P\Z)max : aO = ah}.

First we choose a set of good representatives of the P -orbits in (P\Z)ah .
By [39, Proposition 3.13] every open P -orbit contains a point x · z with

x ∈ G ∩ exp(ia)HC.

For such a point the equality

a ∩ Ad(x)h⊥ = a ∩ h⊥

holds. For every O ∈ (P\Z)open we choose an xO ∈ G ∩ exp(ia)HC so that xOH is an
adapted point in O ⊆ Z = G/H . We may and will choose xPH to be e.

We recall the group N = NG(a) ∩NG(ah) and its subgroup W from (3.1) and (3.3).
For every N /W we choose a representative vw ∈ K ∩N as follows. In view of Theorem
3.3 the set N /W is in bijection with the set of equivalence classes of P -orbits in (P\Z)ah ,
i.e., the map

N /W → (P\Z)ah/∼; vW 7→ v · (P\Z)open
is a bijection. We choose an order-regular element X ∈ a−. For w ∈ N /W we now
choose vw ∈ K ∩N so that

hz,X = Ad(vw)h∅

for some weakly adapted point in an P -orbit O with [O] = w · (P\Z)open. We note that
this equation determines vw up to right-multiplication by an element from Z∩K and that
vwZ is independent of the choice of z. The elements vw do however depend on the choice
of X . The crucial property of the vw is that they are representatives of the elements in
N /W , i.e.,

vwW = w (w ∈ N /W).

We may and will choose the vw so that they satisfy (3.3). The representative of eW we
choose to be e.

By Theorem 3.3 (iii) and (iv) the points

vwxO′H
(
w ∈ N /W ,O′ ∈ (P\Z)open

)
form a set of weakly admissible representatives for the P -orbits in (P\Z)ah . If O ∈
(P\Z)ah , then we write xO for vwxO′ , where w ∈ N /W and O′ ∈ (P\Z)open are so that
PvwxO′H .

For a finite dimensional unitary representation (ξ, Vξ) of MQ we define the vector
space

V ∗(ξ) :=
⊕

O∈(P\Z)ah

(V ∗
ξ )

MQ∩xOHx−1
O

and equip it with the inner product induced from the inner product on Vξ.
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Proposition 6.1. Let O,O′ ∈ (P\Z)ah . If O ∼ O′, then

MQ ∩ xOHx−1
O =MQ ∩ xO′Hx−1

O′ .

In particular
MQ ∩ xOHx−1

O =MQ ∩H
(
O ∈ (P\Z)open

)
.

Proof. Let O ∈ (P\Z)ah . Let w ∈ N /W be so that [O] = w · (P\Z)open. Then
xO = vwxO0 for some open P -orbit O0. It follows from Remark 3.2 that N normalizes
MQ. Therefore,

MQ ∩ xOHx−1
O = vw

(
MQ ∩ xO0Hx

−1
O0

)
v−1
w .

Since vw only depends on the equivalence class [O], and not on the particular orbit O in
it, it thus suffices to prove the assertion only for the open P -orbits O.

We have MQ =MLQ,nc and LQ,nc ⊆ xOHx
−1
O . Hence it suffices to prove

M ∩ xOHx−1
O =M ∩H

(
O ∈ (P\Z)open

)
.

Note that M ∩ xOHx
−1
O = M ∩ xOHCx

−1
O . Let t ∈ exp(ia) and h ∈ HC be so that

xO = th. Then
M ∩ xOHCx

−1
O =M ∩ tHCt

−1 =M ∩HC.

For the last equality we used that t centralizesM . The assertion now follows asM∩HC =
M ∩H .

As a corollary of the previous proposition we obtain that the group

MQ,[O] :=MQ ∩ xOHx−1
O

only depends on the equivalence class [O] ∈ (P\Z)ah/ ∼, not on the choice of the
P -orbit in [O]. Therefore,

V ∗(ξ) =
⊕

[O]∈(P\Z)ah/∼

(
(V ∗

ξ )
MQ,[O]

)[O]

Here V S for a vector space V and a finite set S denotes the vector space of functions
S → V . We write vs for the s-component of a vector v ∈ V S , i.e., vs = v(s).

Remark 6.2. The space V ∗(ξ) will serve as the multiplicity space in the Plancherel de-
composition for the principal series representations IndG

Q
(ξ ⊗ λ ⊗ 1) with λ ∈ i(a/ah)

∗.
In case H is symmetric, i.e., H is an open subgroup of the fixed point subgroup Gσ

of some involution σ of G, much information about these multiplicity spaces has been
given in [5]. If H is equal to the full fixed point subgroup of an algebraic involution on
G, then Proposition 6.1 coincides with [5, Lemma 7]. For symmetric spaces we have
(P\Z)ah = (P\Z)open, see Appendix A.
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IV. The most continuous part of the Plancherel decomposition

Theorem 6.3. There exists a finite union S of proper subspaces of (a/ah)∗ so that for
every finite dimensional unitary representation (ξ, Vξ) of MQ and every λ ∈ (a/ah)

∗
C with

Imλ /∈ S the map

µ(Q : ξ : λ) : V ∗(ξ) → D′(Q : ξ : λ)H ; η 7→
∑

O∈(P\Z)ah

µxOH(Q : ξ : λ : ηO)

is a linear isomorphism.

Proof. Let
S1 = (a/ah)

∗ ∩
⋃

O∈P\Z
aO ̸=ah

(a/aO)
∗

If λ ∈ (a/ah)
∗
C satisfies Imλ /∈ S1, then we have in view of Theorem 5.4

(P\Z)µ ⊆
{
O ∈ (P\Z)max : aO = ah

}
for every µ ∈ D′(Z,Q : ξ : λ). Further, it follows from Theorem 5.2 that there exists a
finite union S2 of proper subspaces of (a/ah)∗ so that

trdeg O(µ) = 0
(
O ∈ (P\Z)µ

)
for all λ ∈ (a/ah)

∗
C with Imλ /∈ S1 ∪ S2 and all µ ∈ D′(Z,Q : ξ : λ).

In view of Theorem 6.4 there exist a finite union S3 of hyperplanes in (a/ah)
∗ so that

the poles of the meromorphic family of maps λ 7→ µ(Q : ξ : λ) lie in S3. We set

S := S1 ∪ S2 ∪ S3

We fix λ ∈ (a/ah)
∗
C with Imλ /∈ S . Let now µ ∈ D′(Z,Q : ξ : λ). To prove the

theorem, it suffices to show that µ is a sum of distributions µxOH(Q : ξ : λ : ηO) with
O ∈ (P\Z)ah and ηO ∈ (V ∗

ξ )
M∩xOHx−1

O .
The condition on λ assures that

(P\Z)µ ⊆ (P\Z)ah

and
trdeg O(µ) = 0

(
O ∈ (P\Z)µ

)
.

If µ ̸= 0, then there exists an O ∈ (P\Z)µ. Since trdeg O(µ) = 0, there exists a
distribution µO on O so that µ on

U = Z \
(
∂O ∪

⋃
O′∈(P\Z)µ\{O}

O′
)

is given by
µ(ϕ) = µO(ϕ

∣∣
O)

(
ϕ ∈ D(U, Vξ)

)
.

By [35, Lemma 5.5] µO is in fact given by integrating against a smooth function. More-
over, since µ is right-H-invariant, also µO is right-H-invariant. Likewise, µO inherits the
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6. Construction and properties of H-fixed distribution vectors

left-P -equivariance from µ. As O is a P -orbit in Z, µO is fully determined by its value
in any given point. In particular, we may evaluate µO in zO := xOH . This results in a
non-zero vector ηO in (V ∗

ξ )
MQ∩HzO = (V ∗

ξ )
MQ∩xOHx−1

O . Let w ∈ NG(a) satisfy (3.3) and
[O] = w · (P\Z)open. It follows from Theorem 3.2 that µ(ϕ) is for every ϕ ∈ D(U, Vξ)
given by∫

NP∩wNQw−1

∫
M/M∩Hz

∫
A/A∩Hz

a−λ+Ad∗(w)ρQ
(
ξ∨(m)ηO, ϕ(nma · z)

)
da dmdn

= µzO(Q : ξ : λ : ηO)(ϕ).

Hence µ′ := µ− µzO(Q : ξ : λ : ηO) is a distribution in D′(Z,Q : ξ : λ) with

(P\Z)µ′ ⊆
(
(P\Z)µ \ {O}

)
∪ {O′ ∈ (P\Z)ah : O′ ⊆ ∂O}

and
trdeg O′

(
µ′) = 0

(
O′ ∈ (P\Z)µ′

)
.

We now replace µ by µ′ and repeat this argument. After finitely many iterations of this
process we obtain that µ is a sum of distributions µxOH(Q : ξ : λ : ηO) with O ∈ (P\Z)ah
and ηO ∈ (V ∗

ξ )
M∩xOHx−1

O .

From now on we fix a finite union S of proper subspaces of (a/ah)
∗, so that the

conclusions of Theorem 6.3 hold and for every v ∈ N and ξ ∈ M̂Q,fu the intertwining
operators Iv(Q : ξ : λ) and I◦

v (Q : ξ : λ) are isomorphisms for Imλ /∈ S.

6.5 Action of AE on D′(Q : ξ : λ)H

We recall the from (3.1) that aE denotes the edge of C, i.e.,

aE = C ∩ −C.

We write AE for the connected subgroup of G with Lie algebra aE , i.e.,

AE := exp(aE).

The group AE normalizes the Lie algebra h. In fact, it follows from the theory of smooth
compactifications of Z that AE normalizes HC, and hence also H . See [17, Theorem 4.1]
where this is shown for an algebraic subgroup of G for which the identity component of
the group of real points is equal to AE . Therefore, AE acts from the right on Z = G/H
by

gH · a := gaH
(
g ∈ G, a ∈ AE

)
.

We now investigate the induced right action of AE on the spaces D′(Q : ξ : λ)H .
If O ∈ (P\Z)ah , then we define

ιO : (V ∗
ξ )

MQ,[O] ↪→ V ∗(ξ) (6.1)

to be the inclusion map determined by(
ιOη

)
O′ =

{
η (O = O′),
0 (O ≠ O′).
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IV. The most continuous part of the Plancherel decomposition

Proposition 6.1. Let (ξ, Vξ) be a finite dimensional unitary representation of MQ and
λ ∈ (a/ah)

∗
C with Imλ /∈ S. If w ∈ N /W and O ∈ w · (P\Z)open, then

R∨(a) ◦ µ(Q : ξ : λ) ◦ ιO = a−Ad∗(v−1
w )λ+ρQµ(Q : ξ : λ) ◦ ιO

(
a ∈ AE

)
.

We first prove a lemma.

Lemma 6.2. Let w ∈ N /W and O ∈ w · (P\Z)open. Then

xOa ∈ vwav
−1
w xOH

(
a ∈ AE

)
.

Proof. By [39, Lemma 12.1] the little Weyl group WZ , and hence also W , acts trivially
on aE/ah. Let O′ ∈ (P\Z)open be so that xO = vwxO′ . Further let t ∈ exp(ia) and
h ∈ HC be so that xO′ = th. Now

xOa =
(
vwav

−1
w

)
vwt

(
a−1ha

)
=

(
vwav

−1
w

)
xOh

−1
(
a−1ha

)
(a ∈ AE).

The assertion now follows as

h−1
(
a−1ha

)
∈ HC ∩G = H.

Proof of Proposition 6.1. By meromorphic continuation, it suffices to prove the assertion
only for

λ ∈ Ad(v)∗
(
ρQ − Γ + i(a/ah)

∗).
For these λ the distribution µxOH(Q : ξ : λ : η) is given by (6.8).

If s is an AE-stable subspace of g, then we write ∆s for the character of AE given by

∆s(a) =
∣∣dets(Ad(a−1)

∣∣
s

)∣∣ (
a ∈ AE

)
.

If ψ ∈ D(G) and a ∈ AE , then∫
H

ϕ(ha−1) dh = ∆h(a)

∫
H

ϕ(a−1h) dh.

As g = h ⊕ nQ ⊕ m′ ⊕ a′ for suitable subspaces m′ and a′ of m and a, respectively, we
have

∆g = ∆h∆nQ∆m′⊕a′ .

Since G is reductive, the character ∆g is trivial. As AE centralizes m′ and a′, also ∆m′⊕a′

is trivial. Furthermore,
∆nQ(a) = a−2ρQ

(
a ∈ AE

)
.

We thus conclude that
∆h(a) = a2ρQ

(
a ∈ AE

)
.

The assertion now follows from Lemma 6.2, (6.8) and the invariance of the measure on
A/A ∩H .
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6. Construction and properties of H-fixed distribution vectors

6.6 B-matrices
We continue with the notation from the previous section.

The following is an immediate corollary of Theorem 6.3.

Corollary 6.1. Let ξ be a finite dimensional unitary representation of MQ, v ∈ N , and
λ ∈ (a/ah)

∗
C with Imλ /∈ S. Then there exists a unique linear operator

Bv(Q : ξ : λ) : V ∗(ξ) → V ∗(v · ξ)

so that the diagram

D′(Q : ξ : λ)H
Iv(Q:ξ:λ) // D′(Q : v · ξ : Ad∗(v)λ)H

V ∗(ξ)

µ(Q:ξ:λ)

OO

Bv(Q:ξ:λ) // V ∗(v · ξ)

µ
(
Q:v·ξ:Ad∗(v)λ

)
OO

(6.1)

commutes.

A similar map was first introduced in [1] in the setting of real reductive symmetric
spaces, where it was called the B-matrix, hence our notation.

We will prove a few properties of B-matrices. Recall the maps ιO from (6.1) and the
set of representatives {vw : w ∈ N /W} for N /W in N ∩K from Section 6.4. If w ∈ N ,
then by slight abuse of notation we write vw for vwW . Every element w ∈ N defines a
bijection

sw : (P\Z)ah → (P\Z)ah ; O 7→ PwxOH. (6.2)

Note that
[sw(O)] = w · [O]

(
w ∈ N ,O ∈ (P\Z)ah

)
,

and hence

MQ,[swO] =MQ,w·[O] = wMQ,[O]w
−1

(
w ∈ N ,O ∈ (P\Z)ah

)
.

Proposition 6.2. Let ξ be a finite dimensional unitary representation of MQ and λ ∈
(a/ah)

∗
C with Imλ /∈ S. Let v, w ∈ N and let O ∈ w · (P\Z)open. Let further

η ∈ (V ∗
ξ )

MQ,[O] = (V ∗
ξ )

MQ∩vwHv−1
w . Then Bv(Q : ξ : λ) ◦ ιO(η) satisfies the follow-

ing assertions.

(i) If vw /∈ ZG(aE/ah), then(
Bv(Q : ξ : λ) ◦ ιO(η)

)
O′

= 0
(
O′ ∈ (P\Z)open

)
.

(ii) If dim
(
v−1NQv ∩NQ

)
+ dim(O) < dim(Z), then(

Bv(Q : ξ : λ) ◦ ιO(η)
)
O′

= 0
(
O′ ∈ (P\Z)open

)
.
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IV. The most continuous part of the Plancherel decomposition

(iii) If dim
(
v−1NQv ∩NQ

)
+ dim(O) = dim(Z) and vw /∈ W , then(

Bv(Q : ξ : λ) ◦ ιO(η)
)
O′

= 0
(
O′ ∈ (P\Z)open

)
.

(iv) If v = v−1
w , then

(
Bv(Q : ξ : λ) ◦ ιO(η)

)
O′

=


η

(
O′ = sv(O)

)
,

0
(
O′ ∈ (P\Z)open,O′ ̸= sv(O)

)
.

Proof. Let µ = Iv(Q : ξ : λ) ◦ µ(Q : ξ : λ)η.
By Proposition 6.1 we have for all a ∈ AE

R∨(a)µ = Iv(Q : ξ : λ) ◦R∨(a) ◦ µ(Q : ξ : λ)(η) = a−Ad∗(v−1
w )λ+ρQµ.

Let η′ ∈ V ∗(v · ξ) be so that µ = µ
(
Q : v · ξ : Ad∗(v)λ

)
η′. Then for all a ∈ AE

R∨(a)µ =
∑

w′∈N/W

∑
O′∈w′·(P\Z)open

a−Ad∗(v−1
w′ v)λ+ρQµ(Q : ξ : λ) ◦ ιO′(η′O′).

Both identities are identities of meromorphic functions in the parameter λ. Therefore,
the only terms in the sum on the right-hand side of the second identity that can be non-
zero, are those for w′ ∈ N /W with v−1

w′ vvw ∈ ZG(aE/ah). Since W is a subgroup
of ZG(aE/ah), see [39, Lemma 12.1], the latter condition is equivalent to v−1

w′ vw ∈
ZG(aE/ah). Assertion (i) now follows by taking w′ = eW .

We move on to prove (ii) and (iii). By meromorphic continuation it suffices to prove
the assertion for λ ∈ (a/ah)

∗
C for which the intertwining operator A(v−1Qv : Q : ξ : λ)

is given by a convergent integral over v−1NQv ∩NQ. Since supp
(
µ(Q : ξ : λ)η

)
⊆ O,

we then have

supp(µ) = v · supp
(
A(v−1Qv : Q : ξ : λ)µ

)
⊆ v ·

(
v−1NQv ∩NQ

)
· O.

If dim
(
v−1NQv ∩ NQ

)
+ dim(O) < dim(Z), then the interior of the support of µ is

empty. This proves (ii). Assume that dim
(
v−1NQv ∩NQ

)
+dim(O) = dim(Z) and the

support of µ contains an open P -orbit O′. Then v−1 · O′ ⊆ (v−1NQv ∩ NQ) · O, and
hence v−1 · O′ ∩ O ≠ ∅. Let z ∈ v−1 · O′ ∩ O. It follows from Proposition 3.1 that

v−1NQv → v−1NQv · z; n 7→ n · z

is a diffeomorphism. Since

(v−1NQv ∩NP )× (v−1NQv ∩NP ) → v−1NQv; (n, n) 7→ nn

is a diffeomorphism as well, we obtain that

(v−1NQv ∩NP ) → (v−1NQv ∩NP ) · z; n 7→ n · z
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6. Construction and properties of H-fixed distribution vectors

is a diffeomorphism. We note that v normalizes MQ in view of Remark 3.2 as it is
contained in N . Therefore,

v−1NQv ∩NP = v−1NQv ∩NQ.

It follows from Proposition 3.1, Theorem 3.2 and the assumption on the dimension of O
that

dim(NP · z) = dim(NQ)− dim(Z) + dim(O) = dim(NQ)− dim
(
v−1NQv ∩NQ

)
= dim

(
v−1NQv ∩NP

)
= dim

((
v−1NQv ∩NP

)
· z
)

This implies that (v−1NQv ∩NP ) · z is open in NP · z. in view of [44, Theorem 2] both
(v−1NQv ∩ NP ) · z and NP · z are closed. Therefore, (v−1NQv ∩ NP ) · z is also closed
in NP · z. Moreover, both are connected. We thus conclude

(v−1NQv ∩NP ) · z = NP · z.

In particular we see that NP · z ⊆ v−1 · O′ ∩ O. Since every NP -orbit in O contains
a weakly admissible point, we may without loss of generality assume that z is weakly
admissible.

Now v · z is an admissible point in O′. Hence if X ∈ a− is order-regular, then there
exists an u ∈ W so that hv·z,Ad(v)X = Ad(u)h∅ . We now have

hz,X = Ad(v−1)hv·z,Ad(v)X = Ad(v−1u)h∅.

This implies that O ∈ v−1u · (P\Z)open. By assumption O ∈ w · (P\Z)open. Therefore,
u−1vw stabilizes (P\Z)open. Since the stabilizer is equal to W by Theorem 3.3(ii), we
may conclude that vw ∈ W . This proves (iii).

Finally, we prove (iv). Let v = v−1
w . In view of (6.2) we have

µ = L∨(v)µxOH(v
−1Pv : ξ : λ+ ρP − ρQ : η).

Using meromorphic continuation, (6.3) and the fact that vw satisfies (3.3) we obtain

µ = µvxOH
(
P : v · ξ : Ad∗(v)λ+ ρP − ρQ : η

)
= µ

(
Q : v · ξ : Ad∗(v)λ

)
◦ ιsv(O)(η).

This proves (iv).

We define the map
β(ξ : λ) : V ∗(ξ) → V ∗(ξ)

for η ∈ V ∗(ξ), O ∈ (P\Z)open and w ∈ N /W to be given by(
β(ξ : λ)η

)
svw (O)

=
1

γ(vwQv−1
w : Q : ξ : λ)

(
Bv−1

w
(Q : ξ : λ)η

)
O
. (6.3)

We will use β(ξ : λ) for the normalization of the map µ(Q : ξ : λ) in the next section.
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Let evg denote evaluation in a point g ∈ G. Since(
Bv−1

w
(Q : ξ : λ)η

)
O
= evvwxO ◦ A(vwQv

−1
w : Q : ξ : λ) ◦ µ(Q : ξ : λ)

depends meromorphically on λ ∈ (a/ah)
∗
C for w ∈ N /W and O ∈ (P\Z)open, the

assignment
(a/ah)

∗
C → End

(
V ∗(ξ)

)
; λ 7→ β(ξ : λ)

is a meromorphic function. Moreover, λ 7→ β(ξ : λ) is holomorphic on

{λ ∈ (a/ah)
∗
C : Imλ /∈ S}.

If we order the orbits in (P\Z)ah by dimension and choose a basis of V ∗(ξ) subject
to the decomposition

V ∗(ξ) =
⊕

O∈(P\Z)ah

(V ∗
ξ )

MQ,[O] ,

then in view of Proposition 6.2(ii – iv) the matrix of β(ξ : λ) with respect to this basis
is upper triangular and the diagonal entries are reciprocals of γ-factors. It follows that
β(ξ : λ) is invertible. Since λ 7→ β(ξ : λ) is meromorphic, it follows from Cramer’s rule
that also

(a/ah)
∗
C → End

(
V ∗(ξ)

)
; λ 7→ β(ξ : λ)−1

is meromorphic. This observation has the following corollary.

Corollary 6.3. Let ξ be a finite dimensional unitary representation of MQ. For every
v ∈ N the B-matrix Bv(Q : ξ : λ) depends meromorphically on λ ∈ (a/ah)

∗
C.

Proof. The map β(ξ : λ) ◦ µ(Q : ξ : λ)−1 is for µ ∈ D′(Q : ξ : λ)H , w ∈ N /W and
O ∈ (P\Z)open given by(

β(ξ : λ) ◦ µ(Q : ξ : λ)−1(µ)
)
svw (O)

=
1

γ(vwQv−1
w : Q : ξ : λ)

evvwxO ◦ A(vwQv
−1
w : Q : ξ : λ)(µ).

It follows that for a meromorphic family of distributions µλ ∈ D′(Q : ξ : λ)H with
family parameter λ ∈ (a/ah)

∗
C, the assignment λ 7→ β(ξ : λ) ◦ µ(Q : ξ : λ)−1(µλ) is

meromorphic. We apply this to

µλ = Iv(Q : ξ : λ) ◦ µ(Q : ξ : λ)(η)

for v ∈ N and η ∈ V ∗(ξ) and thus conclude that

Bv(Q : ξ : λ)η = µ(Q : ξ : λ)−1 ◦ Iv(Q : ξ : λ) ◦ µ(Q : ξ : λ)(η)

= β(ξ : λ)−1 ◦
(
β(ξ : λ) ◦ µ(Q : ξ : λ)−1

)
(µλ)

depends meromorphically on λ.
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6.7 Normalization
We continue with the notation from the previous section. For a finite dimensional unitary
representation ξ of MQ and λ ∈ (a/ah)

∗
C with Imλ /∈ S , we normalize our distributions

µ(Q : ξ : λ)η using the map β(ξ : λ) from (6.3) by defining

µ◦(ξ : λ) := A
(
Q : Q : ξ : λ

)−1 ◦ µ(Q : ξ : λ) ◦ β(ξ : λ)−1 : V ∗(ξ) → D′(Q : ξ : λ)H .
(6.1)

The reason for normalizing the distributions is to make sure that the composition of the
constant term map and µ◦(ξ : λ) will have a desirable form, see Section 8.4.

We end this section with a reformulation of Theorem 6.3.

Theorem 6.1. For every finite dimensional unitary representation (ξ, Vξ) of MQ and ev-
ery λ ∈ (a/ah)

∗
C with Imλ /∈ S the map

µ◦(ξ : λ) : V ∗(ξ) → D′(Q : ξ : λ)H (6.2)

is a linear isomorphism. The assignment

λ 7→ µ◦(ξ : λ)η

defines for every η ∈ V ∗(ξ) a meromorphic family of distributions in D′(G, Vξ) with
family parameter λ ∈ (a/ah)

∗
C. The poles of the family lie on a locally finite union of

complex affine hyperplanes of the form

{λ ∈ (a/ah)
∗
C : λ(X) = a} for some X ∈ a and a ∈ R. (6.3)

Proof. The poles of standard intertwining operators, as well as the poles and zero’s of
γ-functions, all lie on a locally finite union of complex affine hyperplanes of the form
(6.3). The proposition now follows from Theorem 6.3.

For future reference we record here that in view of the corollary we may and will
equip D′(Q : ξ : λ)H for λ ∈ (a/ah)

∗
C with Imλ /∈ S with an inner product so that the

map (6.2) is an isometry.

6.8 The horospherical case
We call the real spherical homogeneous space Z horospherical if a normalizes hz for one
(and hence for every) adapted point z ∈ Z. We note that Z is horospherical if and only if
the compression cone C equals a, which is equivalent to the little Weyl group of Z being
trivial. In this case the stabilizer Hz of an adapted point z ∈ Z is given by

Hz = (LQ ∩Hz)NQ = (M ∩Hz) exp(ah)LQ,ncNQ,

where LQ,nc is the connected subgroup of G with Lie algebra lQ,nc. In this section we
further explicate the description of D′(Q : ξ : λ)H from Theorem 6.4 and Theorem 6.1
under the assumption that H is horospherical.
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IV. The most continuous part of the Plancherel decomposition

We first note that NP ⊆ LQ,ncNQ ⊆ Hz for every adapted point z. As P admits
only one open orbit in G/NP , it follows that there exists precisely one open P -orbit O0

in Z. Recall that the point eH ∈ Z = G/H is assumed to be admissible. As in [39,
Example 3.5] it is easily seen that the set of adapted points in Z is equal to MAH/H . In
particular, we are in the situation of Remark 3.4 (b) and (c), and hence the Weyl group W
acts transitively on the set of P -orbits in Z of maximal rank. This action is given by (3.3)
and (3.4). By Theorem 3.3 (ii) the stabilizer of the open orbit is equal to Z/MA, where
Z = NLQ

(a).
It follows from the Bruhat decomposition that each P -orbit in Z is of the form PwH ,

with w ∈ NG(a). If O = PwH , then

aO = a ∩ Ad(w)h = Ad(w)ah.

In particular, each orbit is of maximal rank. Therefore, the map

NG(a)/Z → P\Z; vZ 7→ PvH (6.1)

is a bijection. We recall from (3.1) that N denotes the group NG(a)∩NG(ah). The image
of N /Z under the map (6.1 ) is equal to the set (P\Z)ah of P -orbits O in Z with aO = ah.
We complete the set {vw : w ∈ N /W} from Section 6.4 to a set of representatives N of
N /Z in N ∩K. Then

N → (P\Z)max; v 7→ PvH

is a bijection and the points vH ∈ Z with v ∈ N are weakly adapted. The v ∈ N play
the role of the elements xO ∈ G from section 6.4.

Let ξ be a finite dimensional unitary representation of MQ. Then

V ∗(ξ) =
⊕
v∈N

(V ∗
ξ )

MQ∩vHv−1

(6.2)

It follows from Proposition 6.2(i) that the map β(ξ : λ) is diagonal with respect to a
basis of V ∗(ξ) subject to the decomposition (6.2). Now Proposition 6.2 (iv) yields that
µ◦(ξ : λ) for η ∈ V ∗(ξ) is given by

µ◦(ξ : λ)η =
∑
v∈N

γ(v−1Qv : Q : ξ : λ)A(Q : Q : ξ : λ)−1µvH(Q : ξ : λ : ηv).

For v ∈ N we write ιv for the inclusion map

ιv : (V
∗
ξ )

MQ∩vHv−1

↪→ V ∗(ξ). (6.3)

For v ∈ N we write I◦
v (ξ : λ) for the normalized intertwining operator I◦

v (Q : ξ : λ)
from Section 4.3.

Corollary 6.1. Let (ξ, Vξ) be a finite dimensional unitary representation of MQ. For all
λ ∈ (a/ah)

∗
C with Imλ /∈ S the map

µ◦(ξ : λ) : V ∗(ξ) → D′(Q : ξ : λ)H ; (6.4)
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6. Construction and properties of H-fixed distribution vectors

is a linear isomorphism. The assignment

λ 7→ µ◦(ξ : λ)η

defines for every η ∈ V ∗(ξ) a meromorphic family of distributions in D′(G, Vξ) with
family parameter λ ∈ (a/ah)

∗
C. For all v ∈ N the distributions

µ ∈ D′(Q : v−1 · ξ : Ad∗(v−1)λ
)H

are smooth in e and may therefore be evaluated in e. The inverse of (6.4) is given by

D′(Q : ξ : λ)H → V ∗(ξ);

µ 7→
(
eve ◦ A

(
Q : Q : v−1 · ξ : Ad∗(v−1)λ

)
◦ I◦

v−1(ξ : λ)(µ)
)
v∈N

, (6.5)

where evg denotes evaluation in a point g ∈ G.
Let v ∈ N. Then

R∨(a)µ◦(ξ : λ) ◦ ιv = a−Ad∗(v−1)λ+ρQµ◦(ξ : λ) ◦ ιv (a ∈ A) (6.6)

and
I◦
v (ξ : λ) ◦ µ◦(ξ : λ) ◦ ιe = µ◦(v · ξ : Ad∗(v)λ

)
◦ ιv. (6.7)

Finally, if λ satisfies Reλ(α∨) > 0 for all α ∈ −Σ(Q) ∩ Σ(vQv−1), then for every
η ∈ (V ∗

ξ )
MQ∩vHv−1

the distribution µ◦(ξ : λ)(ιvη) is for ϕ ∈ D(G, Vξ) given by

γ(Q : vQv−1 : ξ : λ)µ◦(ξ : λ)(ιvη)(ϕ) (6.8)

=

∫
NQ∩vNQv−1

∫
MQ

∫
A

∫
NQ

a−λ−Ad∗(v)ρQ
(
ξ∨(m)η, ϕ(nmavn)

)
dn da dmdn.

Proof. Except for the identities (6.5), (6.7) and (6.8) all assertions follow directly from
Theorem 6.4, Proposition 6.1 and Theorem 6.1.

Let η ∈ V
MQ∩H
ξ . It follows from (6.8) that µ(Q : ξ : λ)(ιeη) for ϕ ∈ D(G, V ∗

ξ ) and
λ ∈ ρQ − Γ + i(a/ah)

∗ is given by

(
µ(Q : ξ : λ)(ιeη)

)
(ϕ) =

∫
NQ

∫
MQ

∫
A

∫
NQ

a−λ−ρQ
(
ξ∨(m)η, ϕ(nman)

)
dn da dmdn.

In view of (4.1) in Proposition 4.1 and (6.1) we have

(
µ◦(ξ : λ)(ιeη)

)
(ϕ) =

∫
MQ

∫
A

∫
NQ

a−λ−ρQ
(
ξ∨(m)η, ϕ(man)

)
dn da dm. (6.9)

The right-hand side is a convergent integral for all λ ∈ (a/ah)
∗
C and depends holomorphi-

cally on λ. Therefore, the identity holds for all λ ∈ i(a/ah)
∗.
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IV. The most continuous part of the Plancherel decomposition

Let v ∈ N and η ∈ V
MQ∩H
ξ . Since

A
(
Q : Q : v · ξ : Ad∗(v)λ

)
◦ I◦

v (ξ : λ)

=
1

γ
(
v−1Qv : Q : ξ : λ

)A(
Q : Q : v · ξ : Ad∗(v)λ

)
◦ A

(
Q : vQv−1 : v · ξ : Ad∗(v)λ

)
◦ L∨(v)

= γ
(
vQv−1 : Q : v · ξ : Ad∗(v)λ

)
A
(
Q : vQv−1 : v · ξ : Ad∗(v)λ

)
◦ L∨(v),

we have by (6.9) and (4.1) for ϕ ∈ D(G : V ∗
ξ )(

A(Q : Q : v · ξ : Ad∗(v)λ) ◦ I◦
v (ξ : λ) ◦ µ◦(ξ : λ)(ιeη)

)
(ϕ)

= γ
(
vQv−1 : Q : v · ξ : Ad∗(v)λ

)
×

∫
NQ∩vNQv−1

∫
MQ

∫
A

∫
NQ

a−Ad∗(v)λ−Ad∗(v)ρQ
(
(v · ξ∨)(m)η, ϕ(nmavn)

)
dn da dmdn

under the condition that λ satisfies Reλ(α∨) > 0 for all α ∈ Σ(Q) ∩ −Σ(v−1Qv). It
follows from (6.8) and (6.1) that the right-hand side equals

γ
(
vQv−1 : Q : v · ξ : Ad∗(v)λ

)
µvH

(
Q : v · ξ : Ad∗(v)λ : η

)
(ϕ)

=
(
A
(
Q : Q : v · ξ : Ad∗(v)λ

)
◦ µ◦(v · ξ : Ad∗(v)λ

)
(ιvη)

)
(ϕ).

By meromorphic continuation we obtain (6.7).
If λ satisfies Reλ(α∨) > 0 for all α ∈ −Σ(Q) ∩ Σ(vQv−1), then (6.8) follows from

(4.1), (6.7) and (6.9).
Finally we move on to show (6.5). Let v, w ∈ N and η ∈ (V ∗

ξ )
MQ∩wHw−1 . We set

µ := A
(
Q : Q : v−1 · ξ : Ad∗(v−1)λ

)
◦ I◦

v−1(ξ : λ) ◦ µ◦(ξ : λ)(ιwη).

By (6.7) we have

µ = A
(
Q : Q : v−1 · ξ : Ad∗(v−1)λ

)
◦ I◦

v−1w

(
w−1ξ : Ad∗(w−1)λ

)
◦ µ◦(w−1ξ : Ad∗(w−1)λ

)
(ιeη)

= cA
(
Q : v−1wQw−1v : v−1 · ξ : Ad∗(v−1)λ

)
◦ L∨(v−1w)

◦ µ◦(w−1ξ : Ad∗(w−1)λ
)
(ιeη)

for some c ∈ C. By meromorphic continuation it follows from (6.8) and (4.1) that

supp(µ) ⊆ NQv−1wQ,

and hence e ∈ supp(µ) if and only if v = w. Now suppose v = w. Then µ is smooth on
the open subset vQNQ. We may therefore evaluate µ in e. Now

eve(µ) = eve ◦ A
(
Q : Q : v−1 · ξ : Ad∗(v−1)λ

)
◦ µ◦(v−1ξ : Ad∗(v−1)λ

)
(ιeη)

= eve ◦ µ
(
Q : v−1ξ : Ad∗(v−1)λ

)
(ιeη) = η.

This proves (6.5).
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7. Temperedness, the constant term and wave packets

7 Temperedness, the constant term and wave packets
We continue with the notation and choices from Section 6.4. If V is a finite dimensional
vector space, µ ∈ D′(G, V ) and ϕ ∈ D(G, V ), then we write mϕ,µ for the matrix coeffi-
cient

mϕ,µ : G→ C; g 7→
(
R∨(g)µ

)
(ϕ).

The aim of this section is to show that for every unitary representation ξ of MQ and
λ ∈ i(a/ah)

∗ outside of a finite union of hyperplanes all matrix-coefficients for µ ∈
D′(Q : ξ : λ)H are tempered and that wave-packets of these matrix-coefficients are
square integrable.

7.1 Temperedness
The space Z admits a polar decomposition, which was first given in [29]. The following
version is a slight reformulation from [39, Proposition 8.6].

Recall that K is a maximal compact subgroup so that k is Killing perpendicular to a.

Proposition 7.1. There exists a compact subset Ω ⊆ G so that

G =
⋃

O∈(P\Z)open

Ωexp(C)xOH. (7.1)

The set Ω can be chosen to be Ω =
⋃r
j=1 fjKj with r ∈ N, fj ∈ G and the Kj maximal

compact subgroups of G.

Let ξ be a finite dimensional unitary representation of MQ and λ ∈ (a/ah)
∗
C. We call

a distribution η ∈ D′(Q : ξ : λ)H tempered if there exists an N ∈ N0 and a continuous
seminorm p on D(G : Vξ) so that for every ϕ ∈ D(G : Vξ)

|mϕ,η(ω exp(X)xO)| ≤ eρQ(X)(1 + ∥X∥)Np(ϕ)
(
O ∈ (P\Z)open, ω ∈ Ω, X ∈ C

)
.

We recall that we have equipped the spaces D′(Q : ξ : λ)H , with Imλ /∈ S , with an
inner product so that the map (6.2) is an isometry.

Theorem 7.2. Let ξ be a finite dimensional unitary representation of MQ and C a com-
pact subset of {λ ∈ (a/ah)

∗
C : Imλ /∈ iS}. There exist an N ∈ N0 and a continuous

seminorm p on D(G, Vξ) so that for every λ ∈ C, µ ∈ D′(Q : ξ : λ)H , ϕ ∈ D(G, Vξ),
O ∈ (P\Z)open, ω ∈ Ω and X ∈ C

|mϕ,µ(ω exp(X)xO)| ≤ max
w∈W

eρQ(X)+Re Ad∗(w)λ(X)(1 + ∥X∥)N∥µ∥p(ϕ).

In particular, every distribution µ ∈ D′(Q : ξ : λ)H with λ ∈ i(a/ah)
∗ \ iS is tempered.

The proof for the theorem is by induction on the faces F of C. In the Sections 7.2 we
give an a priori estimate which accomplishes the initial step of the induction. In Section
7.3 we recall the notion of boundary degenerations and some of their properties. As the
proof of the theorem relies heavily on the theory of the constant term map from [18], we
have to recall the necessary definitions and results. We do so in Section 7.4. Finally the
proof of the theorem will be given in Section 7.5.
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IV. The most continuous part of the Plancherel decomposition

7.2 An a priori estimate
We begin the proof of Theorem 7.1 with an a priori estimate on matrix-coefficients.

For λ ∈ (a/ah)
∗
C we define ⟨λ⟩ : a → R by

⟨λ⟩ := max
(
{0} ∪ {Re Ad∗(w)λ : w ∈ W}

)
.

Lemma 7.1. Let ξ be a finite dimensional unitary representation of MQ and C a compact
subset of {λ ∈ (a/ah)

∗
C : Imλ /∈ S}. There exists an ζ ∈ (a/ah)

∗ with ζ|aE = ρQ|aE , and
a continuous seminorm p on D(G, Vξ) so that for every λ ∈ C, µ ∈ D′(Q : ξ : λ)H and
ϕ ∈ D(G, Vξ) we have

|mϕ,µ(ω exp(X))| ≤ eζ(X)+⟨λ⟩(X)∥µ∥p(ϕ)
(
ω ∈ Ω, X ∈ exp(C)

)
.

Proof. Let a0 be a complementary subspace to aE in a . Let k ∈ N and let D′
k(Q : ξ : λ)

be the subspace of D′(Q : ξ : λ) of distributions of order at most k. We recall the maximal
compact subgroup K of G and note that D′

k(Q : ξ : λ) is canonically isomorphic to the
space D′

k(K;Vξ)
M of left-M -invariant distributions in D′(K,Vξ) of order at most k. Note

that D′
k(K;Vξ)

M is a Banach space. The same proof as for [2, Lemma 10.1] yields the
existence of constants C > 0 and r > 0, independent of λ ∈ C, such that for every
X ∈ a0, the operator R

(
exp(X)

)
maps D′

k(Q : ξ : λ) to itself with operator norm

∥R
(
exp(X)

)
∥ ≤ Cer∥X∥.

We recall that the spherical root system ΣZ in (a/aE)
∗ admits the image C/aE of C under

the projection a → a/aE as a Weyl chamber. By taking a sum of positive roots, we find
a functional ζ0 ∈ (a/aE)

∗ that is strictly positive on C \ aE . Note that ζ0|aE = 0.
By Proposition 6.1 we have for all µ ∈ D′(Q : ξ : λ)H

|mϕ,µ

(
g exp(Y )

)
| ≤ max

w∈W
eρQ(Y )+Re Ad∗(w)λ(Y )|mϕ,µ(g)|

(
g ∈ G, Y ∈ aE

)
.

We recall the isometry µ◦(ξ : λ) from Theorem 6.1. Since the distributions µ◦(ξ : λ)η de-
pend smoothly on λ ∈ C and linearly on η, the assertion therefore follows, after rescaling
ζ0 if necessary, with ζ = ζ0 + ρQ.

7.3 Boundary degenerations
To improve the a priori estimate from the previous section we will use the theory of the
constant term as developed in [18]. In this theory certain degenerations of Z play an
important role. We recall here the necessary definitions and results.

The closure of the compression cone C is finitely generated and hence polyhedral as
−C∨ is finitely generated. We call a subset F ⊆ C a face of C if F = C or there exists a
closed half-space H so that

F = C ∩ H and C ∩ ∂H = ∅.
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7. Temperedness, the constant term and wave packets

There exist finitely many faces of C and each face is polyhedral cone. For a face F of C
we define

aF := span(F)

and denote the interior of F in aF by F◦.
Let z ∈ Z be adapted and let F be a face of C. By [39, Lemma 8.1] the limits hz,X

are the same for all X in the interior of F . We may thus define

hz,F := hz,X ,

where X is any element in the interior of F .
The following lemma is [39, Lemma 8.3].

Lemma 7.1. Let z ∈ Z be adapted and let F be a face of C. The Lie algebra hz,F is a
real spherical subalgebra of g. Moreover,

Ng(hz,F) = hz,F + aF +Nm(hz,F).

Finally,
hz,F ∩ a = ah.

For an adapted point z ∈ Z and a face F of C we define Hz,F to be the connected
subgroup of G with Lie algebra hz,F . Each subgroup Hz,F equals the connected compo-
nent of a group of real points of an algebraic subgroup of G, namely the subgroups HI,c

defined in [17, Section 4.5]. We write Zz,F for the homogeneous space G/Hz,F . These
spaces are called the boundary degenerations of Z. Since aF normalizes hz,F , the group
AF := exp(aF) normalizes Hz,F .

One boundary degeneration will be of particular interest to us when we come to Sec-
tion 8: the boundary degeneration for the face F = C. If z ∈ Z is an adapted point so
that M ∩ Hz = M ∩ H , then hz,X = h∅ for all X ∈ C. Therefore, the group Hz,C is in
this case the connected component of the subgroup

H∅ := (LQ ∩H)NQ.

7.4 Preparation for the proof of Theorem 7.2
The proof of Theorem 7.2 relies heavily on the theory of the constant term as developed
in [18]. In this section we recall the necessary objects and results, which we will then
use in the next section to prove the theorem. We first discuss the algebras of invariant
differential operators on Z and its boundary degenerations and some relations between
them. We then give the differential equations satisfied by the matrix-coefficients. Finally,
we introduce the notion of F-piece-wise linear functionals and construct an F-piece-
wise linear functional βF ,λ, which will be used to improve the a priori estimate on the
matrix-coefficients from Lemma 7.1.

We fix an adapted point z ∈ Z. In this and the next section we will suppress the
indices z and simply write ZF , HF and hF for Zz,F , Hz,F and hz,F , respectively.

We now follow [18, Section 5].
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IV. The most continuous part of the Plancherel decomposition

Let b = m⊕a⊕nQ and bH = (m∩hz)⊕ah. Now U(b)bH is a two-sided ideal of U(b).
We recall from [18, (5.4)] that the rings D(Z) and D(ZF) of G-invariant differential op-
erators on Z and ZF , respectively, may be identified with subalgebras of U(b)/U(b)bH .
By [18, Lemma 5.2] the limit

lim
t→∞

Ad
(
exp(tX)

)
D

exists for every D ∈ D(Z) and X ∈ F◦ and defines a G-invariant differential operator
on ZF . The limit does not depend on the choice of X . Moreover, the map

δF : D(Z) → D(ZF); D 7→ lim
t→∞

Ad
(
exp(tX)

)
D

is an injective algebra morphism. The a-weights occurring in δF(D)−D, withD ∈ D(Z),
considered as an element of U(b)/U(b)bH , are strictly negative on F◦ and the a-weights
occurring in δF(D) are non-positive on C.

Every element u of the center Z(g) of U(g) determines a differential operator Du ∈
D(ZF). We write D0(ZF) for the image of Z(g) in D(ZF). By [18, Lemma 5.6] the ring
D(ZF) is finitely generated as a D0(ZF)-module. Let VF be a finite dimensional vector
subspace of D(ZF) so that the linear map

D0(ZF)⊗ VF → D(ZF);
∑
j

Dj ⊗ uj 7→
∑
j

Djuj

is surjective.
For λ ∈ (a/ah)

∗
C we write Iλ and IF ,λ for the ideals of D(Z) and D(ZF), respectively,

generated by the elements of the form Du−χλ(u) with u ∈ Z(g), where χλ : Z(g) → C
is the infinitesimal character of D′(Q : ξ : λ). Now IF ,λ = δF(Iλ). As

D0(ZF) = C+ IF ,λ,

we have
D(ZF) = (C+ IF ,λ)VF .

Since
IF ,λVF = IF ,λD0(ZF)VF = IF ,λD(ZF) = D(ZF)IF ,λ, (7.1)

we find
D(ZF) = VF + D(ZF)IF ,λ.

For every λ ∈ (a/ah)
∗
C there exists a subspace UF of VF so that the sum

D(ZF) = UF ⊕ D(ZF)IF ,λ (7.2)

is direct sum of vector spaces. As VF is finite dimensional and VF ∩D(ZF)IF ,λ depends
continuously on λ, the subspace UF can in fact be chosen locally uniformly with respect
to λ, i.e., every λ ∈ (a/ah)

∗
C has an open neighborhood B in (a/ah)

∗
C so that there exists

a subspace UF of VF for which (7.2) holds for all λ ∈ B.
We define

ρF ,λ : D(ZF) → End(UF)
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to be the map determined by

Du ∈ ρF ,λ(D)u+ D(ZF)IF ,λ
(
D ∈ D(ZF), u ∈ UF

)
. (7.3)

Then ρF ,λ defines a representation of D(ZF) on UF which is isomorphic to the canonical
representation of D(ZF) on D(ZF)/D(ZF)IF ,λ, and ρF ,λ depends polynomially on λ.

There exists a natural injective algebra homomorphism

S(aF) ↪→ D(ZF); X 7→ DX , (7.4)

which is determined by

DXf(z) =
d

dt
f
(
z · exp(tX)

)∣∣
t=0

(
X ∈ aF , f ∈ E(ZF), z ∈ ZF

)
.

In view of (7.4) the D(ZF)-representation ρF ,λ induces a Lie algebra homomorphism

ΓF ,λ : aF → End(U∗
F); X 7→ ρF ,λ(DX)

t.

We note that ΓF ,λ depends polynomially on λ.
We use this machinery to analyse the matrix-coefficients mϕ,µ for µ ∈ D′(Q : ξ : λ)H

and ϕ ∈ D(G, Vξ). To do so we define the map

Φµ,ϕ : A→ U∗
F

by setting (
Φµ,ϕ(a)

)
(u) =

(
R(u)mϕ,µ

)
(a) (a ∈ A, u ∈ UF).

The function Φµ,ϕ satisfies the system of differential equations

∂XΦµ,ϕ = ΓF ,λ(X)Φµ,ϕ +Ψµ,ϕ,X (X ∈ aF) (7.5)

with
Ψµ,ϕ,X : A→ U∗

F

given by

Ψµ,ϕ,X(a)(u) =
(
R
(
Xu− ρF ,λ(X)u

)
mϕ,µ

)
(a) (a ∈ A, u ∈ UF).

As in [18, Lemma 5.7] we may solve the ordinary differential equation (7.5) and obtain
that for all a ∈ A and X ∈ aF ,

Φµ,ϕ(a exp(X)) = eΓF,λ(X)Φµ,ϕ(a) +

∫ 1

0

e(1−s)ΓF,λ(X)Ψµ,ϕ,X

(
a exp(sX)

)
ds. (7.6)

Let QF ,λ be the set of generalized aF -weights of ΓF ,λ. For ν ∈ QF ,λ we define
Eν ∈ End(U∗

F) to be the projection onto the generalized eigenspace with eigenvalue ν.
We further define

Φν
µ,ϕ := Eν ◦ Φµ,ϕ

(
ϕ ∈ D(G, Vξ)

)
.

203



IV. The most continuous part of the Plancherel decomposition

In view of (7.6) we have

Φν
µ,ϕ(a exp(X)) = eΓF,λ(X)Φν

µ,ϕ(a) +

∫ 1

0

Eνe
(1−s)ΓF,λ(X)Ψµ,ϕ,X

(
a exp(sX)

)
ds

for all ϕ ∈ D(G, Vξ), ν ∈ QF ,λ, a ∈ A and X ∈ aF .
If X ∈ aF and u ∈ UF , then in view of (7.3) and (7.1) the element Xu − ρF ,λ(X)u

is contained in VFIF ,λ = VFδF(Iλ). Therefore, if u1, . . . , un is a basis of VF , then there
exist bilinear maps

ωiF ,λ : aF × UF → Iλ (1 ≤ i ≤ n)

so that

Xu− ρF ,λ(X)u =
n∑
i=1

uiδF
(
ωiF ,λ(X, u)

) (
X ∈ aF , u ∈ UF

)
.

We denote by ΞF ,λ the finite set of all a-weights that occur in{
δF

(
ωiF ,λ(X, u)

)
− ωiF ,λ(X, u) : 1 ≤ i ≤ n,X ∈ aF , u ∈ UF

}
.

We recall from Section 3.9 that the image of C under the projection a → a/aE is a Weyl
chamber of the spherical root system ΣZ in (a/aE)

∗. Let Σ+
Z be the positive system of

ΣZ so that this Weyl chamber is the negative one. We then define βF ,λ on a by

βF ,λ(X) := max
ν∈ΞF,λ∪Σ+

Z

ν(X), (X ∈ a).

Because of the signs of the a-weights occurring in D(ZF) and elements of the form
δF(D) − D with D ∈ D(Z), we have βF ,λ

∣∣
C ≤ 0 and βF ,λ

∣∣
F◦ < 0. The maximum in

the definition of βF ,λ also runs over the set of positive roots in ΣZ ; this is to ensure that
βF ,λ vanishes on the edge of F . We do not actually need this, but we simply follow the
definition in [18, (5.23)]. Note that βF ,λ depends polynomially on λ.

7.5 Proof of Theorem 7.2
We continue with the notation from the previous section. We start with the a priori esti-
mate from Lemma 7.1 and use the theory of the constant term to improve this estimate
recursively. The proof is by induction on the faces F of C.

Let F be a face of C. We call a function ζ : a → R an F-piecewise linear functional
on a if it is piecewise linear and satisfies

ζ
∣∣
∂F = ρQ

∣∣
∂F .

Here ∂F denotes the union of the faces F ′ of C with F ′ ⊊ F . Note that for any two
F-piecewise linear functionals ζ and ζ ′, also the functions

a ∋ X 7→ max
(
ζ(X), ζ ′(X)

)
and a ∋ X 7→ min

(
ζ(X), ζ ′(X)

)
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are F-piecewise linear functionals on a. Moreover,

a = aF ×
(
a ∩ a⊥F

)
∋ (X, Y ) 7→ ζ(X) + ζ ′(Y )

defines an F-piecewise linear functional as well.
For an F-piece-wise linear functional ζ we decompose QF ,λ as

QF ,λ = Qζ,+
F ,λ ∪Qζ,0

F ,λ ∪Qζ,−
F ,λ,

with

Qζ,+
F ,λ :=

{
ν ∈ QF ,λ : Re ν(X) > ζ(X) + ⟨λ⟩(X) for some X ∈ F◦},

Qζ,−
F ,λ :=

{
ν ∈ QF ,λ : Re ν < ζ + ⟨λ⟩

∣∣
F◦

}
,

Qζ,0
F ,λ := QF ,λ \

(
Qζ,+

F ,λ ∪Qζ,−
F ,λ

)
=

{
ν ∈ QF ,λ : Re ν ≤ ζ + ⟨λ⟩

∣∣
F

and Re ν(X) = ζ(X) + ⟨λ⟩(X) for some X ∈ F◦}.
The following lemma is needed for the induction step.

Lemma 7.1. Let F be a face of C and ξ a finite dimensional unitary representation of
MQ. Let further C be a compact subset of {λ ∈ (a/ah)

∗
C : Imλ /∈ S} such that there

exists a subspace UF of VF for which (7.2) holds for all λ ∈ C. Let ζ : C × a → R be a
continuous function so that ζλ := ζ(λ, · ) is an F-piecewise linear functional on a for all
λ ∈ C. Assume that there exists an N ∈ N0 and a continuous seminorm p on D(G, Vξ)
so that for every λ ∈ C, µ ∈ D′(Q : ξ : λ)H and ϕ ∈ D(G, Vξ)∣∣mϕ,µ

(
ω exp(X)

)∣∣ ≤ e

(
ζλ+⟨λ⟩

)
(X)(1 + ∥X∥)N∥µ∥p(ϕ)

(
ω ∈ Ω, X ∈ C

)
. (7.1)

Then there exists an N ′ ∈ N0, a continuous semi-norm p′ on D(G, Vξ), and a continuous
function ζ ′ : C× a → R so that

(i) ζ ′λ := ζ ′(λ, · ) is an F-piecewise linear functional for all λ ∈ C

(ii) ζ ′λ
∣∣
F = max

({
ζλ +

1
2
βF ,λ, ρQ

}
∪
{
Re ν − ⟨λ⟩ : ν ∈ Qζλ,−

F ,λ
})∣∣∣

F
for all λ ∈ C

(iii) For all λ ∈ C, µ ∈ D′(Q : ξ : λ)H and ϕ ∈ D(G, Vξ)∣∣mϕ,µ

(
ω exp(X)

)∣∣ ≤ e

(
ζ′λ+⟨λ⟩

)
(X)(1 + ∥X∥)N ′∥µ∥p′(ϕ)

(
ω ∈ Ω, X ∈ C

)
.

Proof. We apply Lemma 7.1 to ZF instead of Z, and find that there exists an NF ∈ N0,
a continuous semi-norm pF on D(G, Vξ) and a ζF ∈ a∗ so that

ζF
∣∣
aF

= ρQ
∣∣
aF

and for every µF ∈ D′(Q : ξ : λ)HF and ϕ ∈ D(G, Vξ)∣∣mϕ,µF

(
exp(X)

)∣∣ ≤ e

(
ζF+⟨λ⟩

)
(X)(1 + ∥X∥)NF∥µF∥pF(ϕ) (λ ∈ C, X ∈ C). (7.2)
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IV. The most continuous part of the Plancherel decomposition

We define ζ ′ : C× a → R by requiring that for all X ∈ aF and Y ∈ a ∩ a⊥F

ζ ′(λ,X) = max
({
ζλ(X) +

1

2
βF ,λ(X), ρQ(X)

}
∪
{
Re ν(X)− ⟨λ⟩(X) : ν ∈ Qζλ,−

F ,λ
})
,

ζ ′(λ, Y ) = max
(
ζλ(Y ), ζF(Y )

)
,

ζ ′(λ,X + Y ) = ζ ′(λ,X) + ζ ′(λ, Y ).

Observe that ζ ′ is continuous and ζ ′(λ, · ) defines for every λ ∈ C an F-piecewise lin-
ear functional on a. Therefore, it suffices to prove the existence of an N ′ ∈ N0 and a
continuous semi-norm p′ on D(G, Vξ) such that for every λ ∈ C, µ ∈ D′(Q : ξ : λ)H ,
ϕ ∈ D(G, Vξ) and ν ∈ QF ,λ

∥Φν
µ,ϕ

(
exp(X)

)
∥ ≤ e

(
ζ′λ+⟨λ⟩

)
(X)(1 + ∥X∥)N ′∥µ∥p′(ϕ) (X ∈ C).

For this we follow [18, Sections 5.3, 5.4, 6.2 & 6.3].
If one uses the estimate (7.1) instead of the tempered estimates, then in the same way

as in the proof for [18, Lemma 5.8] it follows that there exists a continuous semi-norm q
on D(G, Vξ) such that for all λ ∈ C, µ ∈ D′(Q : ξ : λ)H , and ϕ ∈ D(G, Vξ)

∥L(v)Φµ,ϕ

(
exp(X)

)
∥ ≤ e

(
ζλ+⟨λ⟩

)
(X)(1+∥X∥)N∥µ∥q

(
L(v)ϕ

) (
v ∈ U(a), X ∈ C

)
,

(7.3)
and for every compact subset B ⊆ a, there exists a constant C > 0 so that

∥L(v)Ψµ,ϕ,X(exp(Y ))∥ ≤ Ce

(
ζλ+βF,λ+⟨λ⟩

)
(Y )(1 + ∥Y ∥)N∥µ∥∥X∥q

(
L(v)ϕ

)
(7.4)

for all v ∈ U(a), X ∈ aF and Y ∈ B + C. Let

Eν(λ,X) := e−ν(X)Eν ◦ ΓF ,λ(X)
(
λ ∈ C, ν ∈ QF ,λ, X ∈ aF

)
.

The same arguments as the ones for [18, Lemma 5.9] show the existence of constants
c > 0 and n ∈ N0 so that

∥Eν(λ,X)∥ ≤ c(1 + ∥X∥)n
(
λ ∈ C, ν ∈ QF ,λ, X ∈ aF

)
. (7.5)

We define δλ : aF → [0, 1
2
] by

δλ(X) = min

({Re ν(X)− ζλ(X)− ⟨λ⟩(X)

βF ,λ(X)

: ν ∈ Qζλ,−
F ,λ

}
∪
{1

2

})
(X ∈ F◦).

In view of (7.3), (7.4) and (7.5) it suffices to prove that for every ϕ ∈ D(G, Vξ), λ ∈ C,
µ ∈ D′(Q : ξ : λ)H and ν ∈ QF ,λ there exists a function Φν,∞

µ,ϕ : A→ U∗
F so that∥∥Φν

µ,ϕ

(
a exp(tX)

)
− Φν,∞

µ,ϕ

(
a exp(tX)

)∥∥ (7.6)

≤ e

(
ζλ+δλβF,λ+⟨λ⟩

)
(tX)

(
∥Eν(λ, tX)∥∥Φµ,ϕ(a)∥

+

∫ ∞

0

e−
(
ζλ+

1
2
βF,λ+⟨λ⟩

)
(sX)

∥∥Eν(λ, (t− s)X
)∥∥∥∥Ψµ,ϕ,X

(
a exp(sX)

)∥∥ ds)
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7. Temperedness, the constant term and wave packets

for all a ∈ A, X ∈ F◦ and t ≥ 0, and∥∥Φν,∞
µ,ϕ

(
exp(X)

)∥∥ ≤ e

(
ζF+⟨λ⟩

)
(X)(1 + ∥X∥)N∞∥µ∥q∞(ϕ) (X ∈ C) (7.7)

for some N∞ ∈ N0 and a continuous semi-norm q∞ on D(G, Vξ).
If ν ∈ Qζλ,+

F ,λ or ν ∈ Qζλ,−
F ,λ , then we may take Φν,∞

µ,ϕ = 0. The estimate (7.6) is the
analogue of [18, Lemma 5.11] and is obtained as in [18, Corollary 5.16 & Lemma 5.17]
and [18, Lemma 5.18], respectively.

Let ν ∈ Qζλ,0
F ,λ . If Y ∈ F◦ with Re ν(Y ) > ζλ(Y )+βF ,λ(Y )+ ⟨λ⟩(Y ), then it follows

as in [18, Section 5.4.1] that the limit

Φν,∞
µ,ϕ (a) := lim

t→∞
e−tΓF,λ(Y )Φν

µ,ϕ

(
a exp(tY )

)
(a ∈ A)

exists and is independent of the choice of Y . Note that such Y exist because ν ∈ Qζλ,0
F ,λ

and βF ,λ|F◦<0. We first show that (7.7) is satisfied. For µ ∈ D′(Q : ξ : λ)H we define

µF ,ν : D(G, Vξ) → C; ϕ 7→ Φν,∞
µ,ϕ (e)(1).

From the definitions it is easily seen that µF ,ζλ is a distribution in D′(Q : ξ : λ). We
claim that µF ,ν is right HF -invariant. To prove the claim we choose Y ∈ F◦ so that
ζλ(Y ) + ⟨λ⟩(Y ) = Re ν(Y ). From (7.6) it follows that

lim
t→∞

e−tν(Y )∥Φν
µ,ϕ

(
exp(tY )

)
− Φν,∞

µ,ϕ

(
exp(tY )

)
∥ = 0.

Moreover, if we use this Y in the proof of [18, Lemma 6.2], then we obtain

Φν,∞
µ,ϕ

(
a exp(X)

)
= eΓF,λ(X)Φν,∞

µ,ϕ (a) (a ∈ A,X ∈ aF).

Now the claim follows with the same arguments as in the proof for [18, Lemma 6.5(iii)].
The estimate (7.7) follows from the claim and (7.2).

We finish the proof by showing that (7.6) holds also in this case. If ν ∈ Qζλ,0
F ,λ and

X ∈ F◦ with Re ν(X) ≤ ζλ(X) + 1
2
βF ,λ(X) + ⟨λ⟩(X), then the estimate follows from

(7.7) and the estimate on Φν
µ,ϕ

(
a exp(tX)

)
that one obtains analogous to [18, Lemma

5.17]. If X ∈ F◦ with

ζλ(X) +
1

2
βF ,λ(X) + ⟨λ⟩(X) ≤ Re ν(X) ≤ ζλ(X) + ⟨λ⟩(X),

then we find as in the proof for [18, Lemma 5.19] that

Φν,∞
µ,ϕ

(
a exp(tX)

)
= Φν

µ,ϕ

(
a exp(tX)

)
+

∫ ∞

t

Eνe
(t−s)ΓF,λ(X)Ψµ,ϕ,X

(
a exp(sX)

)
ds.

Now (7.6) follows from (7.4) and (7.5). (The fact that δλ is not a constant like in [18,
(5.37)] is irrelevant for the proof.)

Proof of Theorem 7.2. We prove the theorem using the principle of induction on the faces
F of C. In particular we will show that for every face F of C there exists an N ∈ N0, a
continuous seminorm p on D(G, Vξ) and a continuous function ζ : C× a → R so that
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IV. The most continuous part of the Plancherel decomposition

(i) ζλ := ζ(λ, · ) is an F-piecewise linear functional for all λ ∈ C,

(ii) ζλ
∣∣
F = ρQ

∣∣
F ,

(iii) For all λ ∈ C, µ ∈ D′(Q : ξ : λ)H and ϕ ∈ D(G, Vξ)∣∣mϕ,µ

(
ω exp(X)

)∣∣ ≤ e

(
ζλ+⟨λ⟩

)
(X)(1 + ∥X∥)N∥µ∥p(ϕ)

(
ω ∈ Ω, X ∈ C

)
.

Lemma 7.1 serves as the initial step with F = aE . Let F be a face of C with F ̸= aE , and
assume that for every face F ′ of C with F ′ ⊊ F there exists an NF ′ ∈ N0, a continuous
seminorm pF ′ on D(G, Vξ) and a continuous function ζF ′ : C × a → R so that (i) – (iii)
hold with F ′ in place of F . Without loss of generality may assume that ζF ′(λ,X) ≥
ρQ(X) for all λ ∈ C and X ∈ F . We define

ζ0 : C× a → R; (λ,X) 7→ min
F ′⊊F

ζF ′(λ,X)

Then ζ0 is a continuous function with the property that ζ0(λ, · ) is an F-piecewise linear
functional on a and there exists an N0 ∈ N0 and a continuous seminorm p0 on D(G, Vξ)
so that for all λ ∈ C, µ ∈ D′(Q : ξ : λ)H and ϕ ∈ D(G, Vξ)∣∣mϕ,µ

(
ω exp(X)

)∣∣ ≤ eζ0(λ,X)+⟨λ⟩(X)(1 + ∥X∥)N0∥µ∥p0(ϕ)
(
ω ∈ Ω, X ∈ C

)
.

We use Lemma 7.1 to improve this estimate.
After passing to a finite cover of C of sufficiently small compact subsets of

{λ ∈ (a/ah)
∗
C : Imλ /∈ S},

we may assume that C satisfies the condition in Lemma 7.1. We now apply Lemma
7.1 repeatedly and obtain sequences (Nk)k∈N0 , (pk)k∈N0 and (ζk)k∈N0 of natural numbers,
continuous seminorms on D(G, Vξ) and continuous functions on C×a → R, respectively,
so that the above assertions (i) and (iii) hold with Nk, pk and ζk in place of N , p and ζ .
The sequence (ζk)k∈N0 satisfies for λ ∈ C and X ∈ F

ζk+1(λ,X) (7.8)

= max
({
ζk(λ,X) +

1

2
βF ,λ(X), ρQ(X)

}
∪
{
Re ν(X)− ⟨λ⟩(X) : ν ∈ Qζk(λ, · ),−

F ,λ
})
.

We claim that there exists an n ∈ N so that ζk(λ, · )|F = ρQ|F for every k ≥ n and
λ ∈ C. To see this, we first note that the subsequence (ζk)k∈N is decreasing. This implies
that the sets Qζk(λ, · ),0

F ,λ and Qζk(λ, · ),−
F ,λ are decreasing with k. Note that the cardinality

of Qζk(λ, · ),−
F ,λ is bounded by the dimension of U∗

F . Furthermore, the fact that βF ,λ is a
piece-wise linear functional that depends continuously on λ implies that

n′ := sup
λ∈C,X∈F◦

−2
ζ0(λ,X)− ρQ(X)

βF ,λ(X)
<∞

The claim now follows from (7.8) with n = n′ + dim(U∗
F). The above assertions (i) –

(iii) now follow with N = Nn, p = pn and ζ = ζn.
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7. Temperedness, the constant term and wave packets

7.6 Constant term approximation
We now give a version of the constant term approximation (see [18, Theorem 1.2] and
[36, Theorem 6.2]) which is applicable to our setting.

Theorem 7.1. Let ξ be a finite dimensional unitary representation of MQ. Let further
z ∈ Z be admissible and let F be a face of C. There exists an open neighborhood U of
i(a/ah)

∗ \ iS in (a/ah)
∗
C and for every λ ∈ U a linear map

CTz,F(ξ : λ) : D′(Q : ξ : λ)H → D′(Q : ξ : λ)Hz,F ; µ 7→ µz,F

with the following properties.

(i) For every η ∈ V ∗(ξ) the map

U → D′(Q : ξ : λ)Hz,F ; λ 7→ CTz,F(ξ : λ) ◦ µ◦(ξ : λ)(η)

is a holomorphic family of distributions.

(ii) Let x ∈ G be so that z = xH ∈ G/H = Z and let X ∈ F◦. If λ ∈ i(a/ah)
∗ \ iS

and µ ∈ D′(Q : ξ : λ)H , then

lim
t→∞

e−tρQ(X)
(
R∨( exp(tX)x

)
µ−R∨( exp(tX)

)
µz,F

)
= 0 (7.1)

with convergence in D′(G, Vξ).

(iii) For every compact subset C of i(a/ah)∗\ iS, every compact subsetB ofG and every
closed cone Υ ⊂ F◦ ∪ {0}, there exists a γ ∈ a∗ with γ|C ≤ 0 and γ|Υ\{0} < 0, an
N ∈ N0, and a continuous seminorm p on D(G, Vξ), so that

e−ρQ(Y+X)
∣∣∣mϕ,µ

(
g exp(Y +X)x

)
−mϕ,µz,F

(
g exp(Y +X)

)∣∣∣
≤ eγ(X)(1 + ∥Y ∥)N∥µ∥p(ϕ)

for all λ ∈ C, µ ∈ D′(Q : ξ : λ)H , ϕ ∈ D(G, Vξ), Y ∈ C, X ∈ Υ and g ∈ B.

(iv) Let z ∈ Z be an admissible point so that M ∩Hz = M ∩H . For the face F = C
the image of Γz,C(ξ : λ) lies for all λ ∈ U in D′(Q : ξ : λ)H∅ , where

H∅ = (LQ ∩H)NQ.

The distribution µz,F is called the constant term of µ with respect to the adapted point
z and the face F .

Proof. Without loss of generality we may assume that z = eH . We fix λ0 ∈ i(a/ah)
∗\iS

and set

Q+
F :=

{
ν ∈ QF ,λ0 : Re ν(X) > ρQ(X) for some X ∈ F◦},

Q−
F :=

{
ν ∈ QF ,λ0 :

(
Re ν − ρQ

)∣∣
F◦ < 0

}
,

Q0
F := QF ,λ0 \

(
Q+

F ∪Q−
F
)
=

{
ν ∈ QF ,λ0 : Re ν|F = ρQ|F

}
.
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IV. The most continuous part of the Plancherel decomposition

Let A ⊆ a∗F be an open polydisc centered at ρQ|aF so that(
Q+

F ∪Q−
F
)
∩
(
A+ iaF

)
= ∅.

There exits an open neighborhood U0 of λ0 in {λ ∈ (a/ah)
∗
C : Imλ /∈ S} so that QF ,λ

does not intersect with the boundary of A. We may choose U0 so small that there exists a
subspace UF of VF for which (7.2) holds for all λ ∈ U0. We define

E : U0 → End(UF)

for λ ∈ U0 to be the projection onto the generalized eigenspaces of ΓF ,λ with eigenvalues
in A, i.e.,

E(λ) :=
∑

ν∈A∩QF,λ

Eν .

It follows from the Cauchy integral formula for spectral projections from functional cal-
culus that E is holomorphic.

We fix an element X ∈ F◦. After shrinking U0 we may assume that

Re ν(X) > ρQ(X) + ⟨λ⟩(X) + βF ,λ(X)
(
λ ∈ U0, ν ∈ Q0

F ,λ
)
.

From the estimate (7.4) with ζ = ρQ, we obtain that for µ ∈ D′(Q : ξ : λ)H , with λ ∈ U0,
and ϕ ∈ D(G, Vξ), the U∗

F -valued integral∫ ∞

0

E(λ)e−sΓF,λ(X)Ψµ,ϕ,X

(
exp(sX)

)
ds

converges uniformly on any compact subset of U0. We may thus define CT(ξ : λ)µ ∈
D′(G, Vξ) for ϕ ∈ D(G, Vξ) by(
CTz,F(ξ : λ)µ

)
(ϕ) =

(
E(λ)◦Φµ,ϕ(e)+

∫ ∞

0

E(λ)e−sΓF,λ(X)Ψµ,ϕ,X

(
exp(sX)

)
ds
)
(1).

For every η ∈ V ∗(ξ) the family of distributions

U0 ∋ λ 7→ CTz,F(ξ : λ) ◦ µ◦(ξ : λ)η

is holomorphic.
In view of Theorem 7.2 all distributions in D′(Q : ξ : λ)H with λ ∈ i(a/ah)

∗ \ iS are
tempered. We may therefore apply [18, Theorem 6.9] to these distributions. It follows
from [18, (5.36) & (6.1)] that the constant term-map coincides with CTz,F(ξ : λ) for
λ ∈ U0∩ i(a/ah)∗. It follows that CTz,F(ξ : λ) maps D′(Q : ξ : λ)H to D′(Q : ξ : λ)Hz,F

for these λ. By analytic continuation the same holds for all λ ∈ U0.
With the above construction we find for every λ0 ∈ i(a/ah)

∗ \ iS an open neighbor-
hood U0 so that the constant term map D′(Q : ξ : λ)H → D′(Q : ξ : λ)Hz,F from [18]
extends holomorphically to λ ∈ U0. It follows that there exists an open neighborhood U
of i(a/ah)∗ \ iS so that the constant term map extends holomorphically to U.

The remaining assertions in (ii) and (iii) are a reformulation of [18, Theorem 6.9]
with uniformity in the estimate in λ ∈ C. The uniform estimates are obtained by using
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7. Temperedness, the constant term and wave packets

the estimates (7.3), (7.4) and (7.5), which are uniform in λ ∈ C, instead of the estimates
in [18, Lemmas 5.8 & 5.9].

Finally, we turn to (iv). By holomorphicity it suffices to prove the assertion for
λ ∈ i(a/ah)

∗ \ iS. For these λ it follows from [18, Lemma 6.5] and Corollary 6.1
that CTz,C(ξ : λ)µ for a µ ∈ D′(Q : ξ : λ)H is uniquely determined by (7.1). Since M
centralizes a, it is easily seen that

R∨(m) ◦ CTz,C(ξ : λ) = CTz,C(ξ : λ) ◦R∨(m) (m ∈M).

In particular, for every m ∈M ∩H and µ ∈ D′(Q : ξ : λ)H

R∨(m)
(
CTz,C(ξ : λ)µ

)
= CTz,C(ξ : λ)

(
R∨(m)µ

)
= CTz,C(ξ : λ)µ.

As
H∅ = (M ∩H)(H∅)e = (M ∩H)Hz,C,

this proves (iv).

7.7 Construction of wave packets

We use the notation from Section 6.4, and recall the finite union S of hyperplanes in
(a/ah)

∗ from the end of Section 6.4. For a finite dimensional unitary representation ξ of
MQ we define the wave packet transform

WPξ : D
(
i(a/ah)

∗ \ iS
)
⊗ V ∗(ξ)⊗D(G, Vξ) → E(Z),

to be given by

WPξ(ψ ⊗ η ⊗ ϕ)(gH) =

∫
i(a/ah)∗

ψ(λ)
(
R∨(g) ◦ µ◦(ξ : λ)(η)

)
(ϕ) dλ

for ψ ∈ D
(
i(a/ah)

∗ \ iS
)
, η ∈ V ∗(ξ), ϕ ∈ D(G, Vξ) and g ∈ G. The following is the

main result in this section.

Theorem 7.1. Let ξ be a finite dimensional unitary representation of MQ. The image of
WPξ is consists of square integrable functions on Z.

Remark 7.2. Theorem 7.1 has an important consequence for the multiplicity spaces in
(1.3). Each multiplicity space Mξ,λ is a subspace of the space of H-fixed functionals
on C∞(Q : ξ : λ). In view of the topological isomorphism (4.2) we may view Mξ,λ

as a subspace of D′(Q : ξ : λ)H . From the theorem it follows that for almost every
λ ∈ i(a/ah)

∗ the multiplicity space Mξ,λ equals D′(Q : ξ : λ)H and the map

µ◦(ξ : λ) : V ∗(ξ) → Mξ,λ

is a linear isomorphism. We will prove this in Corollary 8.2.
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IV. The most continuous part of the Plancherel decomposition

Proof of Theorem 7.1. In view of (7.1) we have every integrable function χ on Z∫
Z

χ(z) dz =
r∑
j=1

∑
O∈(P\Z)open

∫
Kj

∫
C
χ
(
fjk exp(X)xOH

)
Jj,O(k,X) dX dk.

Here dX is the Lebesgue-measure on a, dk denotes for each j the Haar measure on Kj .
The Jacobian

Jj,O : Kj × C → R≥0

are readily seen to be constant in the first variable. We therefore consider these functions
as functions on C only. Important for our consideration is the estimate

Jj,O(X) ≤ Ce−2ρQ(X)
(
f ∈ F,O ∈ (P\Z)open, X ∈ C

)
for some constant C > 0. This estimate follows from [30, Proposition 4.3].

We will decompose the integral over C as a sum of integrals over suitable subsets
which allow to apply Theorem 7.1. We recall from Section 3.9 that the little Weyl group
is the Weyl group of the spherical root system ΣZ in (a/aE)

∗. The faces of C are in
bijection with the power set of the simple system ΠZ of ΣZ whose corresponding positive
system consists of all roots that are strictly negative on C. To be more precise, to a face
F of C a subset SF of ΠZ is attached with the property

F =
{
X ∈ a : σ(X) = 0 for all σ ∈ SF and σ(X) < 0 for all σ ∈ ΠZ \ SF

}
.

The assignment F 7→ SF is a bijection between the faces of C and the power set of
ΠZ . Let F be a face of C. If F ′ is the unique face of C with SF ′ = ΠZ \ SF , then
F ∩ F ′ = C ∩ (−C) = aE is the edge of C. We then define the cone

F⊥ := F ′ ∩ a⊥E

and set
aF ,⊥ := span(F⊥).

Now
a = aF ⊕ aF⊥ (7.1)

and
C = F + F⊥.

We write pF to be the projection a → aF along the decomposition (7.1). We fix a δ > 0
and define cones CF in C by setting

CaE := {X ∈ C : ∥X∥ ≤ (1 + δ)
∥∥pF(X)

∥∥}
if F = aE , and then recursively by

CF :=
{
X ∈ C \

⋃
F ′ face of C

F ′⊊F

CF ′ : ∥X∥ ≤ (1 + δ)
∥∥pF(X)

∥∥}
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7. Temperedness, the constant term and wave packets

for the remaining faces F . Then for every face F of C there exists a closed cone ΥF in
F◦ ∪ {0} so that

CF ⊆
{
X ∈ C : pF(X) ∈ ΥF , ∥X∥ ≤ (1 + δ)

∥∥pF(X)
∥∥}.

Moreover,
C =

⊔
F face of C

CF .

Now∫
Z

χ(z) dz =
r∑
j=1

∑
O∈(P\Z)open

∑
F face of C

∫
Kj

∫
CF

χ
(
fjk exp(X)xOH

)
Jj,O(X) dX dk

≤ C

r∑
j=1

∑
O∈(P\Z)open

∑
F face of C

∫
Kj

∫
CF

χ
(
fjk exp(X)xOH

)
e−2ρQ(X) dX dk

for every non-negative measurable function χ on Z.
Let K ′ be a maximal compact subgroup, F a face of C and z ∈ Z an adapted point.

To prove the theorem, it suffices to prove that for every ψ ∈ D
(
i(a/ah)

∗ \ iS
)
, η ∈ V ∗(ξ)

and ϕ ∈ D(G, Vξ) the function

K ′ × CF → C; (k,X) 7→ e−ρQ(X)WPξ(ψ ⊗ η ⊗ ϕ)
(
k exp(X) · z

)
is square integrable.

It follows from Proposition 6.1 that for each w ∈ W there exists a linear map

µF ,w(ξ : λ) : V
∗(ξ) → D′(G, Vξ)

Hz,F

so that
CTz,F(ξ : λ) ◦ µ◦(ξ : λ) =

∑
w∈W

µF ,w(ξ : λ)

and

R∨( exp(X)
)
◦ µF ,w(ξ : λ) = e

(
−Ad∗(w−1)λ+ρQ

)
(X)µF ,w(ξ : λ)

(
w ∈ W,X ∈ aF

)
.

The family λ 7→ µF ,w(ξ : λ) is meromorphic. Moreover, the family is holomorphic on
{λ ∈ (a/ah)

∗
C : Imλ /∈ S}.

We now fix a face F of C and a w ∈ W . Let γF ∈ a∗ and p = pz,F satisfy the
properties of Theorem 7.1 (iii) with the closed cone Υ taken to be ΥF and the compact
subset B equal to K ′. As γF |ΥF < 0, we have∫

CF

(
eγF

(
pF (X)

)
(1 + ∥X − pF(X)∥)N

)2

dX <∞

for every N ∈ N. Therefore, it suffices to prove that for every ψ ∈ D
(
i(a/ah)

∗ \ iS
)
,

η ∈ V ∗(ξ) and ϕ ∈ D(G, Vξ) the function

Ωψ,η,ϕ : G× (a/ah) → C;

(g,X) 7→ e−ρQ(X)

∫
i(a/ah)∗

ψ(λ)
(
R∨(g exp(X)

)
µF ,w(ξ : λ)η

)
(ϕ) dλ
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is square integrable on K ′ × CF .
Let Feucl be the Euclidean Fourier transform on a/ah, i.e., the transform

Feucl : S
(
a/ah

)
→ S

(
i(a/ah)

∗)
given by

Feuclψ(ξ) =

∫
a/ah

ψ(X)eξ(X) dX
(
ψ ∈ S(a/ah), ξ ∈ i(a/ah)

∗).
For every X ∈ aF and η ∈ V ∗(ξ)

e−ρQ(X)R∨( exp(X)
)
µF ,w(ξ : λ)η = e−λ

(
Ad(w)X

)
µF ,w(ξ : λ)η,

and hence

Ωψ,η,ϕ(g,X) = e−ρQ(X)

∫
i(a/ah)∗

ψ(λ)
(
R∨(g exp(X)

)
µF ,w(ξ : λ)η

)
(ϕ) dλ

= F−1
eucl

(
λ 7→ ψ(λ)

(
R∨(g)µF ,w(ξ : λ)η

)
(ϕ)

)(
Ad(w)X

)
.

Since λ 7→ ψ(λ)
(
R∨(g)µF ,w(ξ : λ)η

)
(ϕ) is compactly supported and smooth, the func-

tion X 7→ Ωψ,η,ϕ(g,X) is contained in S
(
aF

)
. Moreover, the continuity of Feucl implies

that for every continuous seminorm p on S(aF) there exists a continuous seminorm q on
D
(
i(a/ah)

∗), independent of g ∈ G and ϕ ∈ D(G, Vξ), so that

p
(
Ωψ,η,ϕ(g, · )

)
≤ q

(
λ 7→ ψ(λ)

(
R∨(g)µF ,w(ξ : λ)η

)
(ϕ)

)
. (7.2)

Let C ⊆ i(a/ah)
∗ \ iS be a compact subset. We claim that for every differential op-

erator D on i(a/ah)∗ with constant coefficients there exists an N ∈ N0 and a continuous
seminorm r on D(G, Vξ) so that for all λ ∈ C, ϕ ∈ D(G, Vξ), k ∈ K ′ and Y ∈ a the
estimate ∣∣D(

R∨(k exp(Y )
)
µF ,w(ξ : λ)η

)
(ϕ)

∣∣ ≤ eρQ(Y )(1 + ∥Y ∥)Nr(ϕ) (7.3)

holds. It suffices to prove the claim for D = ∂αλ , with α a multi-index. We first note that
it follows from Theorem 7.1 that λ 7→ µF ,w(ξ : λ)η extends to a holomorphic family of
distributions with family parameter λ in an open neighborhood U of i(a/ah)∗ \ iS. Let
ϵ > 0 be so small that the polydisc ∆ with radius ϵ and center λ is contained in U. Let
now ∆δ be the polydisc centered at λ of radius δ > 0. For every δ ≤ ϵ we obtain from
Cauchy’s integral formula the estimate∣∣∂αλ (R∨(k exp(Y )

)
µF ,w(ξ : λ)η

)
(ϕ)

∣∣ ≤ α!

δ|α|
sup
λ′∈∆δ

∣∣(R∨(k exp(Y )
)
µF ,w(ξ : λ

′)η
)
(ϕ)

∣∣.
We now invoke Theorem 7.2. This yields the existence of an N ′ ∈ N0 and a continuous
seminorm r′ on D(G, Vξ) so that

sup
λ′∈∆δ

∣∣(R∨(k exp(Y )
)
µF ,w(ξ : λ

′)η
)
(ϕ)

∣∣
≤ sup

λ′∈∆δ

max
w∈W

eρQ(Y )+Re Ad∗(w)λ′(Y )
(
1 + ∥Y ∥

)N ′
r′(ϕ) ≤ eρQ(Y )+δ∥Y ∥(1 + ∥Y ∥

)N ′
r′(ϕ).
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The claim now follows with N = N ′ + |α| and r = eα! r′ by taking δ equal to the
minimum of ϵ and (1 + ∥Y ∥)−1.

We now consider the space DC

(
i(a/ah)

∗) of functions ψ ∈ D
(
i(a/ah)

∗) satisfying
supp(ψ) ⊆ C. Every continuous seminorm on DC

(
i(a/ah)

∗) can be dominated by a sum
of seminorms of the sort ψ 7→ sup |Dϕ|, where D is a differential operator with constant
coefficients. It follows from (7.2), the Leibnitz rule and (7.3) that for every continuous
seminorm p on S(aF) there exist continuous seminorms r and s on DC

(
i(a/ah)

∗) and
D(G, Vξ), respectively, and an N ∈ N0, so that for all ψ ∈ DC

(
i(a/ah)

∗), η ∈ V ∗(ξ),
ϕ ∈ D(G, Vξ), λ ∈ C, k ∈ K ′ and Y ∈ a the estimate

p
(
aF ∋ X 7→ Ωψ,η,ϕ

(
k,X + Y

))
≤ (1 + ∥Y ∥)Nr(ψ)∥η∥s(ϕ).

holds. In particular, for every n ∈ N0 there exist continuous seminorms rn on DC

(
i(a/ah)

∗)
and sn on D(G, Vξ) so that

sup
X∈aF

(1 + ∥X∥)n
∣∣Ωψ,η,ϕ(k,X + Y )

∣∣ ≤ (1 + ∥Y ∥)Nrn(ψ)∥η∥sn(ϕ).

for every ψ ∈ DC

(
i(a/ah)

∗), η ∈ V ∗(ξ), ϕ ∈ D(G, Vξ), k ∈ K ′ and Y ∈ a.
From the definition of CF it follows that there exists a constant c > 0, so that if

X ∈ aF , Y ∈ aF⊥ and X + Y ∈ CF , then ∥Y ∥ ≤ c∥X∥. For n > N + dim(a/ah)/2 the
integral ∫

K′

∫
CF

∣∣Ωψ,η,ϕ(k,X)
∣∣2 dX dk

is therefore absolutely convergent and bounded by

vol(K ′)rn(ψ)∥η∥sn(ϕ)
∫
ΥF

(1 + ∥X∥)2N+dim(aF⊥ )−2n dX.

This proves the theorem.

8 The most continuous part of L2(Z)

8.1 Abstract Plancherel decomposition
In this section we describe the abstract Plancherel theorem for the space Z. We denote by
Ĝ the unitary dual of G. For each equivalence class [π] ∈ Ĝ we choose a representative
(π,Hπ), i.e., Hπ is a Hilbert space and π is a unitary representation of G on Hπ in the
equivalence class [π]. We denote the space of smooth vectors of π by H∞

π .
Let [π] ∈ Ĝ. Since Z is real spherical, the space (H∞

π∨
′)H is finite dimensional. See

[33, Theorem C] and [37]. For every µ ∈ (H∞
π∨

′)H and f ∈ D(Z) the functional

H∞
π∨ ∋ v 7→

∫
Z

f(gH)
(
π(g)µ

)
(v) dgH

actually defines a smooth vector for π. We define the Fourier transform

Ff(π) ∈ HomC
(
(H∞

π∨
′)H ,H∞

π

)
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IV. The most continuous part of the Plancherel decomposition

of a function f ∈ D(Z) and µ ∈ (H∞
π∨

′)H by

Ff(π)µ =

∫
Z

f(gH)π(g)µ dgH.

By the abstract Plancherel Theorem there exists a Radon measure dPl[π] on Ĝ and for
every [π] ∈ Ĝ a Hilbert space

Mπ ⊆ (H∞
π

′)H ,

depending measurably on [π], so that the Fourier transform

F : D(Z) →
∫ ⊕

Ĝ

HomC
(
Mπ∨ ,Hπ

)
dPl[π]

with the induced Hilbert space structure on HomC
(
Mπ∨ ,Hπ

)
extends to a unitary G-

isomorphism

F : L2(Z) →
∫ ⊕

Ĝ

HomC
(
Mπ∨ ,Hπ

)
dPl[π]. (8.1)

The measure class of the Plancherel measure dPl[π] is uniquely determined by Z. Once
dPl[π] has been fixed, the multiplicity spaces Mπ, including their inner products, are
uniquely determined for almost all [π] ∈ Ĝ. By dualizing (8.1) we obtain that the dual
space of Mπ∨ is equal to Mπ. Therefore, the abstract Plancherel decomposition may
also be written in its more common form

L2(Z) ≃
∫ ⊕

Ĝ

Mπ ⊗Hπ dPl[π].

We recall the Bernstein morphisms BI with I ⊆ ΠZ from (1.1) and (1.2). In the
remainder of Section 8 we will derive the decomposition of the most continuous part of
L2(Z)

L2
mc(Z) := Im (B∅) ∩ L2(Z)

into a direct integral of irreducible unitary representations of G.

8.2 Plancherel decomposition for Z∅

We recall that Z∅ = G/H∅, where

H∅ = (LQ ∩H)NQ.

In this section we determine the Plancherel decomposition for Z∅.
We choose a set of representatives N of N /Z in N ∩K as in Section 6.8 and define

V ∗
∅ (ξ) :=

⊕
v∈N

(V ∗
ξ )

MQ∩vHv−1

.

We write
µ◦
∅(ξ : λ) : V

∗
∅ (ξ) → D′(Q : ξ : λ)H∅

216



8. The most continuous part of L2(Z)

for the map from Corollary 6.1 for the space Z∅. Now we define the Fourier transform

F∅f(ξ : λ) ∈ HomC
(
V ∗
∅ (ξ

∨), C∞(Q : ξ : λ)
)
= V ∗

∅ (ξ)⊗ C∞(Q : ξ : λ).

of a function f ∈ D(Z∅) by

F∅f(ξ : λ)η =

∫
Z∅

f(gH∅)R
∨(g)

(
µ◦
∅(ξ

∨ : −λ)η
)
dgH∅.

Let ⟨·, ·⟩∅,ξ∨ be the inner product on V ∗
∅ (ξ

∨) induced by the inner product on Vξ∨ , and let
⟨·, ·⟩∅,ξ,λ be the inner product on V ∗

∅ (ξ)⊗ IndG
Q
(ξ ⊗ λ⊗ 1) induced by the inner products

⟨·, ·⟩∅,ξ and ⟨·, ·⟩Q,ξ,λ on V ∗
∅ (ξ) and IndG

Q
(ξ ⊗ λ⊗ 1), respectively.

Recall that M̂Q,fu denotes the set of equivalence classes of finite dimensional unitary
representations of MQ. Let (a/ah)∗+ be a fundamental domain for the action of N on
(a/ah)

∗. We recall that we normalize Lebesgue measure on i(a/ah)∗ by requiring that

ϕ(e) =

∫
i(a/ah)∗

∫
A/(A∩H)

ϕ(a)aλ da dλ
(
ϕ ∈ D

(
A/(A ∩H)

))
.

We then have the following Plancherel decomposition.

Theorem 8.1. The Fourier transform f 7→ F∅f extends to a continuous linear operator

L2(Z∅) →
⊕̂

ξ∈M̂Q,fu

∫ ⊕

i(a/ah)∗
V ∗
∅ (ξ)⊗ IndG

Q
(ξ ⊗ λ⊗ 1) dλ. (8.1)

Moreover, for every f1, f2 ∈ L2(Z∅)∫
Z∅

f1(z)f2(z) dz =
∑

[ξ]∈M̂Q,fu

dim(Vξ)

∫
(a/ah)

∗
+

〈
F∅f1(ξ : λ),F∅f2(ξ : λ)

〉
∅,ξ,λ

dλ.

(8.2)

Remark 8.2. In view of the following assertions the decomposition (8.1) is in fact the
Plancherel decomposition for Z∅.

(a) Let ξ ∈ M̂Q. For every λ ∈ i(a/ah)
∗ the representation IndG

Q
(ξ⊗λ⊗1) is irreducible.

See [12, p. 203, Théorème 4] and [34, Theorem 4.11].

(b) Let ξ, ξ′ ∈ M̂Q. For almost all λ, λ′ ∈ i(a/ah)
∗ the representations IndG

Q
(ξ ⊗ λ⊗ 1)

and IndG
Q
(ξ′ ⊗ λ′ ⊗ 1) are equivalent if and only if there exists a w ∈ N so that

ξ = w · ξ′ and λ = Ad∗(w)λ′. This assertion follows from the same arguments as
those in the proof of [9, Theorem 10.7].

We first prove a lemma. Recall the inclusions ιv for v ∈ N from (6.3).
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IV. The most continuous part of the Plancherel decomposition

Lemma 8.3. Let ξ be a finite dimensional unitary representation ofMQ, λ ∈ i(a/ah)
∗\iS

and f ∈ D(Z∅). Then for every η ∈ V
MQ∩H
ξ

F∅f(ξ : λ)
(
ιeη

)
: g 7→

∫
MQ/(MQ∩H)

∫
A/(A∩H)

f(g−1amH∅)a
λ−ρQξ(m)η da dm. (8.3)

Furthermore, for every v ∈ N

F∅f
(
v · ξ : Ad∗(v)λ

)
◦ ιv (8.4)

=
1

γ(v−1Qv : Q : ξ : λ
)L(v) ◦ A(v−1Qv : Q : ξ : λ) ◦ F∅f(ξ : λ) ◦ ιe.

Finally, for every v ∈ N and η ∈ V
MQ∩vHv−1

v·ξ = V
MQ∩H
ξ we have∥∥F∅f

(
v · ξ : Ad∗(v)λ

)(
ιvη

)∥∥
Q,ξ,λ

=
∥∥F∅f

(
ξ : λ

)(
ιeη

)∥∥
Q,ξ,λ

. (8.5)

Proof. Let η ∈ V
MQ∩H
ξ . By (6.8) the distribution µ◦

∅(ξ
∨ : −λ)(ιeη) is for ϕ ∈ D(G, V ∗

ξ )
and λ ∈ (a/ah)

∗
C given by

(
µ◦
∅(ξ

∨ : −λ)(ιeη)
)
(ϕ) =

∫
MQ

∫
A

∫
NQ

aλ−ρQ
(
ξ(m)η, ϕ(man)

)
dn da dmdn.

Let f ∈ D(Z∅). Then(
F∅f(ξ : λ)

(
ιeη

))
(ϕ)

=

∫
Z∅

f(gH∅)R
∨(g)

(
µ◦
∅(ξ

∨ : −λ)(ιeη)
)
(ϕ) dgH∅

=

∫
Z∅

∫
MQ

∫
A

∫
NQ

f(gH∅)a
λ−ρQ

(
ξ(m)η, ϕ(mang−1)

)
dn da dmdgH∅

=

∫
Z∅

∫
MQ/(MQ∩H)

∫
A/(A∩H)

∫
H∅

f(gH∅)a
λ−ρQ

(
ξ(m)η, ϕ(mah−1g−1)

)
dh da dmdgH∅.

Let M0 be a submanifold of MQ so that

M0 →MQ/(MQ ∩H); m0 7→ m0(MQ ∩H)

is a diffeomorphism onto an open and dense subset of MQ/(MQ ∩H) and let dµ be the
pull back of the invariant measure on MQ/(MQ ∩H) along this map. Let further A0 be
a closed subgroup of A so that

A0 → A/(A ∩H); a0 7→ a0(A ∩H)
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is a diffeomorphism. Then(
F∅f(ξ : λ)

(
ιeη

))
(ϕ)

=

∫
Z∅

∫
H∅

∫
M0

∫
A0

f(ghH∅)a
λ−ρQ

(
ξ(m)η, ϕ(mah−1g−1)

)
da dµ(m) dh dgH∅

=

∫
G

∫
M0

∫
A0

f(gH∅)a
λ−ρQ

(
ξ(m)η, ϕ(mag−1)

)
da dµ(m) dg

=

∫
G

(∫
M0

∫
A0

f(g−1amH∅)a
λ−ρQξ(m)η da dµ(m), ϕ(g)

)
dg

=

∫
G

(∫
MQ/(MQ∩H)

∫
A/(A∩H)

f(g−1amH∅)a
λ−ρQξ(m)η da dm, ϕ(g)

)
dg.

This proves (8.3).
The identity (8.4) follows from (6.7) as the intertwining operator I◦

v (ξ
∨ : −λ) acts on

the subspace C∞(Q : ξ : λ) of D′(Q : ξ∨ : −λ) by

1

γ(v−1Qv : Q : ξ : λ
)L(v) ◦ A(v−1Qv : Q : ξ : λ). (8.6)

Finally, (8.5) follows from (8.4) as (8.6) is a unitary map.

Proof of Theorem 8.1. Let f ∈ D(Z∅). In view of the decomposition polar G = KAH∅,
we have ∫

Z∅

|f(z)|2 dz =
∫
K

∫
A/(A∩H)

a−2ρQ |f(kaH∅)|2 da dk.

By Fubini’s theorem the function

A/A ∩H ∋ a 7→ a−ρQf(kaH∅)

is square integrable for almost every k ∈ K. We now apply the Plancherel theorem for
the euclidean Fourier transform on A/A ∩H to the inner integral and obtain∫

Z∅

|f(z)|2 dz =
∫
K

∫
i(a/ah)∗

∣∣∣∣∫
A/(A∩H)

aλ−ρQf(kaH∅) da

∣∣∣∣2 dλ dk.
Since M ⊆ K, we have for every θ ∈ D(G/H∅) and a ∈ A∫

K

θ(kaH∅) dk =

∫
K

∫
M/(M∩H)

θ(kmaH∅) dmdk.

It follows that∫
Z∅

|f(z)|2 dz =
∫
K

∫
i(a/ah)∗

∫
M/(M∩H)

∣∣∣∣∫
A/(A∩H)

aλ−ρQf(kmaH∅) da

∣∣∣∣2 dmdλ dk.
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By Fubini’s theorem the function

M/(M ∩H) ∋ m 7→
∫
A/(A∩H)

aλ−ρQf(kmaH∅) da

is square integrable for almost every k ∈ K and λ ∈ i(a/ah)
∗. For every finite dimen-

sional representation σ of M we choose an orthonormal basis Eσ of V M∩H
σ . The set of

equivalence classes of irreducible unitary representations ofM we denote by M̂ . We now
apply the Peter-Weyl theorem for M/M ∩H and obtain∫

M/(M∩H)

∣∣∣∣∫
A/(A∩H)

aλ−ρQf(kmaH∅) da

∣∣∣∣2 dm
=

∑
[σ]∈M̂

dim(Vσ)
∑
η∈Eσ

∥∥∥∥∫
M/(M∩H)

∫
A/(A∩H)

aλ−ρQf(kmaH∅)σ(m)η da dm

∥∥∥∥2

σ

.

In view of Lemma 4.1 and Corollary 4.3 we may replace M by MQ, hence the right-hand
side equals

∑
[ξ]∈M̂Q,fu

dim(Vξ)
∑
η∈Eξ,e

∥∥∥∥∥
∫
MQ/(MQ∩H)

∫
A/(A∩H)

aλ−ρQf(kmaH∅)ξ(m)η da dm

∥∥∥∥∥
2

ξ

.

Here Eξ,e denotes a choice of an orthonormal basis of V MQ∩H
ξ . By (8.3) in Lemma 8.3∫

Z∅

|f(z)|2 dz =
∑

[ξ]∈M̂Q,fu

dim(Vξ)
∑
η∈Eξ,e

∫
i(a/ah)∗

∫
K

∥∥F∅f(ξ : λ)
(
ιeη

)
(k)

∥∥2

ξ
dk dλ

=
∑

[ξ]∈M̂Q,fu

dim(Vξ)
∑
η∈Eξ,e

∫
i(a/ah)∗

∥∥F∅f(ξ : λ)
(
ιeη

)∥∥2

Q,ξ,λ
dλ.

Since N is a set of representatives of N /Z in K ∩N and (a/ah)
∗
+ a fundamental domain

for the action of N /Z on (a/ah)
∗, the right-hand side equals the sum over v ∈ N of∑

[ξ]∈M̂Q,fu

dim(Vv−1·ξ)
∑

η∈Ev−1·ξ,e

∫
i(a/ah)

∗
+

∥∥F∅f(v
−1·ξ : Ad∗(v−1)λ)

(
ιeη

)∥∥2

Q,v−1·ξ,Ad∗(v−1)λ
dλ.

Since V MQ∩H
v−1·ξ = V

MQ∩vHv−1

ξ , the setEξ,v := Ev−1·ξ,e is an orthonormal basis of V MQ∩vHv−1

ξ .
Therefore,

⋃
v∈NEξ,v is an orthonormal basis of V ∗

∅ (ξ). We now apply (8.5). This yields∫
Z∅

|f(z)|2 dz =
∑
v∈N

∑
[ξ]∈M̂Q,fu

dim(Vξ)
∑
η∈Eξ,v

∫
i(a/ah)

∗
+

∥∥F∅f(ξ : λ)
(
ιvη

)∥∥2

Q,ξ,λ
dλ

=
∑

[ξ]∈M̂Q,fu

dim(Vξ)
∑
η∈Eξ

∫
i(a/ah)

∗
+

∥∥F∅f(ξ : λ)η
∥∥2

Q,ξ,λ
dλ

=
∑

[ξ]∈M̂Q,fu

dim(Vξ)

∫
i(a/ah)

∗
+

∥∥F∅f(ξ : λ)
∥∥2

∅,ξ,λ dλ.
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This proves (8.2) for f ∈ D(Z∅).
From (8.2) and the density of D(Z∅) in L2(Z∅) it follows that f 7→ F∅f extends

uniquely to a continuous linear operator (8.1) and the identity (8.2) holds for f ∈ L2(Z∅)
as well.

8.3 Multiplicity spaces

We recall that M̂Q,fu denotes the set of equivalence classes of finite dimensional unitary
representations of MQ and that (a/ah)∗+ is a fundamental domain for the action of N
on (a/ah)

∗. Further, we recall that the Lebesgue measure on i(a/ah)∗ is normalized by
requiring that

ϕ(e) =

∫
i(a/ah)∗

∫
A/(A∩H)

ϕ(a)aλ da dλ
(
ϕ ∈ D

(
A/(A ∩H)

))
.

Theorem 8.1 and [17, Theorem 11.1] have the following direct corollary.

Corollary 8.1. For every [ξ] ∈ M̂Q,fu there exists a measurable family of Hilbert spaces
Mξ,λ, with family parameter λ ∈ i(a/ah)

∗
+ so that L2

mc(Z) decomposes G-equivariantly
as

L2
mc(Z) ≃

⊕̂
[ξ]∈M̂Q,fu

∫ ⊕

i(a/ah)
∗
+

Mξ,λ ⊗ IndG
Q

(
ξ ⊗ λ⊗ 1

)
dλ. (8.1)

Each multiplicity space Mξ,λ is as a vector space naturally identified with a subspace
of the space of H-fixed functionals on C∞(Q : ξ : λ), and hence in view of the topo-
logical isomorphism (4.2) we may view Mξ,λ as a subspace of D′(Q : ξ : λ)H . The
Theorems 6.1 and 7.1 now have the following corollary.

Corollary 8.2. Let ξ be a finite dimensional unitary representation of MQ. For almost
every λ ∈ i(a/ah)

∗
+ the multiplicity space Mξ,λ is equal to D′(Q : ξ : λ)H and the map

µ◦(ξ : λ) : V ∗(ξ) → Mξ,λ

is a linear isomorphism.

Proof. It suffices to prove that for almost every λ ∈ i(a/ah)
∗
+ the dimensions of Mξ,λ

and V ∗(ξ) coincide.
For λ ∈ i(a/ah)

∗
+, η ∈ V ∗(ξ) and ϕ ∈ D(G, Vξ), the function

Z → C; gH 7→
(
R∨(g) ◦ µ◦(ξ : λ)(η)

)
(ϕ)

is in view of the identification (4.1) a generalized matrix coefficient for IndG
Q

(
ξ⊗λ⊗1

)
.

Since the representation IndG
Q

(
ξ ⊗ λ ⊗ 1

)
is irreducible for almost every λ ∈ i(a/ah)

∗
+,

such a generalized matrix coefficient does not vanishes for almost all λ if η ̸= 0 and
ϕ ̸= 0. By Theorem 7.1 all wave packets of generalized matrix coefficients are square
integrable. For almost every λ ∈ i(a/ah)

∗
+ the representation IndG

Q

(
ξ⊗λ⊗1

)
is inequiva-

lent to any representation IndG
Q

(
ξ⊗λ′⊗1

)
with λ′ ∈ i(a/ah)

∗
+ and λ ̸= λ′. It thus follows
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that the dimension of the multiplicity space Mξ,λ is for almost every λ ∈ i(a/ah)
∗
+ at least

as large as the dimension of V ∗(ξ). On the other hand, the dimension of Mξ,λ is bounded
by the dimension of D′(Q : ξ : λ)H , which is for almost every λ ∈ i(a/ah)

∗
+ equal to the

dimension of V ∗(ξ) by Theorem 6.1. This proves the corollary.

In view of Corollary 8.2 the multiplicity space Mξ,λ can for almost every λ be iden-
tified with V ∗(ξ). The multiplicity spaces are Hilbert spaces and thus equipped with an
inner product. We write ⟨·, ·⟩Pl,ξ,λ for the inner product on V ∗(ξ) that is induced by the
inner product on the multiplicity space Mξ,λ. To make the unitary equivalence (8.1) ex-
plicit, we have to determine ⟨·, ·⟩Pl,ξ,λ. This we do in Section 8.6 using a refinement of
the Maaß-Selberg relations from [17, §9.4].

8.4 Constant Term
For the application of the Maaß-Selberg relations from [17, §9.4] in Section 8.6 we need
a description of the constant term map from Section 7.6 for F = C.

We recall the finite union of proper subspaces S ⊆ (a/ah)
∗ and the set of elements

{xO : O ∈ (P\Z)ah} from Section 6.4. For a finite dimensional unitary representation ξ
of MQ, λ ∈ i(a/ah)

∗ \ iS and O ∈ (P\Z)open we write

CTO(ξ : λ) : D′(Q : ξ : λ)H → D′(Q : ξ : λ)H∅ ; µ 7→ µxOH,C

for the constant term map for the adapted point z = xOH and face F = C. Since we only
consider F = C we have dropped the subscript F .

Our description of the constant term map will be given in terms of the intertwining
operators from Section 4.3. We recall the choice of a set of representatives N of N /Z in
N ∩K and the space V ∗

∅ (ξ) from Section 8.2.

Proposition 8.1. Let λ ∈ i(a/ah)
∗\iS, let ξ be a finite dimensional unitary representation

of MQ and O ∈ (P\Z)open. For every µ ∈ D′(Q : ξ : λ)H the distribution

A
(
Q : Q : v−1 · ξ : Ad∗(v−1)λ

)
◦ I◦

v−1(ξ : λ)(µ)

is smooth in the point xO. We have

CTO(ξ : λ)µ = µ◦
∅(ξ : λ)η,

where η ∈ V ∗
∅ (ξ) is given by

ηv = evxO ◦ A
(
Q : Q : v−1 · ξ : Ad∗(v−1)λ

)
◦ I◦

v−1(ξ : λ)(µ) (v ∈ N).

Proof. Let µ ∈ D′(Q : ξ : λ)H . Since CTO(ξ : λ)µ ∈ D′(Q : ξ : λ)H∅ , it follows
from Corollary 6.1 that there exists an η ∈ V ∗

∅ (ξ) so that CTO(ξ : λ)µ = µ◦
∅(ξ : λ)η.

Moreover, η is given by

ηv = eve ◦ A
(
Q : Q : v−1 · ξ : Ad∗(v−1)λ

)
◦ I◦

v−1(ξ : λ) ◦ CTO(ξ : λ)µ (v ∈ N).
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We set
µv := A

(
Q : Q : v−1 · ξ : Ad∗(v−1)λ

)
◦ I◦

v−1(ξ : λ)(µ)

and

µv,∅ := A
(
Q : Q : v−1 · ξ : Ad∗(v−1)λ

)
◦ I◦

v−1(ξ : λ)(µ) ◦ CTO(ξ : λ)(µ).

It then suffices to prove that for every v ∈ N

evxO(µv) = eve(µv,∅). (8.1)

It follows from Theorem 7.1 that for every X ∈ C the limit

lim
t→∞

e−tρQ(X)
(
R∨( exp(tX)xO

)
µv −R∨( exp(tX)

)
µv,∅

)
exists and equals 0. Since µv is contained in D′(Q : v−1 · ξ : Ad∗(v−1)λ

)H , it is given by
a smooth function on the open subset O. Let χ = evxO(µv). Then

µv(manxOh) = a−λ+ρQξ∨(m)χ
(
m ∈M,a ∈ A, n ∈ NP , h ∈ H).

By Lemma 6.1 there exists a ν ∈ (a/ah)
∗ and a regular function fχ : G→ V ∗

ξ so that

fχ(manxOh) = aνξ∨(m)χ (m ∈M,a ∈ A, n ∈ NP , h ∈ H).

Let ν1, . . . , νr ∈ Λ be a basis of (a/ah)∗. Then there exist regular functions

f1, . . . , fr : G→ R

so that

fj(manxOh) = aνj (1 ≤ j ≤ r,m ∈M,a ∈ A, n ∈ NP , h ∈ H).

Note that each fj is real valued and thus f 2
j is non-negative. Now

µv
∣∣
O =

( r∏
j=1

(
f 2
j

)ujfχ)∣∣O
where uj ∈ C is determined by

−λ+ ρQ − ν = 2
r∑
j=1

ujνj.

Let V be the span of R(G)fχ. Then V is finite dimensional and the restriction of R to V
has lowest weight ν. Note that fχ is an H-fixed vector in V . The limit of

e−tν(X)R
(
exp(tX)xO

)
fχ
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for t→ ∞ exist and is a non-zero lowest weight vector in V . In fact,

eve

(
lim
t→∞

e−tν(X)R
(
exp(tX)xO

)
fχ

)
= fχ(xO) = χ.

Likewise, for every 1 ≤ j ≤ r the span Vj of R(G)fj is finite dimensional and the
restriction of R to Vj has lowest weight νj . The limits of

e−tνj(X)R
(
exp(tX)xO

)
fj (1 ≤ j ≤ r)

for t→ ∞ exist, and

eve

(
lim
t→∞

e−tνj(X)R
(
exp(tX)xO

)
fj

)
= fj(xO) = 1 (1 ≤ j ≤ r).

It follows that
e−tν(X)R∨( exp(tX)xO

)
µv

converges for t→ ∞ uniformly on a neighborhood of e in G, and the limit µv,∅ satisfies

eve(µv,∅) = eve

(
lim
t→∞

e−tν(X)R∨( exp(tX)xO
)
µv

)
= χ = evxO(µv).

This establishes (8.1).

In view of Theorem 6.1 and Corollary 6.1 there exists for every O ∈ (P\Z)open a
unique linear map

ΓO(ξ : λ) : V
∗(ξ) → V ∗

∅ (ξ)

so that the diagram

D′(Q : ξ : λ)H
CTO(ξ:λ) // D′(Q : ξ : λ)H∅

V ∗(ξ)

µ◦(ξ:λ)

OO

ΓO(ξ:λ) // V ∗
∅ (ξ)

µ◦∅(ξ:λ)

OO

commutes. We end this section with a description of this map ΓO(ξ : λ) in terms of the
B-matrices and the map β(ξ : λ) from Section 6.6.

We recall the maps sw for w ∈ N from (6.2).

Proposition 8.2. Let λ ∈ i(a/ah)
∗\iS, let ξ be a finite dimensional unitary representation

of MQ and let O ∈ (P\Z)open. Then for every η ∈ V ∗(ξ) and v ∈ N(
ΓO(ξ : λ)η

)
v
=

1

γ(vQv−1 : Q : ξ : λ)

(
Bv−1(Q : ξ : λ) ◦ β(ξ : λ)−1η

)
O
. (8.2)

In particular, if η ∈ V ∗(ξ), O ∈ (P\Z)open and vw is the representative in K ∩ N of an
element w ∈ N /W from Section 6.4, then(

ΓO(ξ : λ)η
)
vw

= ηsvw (O). (8.3)
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Proof. Let η ∈ V ∗(ξ), O ∈ (P\Z)open and v ∈ N. Then by Proposition 8.1(
ΓO(ξ : λ)η

)
v
= evxO ◦ A

(
Q : Q : v−1 · ξ : Ad∗(v−1)λ

)
◦ I◦

v−1(ξ : λ) ◦ µ◦(ξ : λ)(η).

Using (6.1) and the identity

A
(
Q : Q : v−1 · ξ : Ad∗(v−1)λ

)
◦ I◦

v−1(ξ : λ) ◦ A
(
Q : Q : ξ : λ

)−1

=
1

γ
(
vQv−1 : Q : ξ : λ

)L∨(v−1) ◦ A
(
vQv−1 : Q : ξ : λ

)
=

1

γ
(
vQv−1 : Q : ξ : λ

)Iv−1(Q : ξ : λ),

we find(
ΓO(ξ : λ)η

)
v

=
1

γ(vQv−1 : Q : ξ : λ)
evxO ◦ Iv−1(Q : ξ : λ) ◦ µ(Q : ξ : λ) ◦ β(ξ : λ)−1(η).

By (6.1) we thus have(
ΓO(ξ : λ)η

)
v

=
1

γ(vQv−1 : Q : ξ : λ)
evxO ◦ µ(Q : ξ : λ) ◦ Bv−1(Q : ξ : λ) ◦ β(ξ : λ)−1(η)

=
1

γ(vQv−1 : Q : ξ : λ)

(
Bv−1(Q : ξ : λ) ◦ β(ξ : λ)−1(η)

)
O
.

This proves (8.2). The identity (8.3) follows from (8.2) and the definition (6.3) of the
function β(ξ : λ).

For a finite dimensional unitary representation ξ of MQ and v ∈ N we define the
space

V ∗
∅,v(ξ) :=

⊕
O∈(P\Z)open

(V ∗
ξ )

MQ∩vHv−1

. (8.4)

We view V ∗
∅,v(ξ) as a subspace of

⊕
O∈(P\Z)open V

∗
∅ (ξ). We now reorder the components

of the constant term maps and thus define

Γv(ξ : λ) : V
∗(ξ) → V ∗

∅,v(ξ) ⊆
⊕

O∈(P\Z)open

V ∗
∅ (ξ)

by setting(
Γv(ξ : λ)η

)
O
:= prv ◦ΓO(ξ : λ)

(
η ∈ V ∗(ξ),O ∈ (P\Z)open

)
,

where
prv : V

∗
∅ (ξ) → (V ∗

ξ )
MQ∩vHv−1

; η 7→ ηv. (8.5)

Now Proposition 8.2 has the following corollary.
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IV. The most continuous part of the Plancherel decomposition

Corollary 8.3. Let ξ be a finite dimensional unitary representation of MQ and λ ∈
i(a/ah)

∗ \ iS. Then for every w ∈ N /W

Γvw(ξ : λ)η =
(
ηsvw (O)

)
O∈(P\Z)open

∈ V ∗
∅,vw(ξ).

Proof. The identity is a reformulation of (8.3).

8.5 Invariant differential operators
Let ξ be a finite dimensional unitary representation of MQ. For w ∈ N /W define the
subspace of V ∗(ξ)

V ∗
w(ξ) :=

⊕
O∈w·(P\Z)open

(
V ∗
ξ

)MQ∩vwHv−1
w . (8.1)

We view V ∗
w(ξ) as a subspace of V ∗(ξ). In this section we show that the subspaces

µ◦(ξ : λ)
(
V ∗
w(ξ)

)
of D′(Q : ξ : λ)H for w ∈ N /W are spectrally separated by the

invariant differential operators on Z. Recall the maps ιO for O ∈ (P\Z)ah from (6.1).

Proposition 8.1. Let ξ be a finite dimensional unitary representation of MQ. For every
w ∈ N /W and for λ ∈ i(a/ah)

∗ outside of a finite union of proper subspaces there exists
a differential operator Dw in the center of D(Z) so that

Dw ◦ µ◦(ξ : λ) ◦ ιO =

{
µ◦(ξ : λ) ◦ ιO (O ∈ w · (P\Z)open),
0 (O /∈ w · (P\Z)open).

Before we prove the proposition we first give a corollary, which we will use in Section
8.6. By Corollary 8.2 the multiplicity spaces Mξ,λ in (8.1) can for almost every λ ∈
i(a/ah)

∗ be identified with V ∗(ξ) via the map µ◦(ξ : λ). Recall that ⟨·, ·⟩Pl,ξ,λ denotes the
inner product on V ∗(ξ) that is induced by the natural inner product on the multiplicity
space Mξ,λ.

Corollary 8.2. The decomposition

V ∗(ξ) =
⊕

w∈N/W

V ∗
w(ξ).

is for almost every λ ∈ i(a/ah)
∗ orthogonal with respect to the inner product ⟨·, ·⟩Pl,ξ,λ.

Proof. Every differential operator D ∈ D(Z) defines a operator on L2(Z) with domain
D(Z). To every D ∈ D(Z) we can associate a formal adjoint D∗ which is defined by∫

Z

D∗ϕ(z)ψ(z) dz =

∫
Z

ϕ(z)Dψ(z) dz
(
ϕ, ψ ∈ D(Z)

)
.

It is easy to see that D∗ is a G-invariant differential operators and thus is contained in
D(Z). Furthermore, if D is contained in the center of D(Z), then for all ϕ, ψ ∈ D(Z)
and D′ ∈ D(Z)∫

Z

D′D∗ϕ(z)ψ(z) dz =

∫
Z

ϕ(z)DD′∗ψ(z) dz =

∫
Z

ϕ(z)D′∗Dψ(z) dz

=

∫
Z

D∗D′ϕ(z)ψ(z) dz,

226
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and hence D∗ is contained in the center of D(Z) as well.
Since the differential operators in D(Z) commute with the regular representation of

G, each D ∈ D(Z) induces for ξ ∈ M̂Q,fu and λ ∈ i(a/ah)
∗ an operator r(ξ : λ)(D) on

the multiplicity space Mξ,λ = V ∗(ξ). The operator is given by

D ◦ µ◦(ξ : λ) = µ◦(ξ : λ) ◦ r(ξ : λ)(D)
(
D ∈ D(Z)

)
. (8.2)

Furthermore, if † denotes hermitian conjugation with respect to ⟨·, ·, ⟩Pl,ξ,λ, then

r(ξ : λ)(D∗) =
(
r(ξ : λ)(D)

)† (
D ∈ D(Z)

)
.

If D is contained in the center of D(Z), then r(ξ, λ)(D) commutes with r(ξ, λ)(D)†,
and hence r(ξ, λ)(D) is normal. In particular, eigenspaces corresponding to different
eigenvalues are orthogonal to each other. The assertion now follows from Proposition
8.1.

In the remainder of this section we give the proof of Proposition 8.1. Part of the
proof is based on ideas of Delorme and Beuzart-Plessis, in particular our Lemma 8.5. We
begin by recalling the Harish-Chandra homomorphism of Knop from [26]. For a smooth
complex GC-variety X let UX = OX ⊗ U(g), where OX denotes the structure ring of
X . We equip UX with the structure of an algebra by equipping it with the multiplication
determined by

(f ⊗ ξ) · (g ⊗ η) = fg ⊗ ξη + f(ξg)⊗ η (f, g ∈ OX , ξ, η ∈ g).

Since elements of U(g) naturally define differential operators on X , we may view UX
as a subsheaf of the sheaf of differential operators on X . If X̃ is pseudo-free (see the
definition at the bottom of [26, page 259] ) and ϕ : X̃ → X is an equivariant, birational,
proper morphism, then we define UX := ϕ∗UX̃ . The sheaf UX does not depend on the
choice of X̃ or ϕ. We set U(X ) := H0(X ,UX ), where X is any smooth GC-equivariant
completion of X . The differential operators in U(X ) are called completely regular. Fi-
nally, let Z(X ) := U(X )GC . By the [26, Corollaries 7.6 & 9.2] the algebra Z(X ) is equal
to the center of U(X ) and is contained in the center of the algebra D(X ) of GC-invariant
differential operators on X .

We now consider X = ZC. We first apply the local structure theorem, [28, Theorem
4.2], to ZC. Let B be a Borel subgroup of GC that is contained in PC. The local structure
theorem then yields a parabolic subgroup R of GC and a Levi-decomposition R = LRNR

so that R∩HC = LR ∩HC is a normal subgroup of LR and LR/(LR ∩HC) is a torus. By
[28, Lemma 9.3] LR may be chosen so that AC ⊆ LR. Let now t be a maximal abelian
subalgebra of m ∩ lR. Then j := a ⊕ t is a Cartan subalgebra of g. Without loss of
generality we may assume that jC = aC ⊕ tC is contained in the Lie algebra of B.

Let V be a finite dimensional representation of GC which contains a vector v whose
stabilizer is equal to HC. Such a representation exists since ZC is quasi-affine. See [17,
Lemma 12.7]. We embed ZC in V via the map

gHC 7→ g · v.
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IV. The most continuous part of the Plancherel decomposition

Let ZC be the Zariski closure of ZC. Note that ZC is affine. Let X1 ∈ jC/(jC ∩ hC) be a
cocharacter so that α(X1) > 0 for every α ∈ ΠZC , where ΠZC ⊆ (jC/jC∩hC)

∗ is a simple
system of the spherical roots system of ZC that consists of roots whose restrictions to C
is non-positive. We decompose C[ZC] as

C[ZC] =
⊕
ν

C[ZC](ν),

where the sum ranges over all highest weights ν occurring in C[ZC] considered as a
representation of GC, and C[ZC](ν) is the sum of all irreducible subrepresentations of
C[ZC] with highest weight ν. We provide C[ZC] with a filtration induced by X1 by
setting

C[ZC]
(n) =

⊕
ν(X1)≤n

C[ZC](ν) (n ∈ N).

With this filtration we define the ring

R =
∞⊕
n=0

C[ZC]
(n)tn ⊆ C[ZC][t],

and set Ỹhor = spec (R) ⊆ V × C. Let ∆̃hor : Ỹhor → C be the projection onto the
second component. Now ∆̃hor is the regular GC × C×-equivariant map corresponding to
the inclusion homomorphism C[t] ↪→ R. Let S be the horospherical type of ZC, see [25,
p. 5]. By [25, Satz 2.2] there exists a GC-stable Zariski open subset of ∆̃−1

hor({0}) that
is GC-equivariantly isomorphic to Ṽ × GC/S, where Ṽ is a complex algebraic variety
on which GC acts trivially and S is a subgroup of GC in the horospherical type S. Let
W1 ⊆ ∆̃−1

hor({0}) be the complement of this Zariski open subset and let W2 ⊆ Ỹhor

be the Zariski closure of all GC orbits in ∆̃−1
hor(C×) of dimension strictly smaller than

dim(ZC). Note that W2 is the Zariski closure of the GC × C×-orbits through ZC \ ZC.
Therefore, W2 ∩ ∆̃−1

hor({0}) has dimension strictly smaller than the dimension of ZC. As
the dimension of ∆̃−1

hor({0}) equals the dimension of ZC, it follows that W2 ∩ ∆̃−1
hor({0})

is a proper Zariski closed subset of ∆̃−1
hor({0}) with Zariski dense complement. We now

define Yhor := Ỹhor \ (W1 ∪W2) and

∆hor := ∆̃hor|Yhor
: Yhor → C.

The latter construction is called the horospherical degeneration of ZC. By construction
the fibers of ∆hor satisfy

∆−1
hor({(t)}) ≃

{
ZC (t ̸= 0)
V ×GC/S (t = 0),

where V is a non-empty Zariski open subset of Ṽ . As in the proof of [26, Theorem 6.5]
we obtain a canonical map

ihor : U(ZC) = U(ZC × C) = U(Yhor) → U
(
∆−1

hor({0})
)
= U(GC/S). (8.3)
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The equalities follow from [26, Lemma 3.5] and the canonical map

U(Yhor) → U
(
∆−1

hor({0})
)

is obtained by applying [26, Lemma 3.1] to the injection ιhor : ∆−1
hor({0}) ↪→ Yhor in the

same way as in [26, Corollary 3.4]. (In the proof of [26, Corollary 3.4] the spaces X and
Y are erroneously interchanged.) From the fact that ιhor is GC-equivariant it follows that
ihor maps Z(ZC) to Z(GC/S). The latter is isomorphic to C

[
(j/j ∩ h)∗C

]
, see the top of

page 272 in [26]. Let ρB be the half-sum of the roots of Lie(B) in j. After a ρ-shift, we
obtain Knop’s Harish-Chandra homomorphism γZC : Z(ZC) → C[ρB + (j/j ∩ h)∗C]. Let
WZ,C be the little Weyl group of ZC, see [28, (9.13)], and WC the Weyl group of the root
system of gC in j. Finally, let γ : Z(g) → C[j∗C]WC be the Harish-Chandra isomorphism.
By [26, Theorem 6.5] the map γZC is an isomorphism onto C[ρB + (j/j ∩ h)∗C]

WZ,C and
the diagram

Z(g)

��

γ // C[j∗C]WC

��

Z(ZC)
γZC // C

[
ρB + (j/j ∩ h)∗C

]WZ,C

(8.4)

commutes. Here the right vertical arrow is the restriction map.
We now wish to compare Knop’s Harish-Chandra homomorphism for ZC to that for a

degeneration of ZC. The degeneration of ZC is obtained by a degeneration to the normal
bundle, as in [28, Remark 12.2.3]. Let F be a face of C. In this article we only need to
consider F = C, but for reference in future articles we treat here the general case.

Let X2 ∈ a be an element contained in the coweight-lattice so that −X2 is in the
interior of the face F . We consider the partial toroidal GC × C×-compactification YF of
ZC×C× attached to the fan with only one non trivial cone R+(X2, 1). By functoriality of
toroidal compactifications there exists a GC ×C× equivariant map ∆F : YF → C whose
restriction to ZC × C× equals the projection ZC × C× → C×, i.e., the diagram

ZC × C× � � //

��

YF

∆F
��

C× � � // C

commutes. For t ∈ C×, let at = exp
(
log(t)X2

)
∈ A. It follows from the local structure

theorem [28, Theorem 4.2] that the map

C× → YF , t 7→ (at ·HC, t)

extends to a regular map s : C → YF .
For t ∈ C, let zt = s(t). Then for t ∈ C× the stabilizer Ht of zt in GC is equal to

atHCa
−1
t and ∆−1

F ({t}) = GC · zt ≃ ZC. Let

ZF ,C := ∆−1
F ({0}).

From the properties of compactifications it follows that ZF ,C is theGC×C×-orbit through
z0 and the subgroup {(at, t) : t ∈ C×} stabilizes z0. Therefore, ZF ,C = GC·z0. Moreover,
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IV. The most continuous part of the Plancherel decomposition

the stabilizer of z0 in GC has Lie algebra hF ,C. This implies that the space ZF := ZeH,F
from Section 7.3 is a finite cover of the real form G · z0 of ZF ,C.

Lemma 8.3. The map ∆F : YF → C is smooth.

Proof. Let A be the closure of AC · HC × C× in YF . Then A is the product of the
toroidal compactification of AC/(AC∩HC) and C. The restriction of ∆F to A equals the
projection onto the second factor, and hence is smooth. By the local structure theorem
[28, Theorem 4.2] the natural map Φ : UQ,C × LQ,C/(LQ ∩ HC) ×AC A → YF is an
isomorphism onto an open subset Y◦

F of YF that intersects with every GC-orbit. Since

∆F ◦ Φ(u, l, a) = ∆F(a)
(
u ∈ UQ,C, l ∈ LQ,C/(LQ,C ∩HC, a ∈ A

)
it follows that ∆F is smooth on the open subset Y◦

F . The claim that ∆F is smooth now
follows as YF = GC · Y◦

F and ∆F is GC-equivariant.

We move on to relate the Harish-Chandra homomorphisms for ZC and ZF ,C. As in
the proof of [26, Theorem 6.5] the inclusion ιF : ZF ,C ↪→ YF induces a canonical map

iF : U(ZC) = U(ZC × C) = U(YF) → U(ZF ,C).

The first two equalities follow from [26, Lemma 3.5] and canonical U(YF) → U(ZF ,C)
is obtained by applying [26, Lemma 3.1] to the injection ιF in the same way as in [26,
Corollary 3.4]. Since ιF is GC-equivariant the map iF maps Z(ZC) to Z(ZF ,C).

Lemma 8.4. The diagram

Z(ZC)� _

iF

��

γZC // C
[
ρB + (j/j ∩ h)∗C

]WZ,C

� _

��

Z(ZF ,C)
γZF,C // C

[
ρB + (j/j ∩ h)∗C

]WZF ,C

commutes.

Proof. The strategy of the proof is to construct a horospherical degeneration Y → C of
the GC × C×-variety YF . This yields a map ∆ : Y → C2 whose fibers are isomorphic to
ZC, ZF ,C and V × GC/S, where GC/S is horospherical and V is a variety on which GC
acts trivially. From the various inclusions of these fibers into Y we then obtain canonical
maps between the rings of completely regular invariant differential operators on these
spaces as in (8.3).

Let X1 ∈ jC/(jC ∩ hC) be the cocharacter we used to define Yhor. Recall that V is a
finite dimensional representation of GC and v ∈ V is a vector whose stabilizer is equal
to HC. The variety YF embeds into V × C. To be more precise, let V = V1 ⊕ · · · ⊕ Vn,
where the Vn are irreducible subrepresentations. Let νi be the lowest weight of Vi and let
v =

∑n
i=1 vi be the decomposition of v with vi ∈ Vi. Then YF equals the set of GC orbits

through {( n∑
i=1

t−νi(X2)at · vi, t
)
: t ∈ C

}
.
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8. The most continuous part of L2(Z)

Let YF be the Zariski closure of YF . We note that YF is affine and YF is Zariski open in
YF . We provide C[YF ] with a filtration induced by the cocharacters X1 by setting

C[YF ]
(n) =

⊕
ν(X1)≤n

C[YF ](ν) (n ∈ N),

where C[YF ](ν) is the sum of all irreducible subrepresentations of C[YF ] with highest
weight ν. We define Y = spec (R), where

R =
∞⊕
n=0

C[YF ]
(n)tn ⊆ C[YF ][t].

Recall the regular map ∆F : YF → C. Let ϕF be the corresponding homomorphism
C[s] → C[YF ]. We define ∆ : Y → C2 to be the regular map corresponding to the
homomorphism C[s, t] → C[YF ][t] that restricts to ϕF : C[s] → C[YF ] ↪→ C[YF ][t]
on C[s] ⊆ C[s, t] and to the inclusion homomorphism C[t] ↪→ C[YF ][t] on C[t] ⊆
C[s, t]. Note that ∆ is GC × (C×)2-equivariant. Let W1 be the Zariski closure of all
GC-orbits in ∆

−1
({C × C×}) of dimension strictly smaller than dim(ZC). We note that

the complement of W1 in ∆̃−1(C×{0}) is Zariski dense. Let S be the horospherical type
of ZC, see [25, p. 5]. In view of [25, Satz 2.5] the varieties ZF ,C and ZC have the same
horospherical type. By [25, Satz 2.2] there exists a GC × C×-stable Zariski open subset
of ∆̃−1(C × {0}) that is GC × C×-equivariantly isomorphic to Ṽ × GC/S × C, where
Ṽ is a complex algebraic variety on which GC × C× acts trivially and S is a subgroup of
GC in the horospherical type S. Let W2 be the complement of this Zariski open subset of
∆̃−1(C × {0}). Then we define Y := Y \

(
W1 ∪W2) and ∆ := ∆|Y . The fibers of ∆

satisfy by construction

∆−1({(s, t)}) ≃


ZC (s, t ̸= 0)
ZF ,C (s = 0, t ̸= 0)
V ×GC/S (s ∈ C, t = 0),

where V is a non-empty Zariski open subset of Ṽ .
We now consider the inclusions

ι1 : V ×GC/S = ∆−1({(0, 0)}) ↪→ ∆−1({0} × C),
ι2 : ∆

−1({0} × C) ↪→ Y ,
ιhor = ι2 ◦ ι1 : V ×GC/S = ∆−1({(0, 0)}) ↪→ Y .

As in the proof of [26, Theorem 6.5] we may apply [26, Lemma 3.1] to these inclusions
and use this in combination with [26, Lemma 3.5] to obtain canonical maps

i1 : U(ZF ,C) → U(GC/S), i2 : U(ZC) → U(ZF ,C), ihor : U(ZC) → U(GC/S).

The maps γZC and γZF,C are obtained from ihor and i1 by restricting them to Z(ZC) and
Z(ZF ,C), respectively, and applying [26, Lemma 6.4.]. As ι2 ◦ ι1 = ιhor, the uniqueness
of the maps obtained from [26, Lemma 3.1] implies that i1 ◦ i2 = ihor. Moreover, it
follows from [26, Lemma 3.5] that i2 = iF . This proves the lemma.
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IV. The most continuous part of the Plancherel decomposition

We now give an alternative description of the map iF . The right-action of G induces
a natural isomorphism

D(Z) ≃ U(g)H/U(g)h,

where
U(g)H :=

{
u ∈ U(g) : Ad(h)u− u ∈ U(g)h for all h ∈ H

}
.

Likewise, we have
D(ZC) ≃ U(g)HC/U(g)h,

where
U(g)HC :=

{
u ∈ U(g) : Ad(h)u− u ∈ U(g)h for all h ∈ HC

}
.

Clearly, D(ZC) ⊆ D(Z). Let b = m ⊕ a ⊕ nQ and bH = (m ∩ h) ⊕ ah. Then U(b)bH
is a two-sided ideal of U(b). From the Poincaré-Birkhoff-Witt theorem we obtain the
isomorphism

U(b)H/U(b)bH ≃ U(g)H/U(g)h ≃ D(Z), (8.5)

where U(b)H = U(b) ∩ U(g)H . We thus may view D(Z) as a subring of U(b)/U(b)bH .
By the same reasoning we may view D(ZF) as a subring of U(b)/U(b)bH . We recall
from [18, Lemma 5.2] that the limit

lim
t→∞

Ad
(
exp(tX)

)
D

exists (in U(b)/U(b)bH) for every D ∈ D(Z) and defines a G-invariant differential oper-
ator on ZF . The limit does not depend on the choice of X . Moreover, the map

δF : D(Z) → D(ZF); D 7→ lim
t→∞

Ad
(
exp(tX)

)
D

is an injective algebra morphism. Since the complexification of ZF is a finite cover of
ZF ,C, we may view D(ZF ,C) as a subalgebra of D(ZF). The following lemma is due to
Delorme and Beuzart-Plessis and was communicated to us by Delorme.

Lemma 8.5. The image of Z(ZC) under the map δF is contained in Z(ZF ,C). Moreover,

iF(u) = δF(u)
(
u ∈ Z(ZF ,C)

)
.

Proof. We claim that if X is a smooth complex GC-variety and V ⊆ X is a Zariski open
and pseudo-free subvariety, then (

UX
)∣∣
V
= UV . (8.6)

To see this, let X̃ be pseudo-free and ϕ : X̃ → X an equivariant, birational, proper
morphism. Then UX := ϕ∗UX̃ . The variety ϕ−1(V ) is an open in the pseudo-free variety
X̃ and therefore is pseudo-free. Therefore,(

UX
)∣∣
V
=

(
ϕ∗UX̃

)∣∣
V
= ϕ∗Uϕ−1(v) = UV

The claim now follows as V is pseudo-free, and hence UV = UV .
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8. The most continuous part of L2(Z)

Let YF be any smooth GC-equivariant completion of YF . By [26, Lemma 2.3] the
variety YF is pseudo-free as all GC-orbits in YF have the same dimension. We may thus
apply (8.6) to X = YF and V = YF . Thus we obtain(

UYF

)∣∣
YF

= UYF

Therefore,
U(YF) = H0(YF ,UYF

) ⊆ UYF (YF).

In particular, every differential operator in U(YF) restricts to a differential operator on
any GC-orbit in YF .

Let u be an element in Z(ZC). By [26, Lemma 3.5] the latter algebra is isomorphic
to U(YF). Let v ∈ U(YF) be the image of u. Then iF(u) is given by restricting v to
ZF ,C ⊆ YF . Let f be a regular function on an open affine set of YF containing z0. Now

(vf)(z0) = lim
t→0

(vf)(zt).

If t ̸= 0, then (vf)(zt) = ((u ⊗ 1)f)(zt). In view of (8.5) there exists an element
w ∈ U(b) so that u is given by the right action of w. Hence

(vf)(zes) = (LAd(exp(sX))wf)(zes)

Taking the limit for s→ −∞ and using the definition of δF , we obtain

(vf)(z0) = (LδF (u)f)(z0).

Using GC-invariance we deduce from this that the restriction of v to YF is given by
LδF (v).

Proposition 8.6. The diagram

Z(g)

��

γ // C[j∗C]WC

��

Z(ZC)� _

δF

��

γZC // C
[
ρB + (j/j ∩ h)∗C

]WZ,C

� _

��

Z(ZF ,C)
γZF,C // C

[
ρB + (j/j ∩ h)∗C

]WZF ,C

commutes.

Proof. The assertion is a direct corollary of (8.4), Lemma 8.4 and Lemma 8.5.

We return our attention to the face F = C. Since the corresponding real spherical
space is denoted by Z∅, we change notation and write δ∅ instead of δC .

For everyD ∈ D(Z) the a-weights that occur inD−δ∅(D), considered as an element
of U(b)/U(b)bH , are strictly negative on C. When applied to Z∅ this leads to

D(Z∅) ≃ S(a)/S(a)ah ⊗ U(m)H/U(m)(m ∩ h),
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IV. The most continuous part of the Plancherel decomposition

where U(m)H := U(m) ∩ U(g)H . We note that U(m)H/U(m)(m ∩ h) may be identified
with the ring D

(
M/(M ∩H)

)
of M -invariant differential operators on M/(M ∩H). In

particular,
Z(Z∅,C) ⊆ S(a)/S(a)ah ⊗ D

(
M/(M ∩H)

)
.

The little Weyl group WZ∅,C of Z∅,C acts trivially on the subspace (a/ah)
∗
C of (j/j ∩ h)∗C

and is isomorphic to the little Weyl group WZ,M of MC/(MC ∩HC).
Using that γZC is an isomorphism, we see that the set of characters of Z(ZC) is in

bijection with
(
ρB + (j/j ∩ h)∗C

)
/WZ,C. Likewise, the set of characters of Z(Z∅,C) is in

bijection with
(
ρB + (j/j ∩ h)∗C

)
/WZ∅,C.

Lemma 8.7. Let ξ be a finite dimensional unitary representation of MQ and let λ ∈
(a/ah)

∗
C with Imλ /∈ S. Let further v ∈ N. The image of µ◦

∅(ξ : λ)◦ ιv is stable under the
action of D(Z∅). Moreover, if the Z(Z∅,C)-characterWZ∅,C ·ν ∈

(
ρB+(j/j∩h)∗C

)
/WZ∅,C

occurs in the spectrum of the action of Z(Z∅,C) on the image of µ◦
∅(ξ : λ) ◦ ιv, then

Im ν
∣∣
a
= −Ad(v−1)λ,

ν
∣∣
t
∈ it∗/WZ,M .

Proof. Let X ∈ a. The corresponding invariant differential operator DX = R∨(X) acts
in view of (6.6) on the image of µ◦

∅(ξ : λ) ◦ ιv by the scalar −Ad(v−1)λ(X) + ρQ(X).
Since the operators DX with X ∈ a are contained in the center of D(Z∅), it follows that
action of D(Z∅) preserves the image of µ◦

∅(ξ : λ) ◦ ιv if λ is sufficiently regular. By
meromorphic continuation the same then holds for all λ.

Assume that the Z(Z∅,C)-character WZ∅,C · ν ∈
(
ρB + (j/j ∩ h)∗C

)
/WZ∅,C occurs in

the spectrum of the action of Z(Z∅,C) on the image of µ◦
∅(ξ : λ) ◦ ιv. Since

Im
(
γZ∅(DX)

)
(ν) = Im ν(X)

it follows that Im ν|a = −Ad(v−1)λ.
From the explicit formula (6.8) for µ◦(ξ : λ) ◦ ιv for sufficiently anti-dominant λ and

by using meromorphic continuation one easily sees that Z(m) ⊆ D
(
M/(M ∩ H)

)
acts

on the image of µ◦◦ιv by the infinitesimal character of the restriction (v−1 ·ξ)|M of v−1 ·ξ
to M . Since this infinitesimal character is real, it follows that the restriction of ν to t is
contained it∗/WZ,M .

The final ingredient for the proof of Proposition 8.1 is a relation between the constant
term and the map δ∅.

Lemma 8.8. Let λ ∈ i(a/ah)
∗\iS and let ξ be a finite dimensional unitary representation

of MQ. Then

CTO(ξ : λ) ◦D = δ∅(D) ◦ CTO(ξ : λ)
(
D ∈ D(Z),O ∈ (P\Z)open

)
.

Proof. After replacingH by xOHx−1
O we may assume that O = PH . LetD ∈ D(Z) and

µ ∈ D′(Q : ξ : λ)H . The a-weights that occur in D − δ∅(D), considered as an element
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8. The most continuous part of L2(Z)

of U(b)/U(b)bH , are strictly negative on C. Therefore, for a fixed X ∈ C there exists an
ϵ > 0 and a u ∈ U(b)/U(b)bH whose weights are non-positive on C so that

Ad
(
exp(tX)

)(
D − δ∅(D)

)
= e−ϵtAd

(
exp(tX)

)
u (t > 0).

It follows from Theorem 7.2 that

lim
t→∞

e−tρQ(X)−ϵtR∨( exp(tX)
)
µ = 0.

Since Ad
(
exp(tX)

)
u converges for t→ ∞, it follows that

lim
t→∞

e−tρQ(X)−ϵtR∨( exp(tX)
)
R∨(u)µ = 0. (8.7)

Using that X centralizes δ∅(D), we obtain

e−tρQ(X)
(
R∨( exp(tX)

)
Dµ−R∨( exp(tX)

)
δ∅(D)µ∅

)
= e−tρQ(X)−ϵtR∨( exp(tX)

)
R∨(u)µ

+ e−tρQ(X)δ∅(D)
(
R∨( exp(tX)

)
µ−R∨( exp(tX)

)
µ∅

)
.

In view of (8.7) and (7.1) in Theorem 7.1 the right-hand side converges to 0 for t → ∞.
By [18, Lemma 6.5] this identifies δ∅(D)CTO(ξ : λ)(µ) as the constant term of Dµ.

Recall the maps prv from (8.5). From Corollary 6.1 it is easily seen that for every
v ∈ N there exists an element u ∈ S(a)/S(a)ah ⊆ D(Z∅) so that the diagram

D′(Q : ξ : λ)H∅
R∨(u) // D′(Q : ξ : λ)H∅

V ∗
∅ (ξ)

prv //

µ◦∅(ξ:λ)

OO

(V ∗
ξ )

MQ∩vHv−1

µ◦∅(ξ:λ)◦ιv

OO

commutes. Note that R∨(u) is contained in the center of D(Z∅). For v ∈ N we define a
map r∅,v(ξ : λ) : D(Z∅) → End

(
V ∗
∅,v(ξ)

)
similar to (8.2) by requiring that the identity

Dµ◦
∅(ξ : λ)(ηO) = µ◦

∅(ξ : λ)
((
r∅,v(ξ : λ)(D)η

)
O

)
holds for every D ∈ D(Z∅), η ∈ V ∗

∅,v(ξ) and O ∈ (P\Z)open. As before V ∗
∅,v(ξ) is con-

sidered here to be a subspace of
⊕

O∈(P\Z)open V
∗
∅ (ξ). Now Lemma 8.8 has the following

immediate corollary.

Corollary 8.9. Let ξ be a finite dimensional unitary representation of MQ and λ ∈
i(a/ah)

∗ \ iS . Then for every D ∈ D(Z) and v ∈ N

Γv(ξ : λ) ◦ r(ξ : λ)(D) = r∅,v(ξ : λ)
(
δ∅(D)

)
◦ Γv(ξ : λ).
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IV. The most continuous part of the Plancherel decomposition

Proof of Proposition 8.1. We only consider λ ∈ i(a/ah)
∗ whose stabilizer in N is equal

to Z and for which the implication for v ∈ NGC(j/j ∩ h)

Ad∗(v)λ ∈ i(a/ah)
∗ ⇒ v ∈ NGC

(
(a/ah)

∗) ∩NGC

(
(t/t ∩ h)∗

)
holds. It suffices to prove the proposition only for these λ as all elements i(a/ah)∗ outside
of a finite union of proper subspaces have these properties.

We claim that the WZ,C-orbit WZ,C · λ does not contain the points Ad∗(v−1
w )λ for

w ̸= eW ∈ N /W . To prove the claim we assume that there exists a v ∈ WZ,C so
that v · λ = Ad∗(v−1

w )λ for some w ∈ N /W . We will prove the claim by showing that
w = eW .

The assumption on λ guarantees that v normalizes a/ah. We write NWZ,C(a/ah) and
ZWZ,C(a/ah) for the normalizer and centralizer, respectively, of a/ah in WZ,C. By [28,
Theorem 9.5] the little Weyl group WZ of Z is related to the little Weyl group WZ,C of
ZC by

WZ = NWZ,C(a/ah)/ZWZ,C(a/ah).

This identity is to be considered as an identity of finite reflection groups on a/ah. It
follows that v · λ ∈ WZ · λ = Ad∗(W)λ. Since the stabilizer of λ in N is by assumption
equal to Z , it follows that vw ∈ W , and hence w = eW . This proves the claim.

Let v ∈ N . After replacing λ by −Ad∗(v−1)λ we may conclude from the claim
that the WZ,C-orbit through −Ad∗(v−1)λ is for every v′ ∈ N \ vW disjunct from the
WZ,C-orbit through −Ad∗(v′−1)λ.

In view of Lemma 8.7 there exist ν1, . . . , νr ∈ (a/ah)
∗ ⊕ i(t/t ∩ h)∗ so that the

Z(Z∅,C)-characters occurring in D′(Q : ξ : λ)H∅ are given by

WZ,C ·
(
− Ad(v−1

w )λ+ νj
) (

w ∈ N /W , 1 ≤ j ≤ r
)
.

The real subspaces (a/ah)∗⊕ i(t/t∩ h)∗ and i(a/ah)∗⊕ (t/t∩ h)∗ of (j/j∩ h)∗C are stable
under the action of NGC(j/j ∩ h). Therefore, the WZ,C-orbits through −Ad∗(v−1)λ + νj
for 1 ≤ j ≤ r are disjunct from theWZ,C-orbits through −Ad∗(v′−1)λ+νj for 1 ≤ j ≤ r
and v′ ∈ N \ vW .

Let now w ∈ N /W . It follows that there exists a polynomial

pw ∈ C
[
ρB + (j/j ∩ h)∗C

]WZ,C

so that

pw(−Ad∗(v−1)λ+ νj) = 1,
(
1 ≤ j ≤ r, v ∈ vwW)

pw
(
− Ad∗(v−1)λ+ νj

)
= 0

(
1 ≤ j ≤ r, v ∈ N \ vwW

)
.

Let Dw := γ−1
Z

(
pw(λ)

)
. We claim that the differential operator D has the desired prop-

erties.
To prove the claim, let v ∈ N. Proposition 8.6, Corollary 8.9 and the construction of

D guarantee that

Γv(ξ : λ) ◦ r(ξ : λ)(Dw)

= r∅,v(ξ : λ)
(
δ(Dw)

)
◦ Γv(ξ : λ) =

{
Γv(ξ : λ) (vW = w),
0 (vW ≠ w).

(8.8)
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8. The most continuous part of L2(Z)

We now substitute v = vw with w ∈ N /W and apply Corollary 8.3. We then have for
η ∈ V ∗(ξ) (

r(ξ : λ)(Dw)η
)
O
=

{
ηO

(
O ∈ w · (P\Z)open

)
,

0
(
O /∈ w · (P\Z)open

)
.

The proposition now follows by applying µ◦(ξ : λ) to both sides and using the identity
µ◦(ξ : λ) ◦ r(ξ : λ)(Dw) = Dw ◦ µ◦(ξ : λ).

8.6 Plancherel decomposition of L2
mc(Z)

We now come to the main theorem of this article.
For a finite dimensional unitary representation ξ of MQ and λ ∈ i(a/ah)

∗ \ iS we
define the Fourier transform

Ff(ξ : λ) ∈ HomC
(
V ∗(ξ∨), C∞(Q : ξ : λ)

)
= V ∗(ξ)⊗ C∞(Q : ξ : λ)

of a function f ∈ D(Z) by

Ff(ξ : λ)η =

∫
Z

f(gH)R∨(g)
(
µ◦(ξ∨ : −λ)η

)
dgH.

Let ⟨·, ·⟩ξ∨ be the inner product on V ∗(ξ∨) induced by the inner product on Vξ∨ , and let
⟨·, ·⟩ξ,λ be the inner product on V ∗(ξ) ⊗ IndG

Q
(ξ ⊗ λ ⊗ 1) induced by the inner prod-

ucts ⟨·, ·⟩ξ and ⟨·, ·⟩Q,ξ,λ on V ∗(ξ) and IndG
Q
(ξ ⊗ λ ⊗ 1), respectively. We then have the

following description of the Plancherel decomposition of L2
mc(Z).

Theorem 8.1. The Fourier transform f 7→ Ff extends to a continuous linear operator

L2(Z) →
⊕̂

ξ∈M̂Q,fu

∫ ⊕

i(a/ah)
∗
+

V ∗(ξ)⊗ IndG
Q
(ξ ⊗ λ⊗ 1) dλ.

Moreover, for every f1, f2 ∈ L2
mc(Z) we have∫

Z

f1(z)f2(z) dz =
∑

[ξ]∈M̂Q,fu

dim(Vξ)

∫
i(a/ah)

∗
+

〈
Ff1(ξ : λ),Ff2(ξ : λ)

〉
ξ,λ
dλ.

Proof. By Corollary 8.2 the multiplicity space Mξ,λ is isomorphic to V ∗(ξ) for all ξ ∈
M̂Q,fu and almost every λ ∈ i(a/ah)

∗. In view of (8.1) it therefore suffices to show that
for almost all λ ∈ i(a/ah)

∗ we have the equality

⟨·, ·⟩Pl,ξ,λ = dim(Vξ)⟨·, ·⟩ξ (8.1)

of inner products on V ∗(ξ). To prove this identity we will use Theorem 8.1, Corollary
8.2 and the Maaß-Selberg relations from [17, Theorem 9.6].

We fix a finite dimensional unitary representation ξ of MQ. It follows from Theorem
8.1 that the multiplicity space for the representation IndG

Q

(
ξ ⊗ λ ⊗ 1

)
in the Plancherel

decomposition of L2(Z∅) is for almost all λ ∈ i(a/ah)
∗ equal to V ∗

∅ (ξ). Moreover, the
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IV. The most continuous part of the Plancherel decomposition

inner product on the multiplicity spaces induced by the Plancherel decomposition is the
inner product dim(Vξ)⟨·, ·⟩∅,ξ, where ⟨·, ·⟩∅,ξ is the inner product on V ∗

∅ (ξ) induced from
the natural MQ-invariant inner product on Vξ. We recall the spaces V ∗

∅,vw(ξ) from (8.4).
We view these spaces as subspaces of V ∗

∅ (ξ). The inner product ⟨·, ·⟩vw,ξ on V ∗
∅,vw(ξ)

obtained by restriction equals the inner-product induced by the natural inner product on
Vξ.

By Corollary 8.3 the kernel of Γvw(ξ : λ) equals the direct sum of the subspaces
V ∗
w′(ξ) with w′ ∈ N /W , w′ ̸= w. In view of Corollary 8.2 the latter equals the or-

thocomplement of V ∗
w(ξ) with respect to ⟨·, ·⟩Pl,ξ,λ. Let Γvw(ξ : λ)† be the dual map of

Γvw(ξ : λ) with respect to the inner products dim(Vξ)⟨·, ·, ⟩vw,ξ and ⟨·, ·⟩Pl,ξ,λ on V ∗
∅,vw(ξ)

and V ∗(ξ), respectively. It then follows that the image of Γvw(ξ : λ)† is equal to V ∗
w(ξ).

Moreover, by the Maaß-Selberg relations from [17, Theorem 9.6] the map Γvw(ξ : λ) is
a partial isometry for every w ∈ N /W and almost every λ ∈ i(a/ah)

∗, i.e., Γvw(ξ : λ)†

is for almost all λ ∈ i(a/ah)
∗ a unitary map onto its image V ∗

w(ξ). Since Γvw(ξ : λ)
is essentially the identity map, the restrictions of dim(ξ)⟨·, ·⟩ξ and ⟨·, ·⟩Pl,ξ,λ to the sub-
spaces V ∗

w(ξ) with w ∈ N /W coincide for almost every λ ∈ i(a/ah)
∗. This proves the

identity (8.1) as the decomposition (8.1) is orthogonal with respect to both dim(ξ)⟨·, ·⟩ξ
and ⟨·, ·⟩Pl,ξ,λ by Corollary 8.2.

8.7 Corollaries I: regularity of the families of distributions

In this and the next section we record two corollaries of Theorem 8.1. The first corollary is
the regularity of the families of distributions we constructed in Section 6 on the imaginary
axis.

Corollary 8.1. Let ξ be a finite dimensional unitary representation of MQ. For every
η ∈ V ∗(ξ) the family of distributions λ 7→ µ◦(ξ : λ)η is holomorphic on a neighborhood
of i(a/ah)∗.

Proof. Let η ∈ V ∗(ξ). By Theorem 6.1 the family λ 7→ µ◦(ξ : λ)η is meromorphic. It
therefore suffices to proof that the family does not have any singularities on i(a/ah)∗.

We aim for a contradiction and assume that λ 7→ µ◦(ξ : λ)η has a singularity on
i(a/ah)

∗. The poles of the family lie in view of Theorem 6.1 on a locally finite union of
complex affine hyperplanes of the form

{λ ∈ (a/ah)
∗
C : λ(X) = a} for some X ∈ a and a ∈ R.

Since the singular set of a meromorphic function on (a/ah)
∗
C is a union of complex an-

alytic submanifolds of C-codimension 1, it follows that there exists a subspace H of
i(a/ah)

∗ of codimension 1 so that λ 7→ µ◦(ξ : λ) is singular on H. For every f ∈ D(Z)
the assignment λ 7→ Ff(ξ∨ : λ)η defines a meromorphic function on (a/ah)

∗
C and there

exist functions f ∈ D(Z) so that Ff(ξ∨ : λ)η is singular on H. Let f be such a function
and let ω ∈ i(a/ah)

∗ be transversal to H. Then there exists a µ ∈ H and n ∈ N with
n ≥ 1 so that

t 7→ tnFf(ξ∨ : µ+ tω)η
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extends to a continuous function on a neighborhood of 0 that is non-zero in 0. Therefore,
there exists an ϵ > 0 and an open neighborhood Ω of µ in H so that

∥Ff(ξ∨ : λ+ tω)η∥ξ,λ ≥ c|t|−n
(
− ϵ < t < ϵ, t ̸= 0, λ ∈ Ω

)
.

It follows that λ 7→ ∥Ff(ξ∨ : λ)η∥ξ,λ is not square integrable. This is however in
contradiction with Theorem 8.1.

8.8 Corollaries II: refined Maaß-Selberg relations
The second corollary of Theorem 8.1 is a refinement of the Maaß-Selberg relations. The
Maaß-Selberg relations from [17, Theorem 9.6] state that each of the maps

Γv(ξ : λ) : V
∗(ξ) → V ∗

∅,v(ξ)
(
v ∈ N

)
.

is a partial isometry, i.e., its Hermitian dual of Γv(ξ : λ) with respect to the inner products
on V ∗(ξ) and V ∗

∅,v(ξ), induced by the Plancherel decompositions Theorems 8.1 and 8.1,
is a unitary isometry. In view of the Theorems 8.1 and 8.1 these inner products are up to
factor dim(Vξ) equal to the inner products induced by the inner product on Vξ. We can
now refine the Maaß-Selberg relations from [17] for the most continuous part of L2(Z)
as follows.

Corollary 8.1. Let ξ be a finite dimensional unitary representation of MQ, λ ∈ i(a/a∗)
and v ∈ N. Then

Γv(ξ : λ)
∣∣
V ∗
w(ξ)

= 0
(
w ∈ N /W , vW ≠ w

)
.

Moreover, if w = vW , then

Γv(ξ : λ)
∣∣
V ∗
w(ξ)

: V ∗
w(ξ) → V ∗

∅,v(ξ)

is a unitary map.

Proof. The assertions follow Proposition 8.1, (8.8) and the Maaß-Selberg relations from
[17, Theorem 9.6].

The Maaß-Selberg relations from Corollary 8.1 are reflected in the symmetries of the
combined constant term map

Γ(ξ : λ) : V ∗(ξ) →
⊕

O∈(P\Z)open

V ∗
∅ (ξ)

given by (
Γ(ξ : λ)η

)
O
= ΓO(ξ : λ)η

(
η ∈ V ∗(ξ),O ∈ (P\Z)open

)
.

Note that Γ(ξ : λ) decomposes according to the decomposition V ∗
∅ (ξ) =

⊕
v∈N V

∗
∅,v(ξ)

as (
Γ(ξ : λ)η

)
v
= Γv(ξ : λ)η ∈ V ∗

∅,v(ξ)
(
η ∈ V ∗(ξ), v ∈ N

)
.
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To describe the symmetries we first introduce an action of N /Z on N. For w ∈ N /Z
and v ∈ N ⊆ N we define w · v to be the element in N determined by the identity in
N /Z

(w · v)Z = vw−1,

i.e., w · v is the representative of vw−1 ∈ N /Z in N.
For w ∈ N /Z we now define the scattering operator

Sw(ξ : λ) :=
∑
v∈N

Γw·v(ξ : λ) ◦ Γv(ξ : λ)† :
⊕

O∈(P\Z)open

V ∗
∅ (ξ) →

⊕
O∈(P\Z)open

V ∗
∅ (ξ).

We then have the following immediate corollary of Corollary 8.1.

Corollary 8.2. Let ξ be a finite dimensional unitary representation of MQ and λ ∈
i(a/ah)

∗ \ iS. The following hold true.

(i) Sw(ξ : λ) = 0 for every w ∈ (N /Z) \WZ .

(ii) The assignment WZ ∋ w 7→ Sw(ξ : λ) defines a unitary representation of WZ on⊕
O∈(P\Z)open

V ∗
∅ (ξ).

(iii) For every w ∈ WZ we have Sw(ξ : λ) ◦ Γ(ξ : λ) = Γ(ξ : λ).

Remark 8.3. In [15] scattering operators were defined under the restricting assumption
that G is split, but for all boundary degenerations, not just for the horospherical boundary
degeneration Z∅ as we do here.

We finish this section with a description of the scattering operators in terms of the
action of standard intertwining operators on D′(Q : ξ : λ)H , or rather in terms of the
induced action on the parameter spaces V ∗(ξ). We first define for v ∈ N the normalized
B-matrix

B◦
v(ξ : λ) : V

∗(ξ) → V ∗(v · ξ)

by

B◦
v(ξ : λ) :=

1

γ(v−1Qv : Q : ξ : λ)
β(v · ξ : Ad∗(v)λ) ◦ Bv(Q : ξ : λ) ◦ β(ξ : λ)−1.

The normalized B-matrices are characterized by the fact that the diagram

D′(Q : ξ : λ)H
I◦
v (ξ:λ) // D′(Q : v · ξ : Ad∗(v)λ)H

V ∗(ξ)

µ◦(ξ:λ)

OO

B◦
v(ξ:λ) // V ∗(v · ξ)

µ◦
(
v·ξ:Ad∗(v)λ

)OO
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commutes. If v1, v2 ∈ N then the identity

I◦
v1

(
v2 · ξ : Ad∗(v2)λ

)
◦ I◦

v2
(ξ : λ) = I◦

v1v2
(ξ : λ)

implies
B◦
v1

(
v2 · ξ : Ad∗(v2)λ

)
◦ B◦

v2
(ξ : λ) = B◦

v1v2
(ξ : λ). (8.1)

Each normalized intertwining operator I◦
v (ξ : λ) is unitary and hence is a unitary map

between the multiplicity spaces Mξ,λ and Mv·ξ,Ad∗(v)λ. Furthermore, µ◦(ξ : λ) is in view
of Theorem 8.1 a unitary map from V ∗(ξ) (equipped with dim(Vξ) times the inner product
induced by the one on Vξ) to Mξ,λ. Therefore, the normalized B-matrices B◦

v(ξ : λ) are
unitary.

For v ∈ N we define the map

jv(ξ) : V
∗(v−1 · ξ) → V ∗

∅,v(ξ) ⊆
⊕

O∈(P\Z)open

V ∗
∅ (ξ)

by (
jv(ξ)η

)
O := ηO,e

(
η ∈ V ∗(v−1 · ξ),O ∈ (P\Z)open

)
.

The dual map

jv(ξ)
† :

⊕
O∈(P\Z)open

V ∗
∅ (ξ) → V ∗

eW(v−1 · ξ) ⊆ V ∗(v−1 · ξ)

is given by
jv(ξ)

†∣∣
V ∗
∅,v′ (ξ)

= 0 (v′ ∈ N, v′ ̸= v)

and (
jv(ξ)

†η
)
O = ηO

(
η ∈ V ∗

∅,v(ξ),O ∈ (P\Z)open
)
.

Now the scattering maps are given by the following.

Corollary 8.4. Let ξ be a finite dimensional unitary representation of MQ and let λ ∈
i(a/ah)

∗ \ iS . Then

Sw(ξ : λ) =
∑
v∈N

jw·v(ξ) ◦ B◦
(w·v)−1v(ξ : λ) ◦ jv(ξ)† (w ∈ WZ).

Proof. Let w ∈ N /W and let v ∈ N be so that vW = w. In view of Proposition 8.1 we
have

Γv(ξ : λ) = Γe
(
v−1 · ξ : Ad∗(v−1)λ

)
◦ B◦

v−1(ξ : λ) (v ∈ N).

Moreover, by Corollary 8.3

Γe
(
v−1 · ξ : Ad∗(v−1)λ

)
= jv(ξ),

and hence
Γv(ξ : λ) = jv(ξ) ◦ B◦

v−1(ξ : λ) (v ∈ N).

The assertion now follows from the unitarity of the normalized B-matrices and (8.1).
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Appendices

Appendix A: Wavefront spaces
The space Z is called wavefront if the compression cone of Z is given by

C = a− + ah.

A main class of examples of wavefront spaces is the class of reductive symmetric spaces,
i.e., the spaces Z = G/H with H an open subgroup of the fixed point subgroup of an
involutive automorphism of G.

For the most continuous part of L2(Z) the P -orbits O of maximal rank with aO = ah
are of relevance. The open P -orbits satisfy this condition. In view of the following
proposition, the open P -orbits are all orbits with aO = ah in case Z is wavefront. We
recall the groups N , Z and W from (3.1), (3.2) and (3.3), respectively.

Proposition A.1. Assume that Z is wavefront. Then W = N . In particular, the little
Weyl group is equal to

WZ = N /Z.

Theorem 3.3 and Proposition A.1 have the following corollary.

Corollary A.2. Assume that Z is wavefront and let O ∈ (P\Z)max. Then O is open if
and only if aO = ah.

Proof of Proposition A.1. As W is a subgroup of N , we only have to prove the inclusion
N ⊆ W . Let w ∈ N . From the fact that C/ah is a fundamental domain for action of the
little Weyl group on a/ah it follows that there exists a v ∈ W so that Ad(v−1w−1)a−∩C ≠
∅. After replacing w by wv we may thus assume that Ad(w)C ∩ a− ̸= ∅. We may further
adjust w by multiplying it from the right by an element from Z and assume that (3.3)
holds. It now suffices to prove that w ∈MA. As the stabilizer of ρP in NG(a) is equal to
MA, it is thus enough to show that w stabilizes ρP .

Since (
Ad(w)a+ + ah

)
∩ a+ = −

(
Ad(w)C ∩ a−

)
is open and nonempty, its dual cone(( ∑

α∈Σ(wPw−1)

R≥0α
)
∩ (a/ah)

∗
)
+

∑
α∈Σ(P )

R≥0α (A.1)

is proper. Note that

ρP − Ad∗(w)ρP =
∑

α∈Σ(P )∩−Σ(wPw−1)

dim(gα)α.

Since w normalizes ah, it follows from Remark 3.2 that w normalizes lQ. In view of (3.3)
we have

Σ(P ) ∩ −Σ(wPw−1) = Σ(P ) ∩ −Σ(wQw−1) = Σ(Q) ∩ −Σ(wQw−1),

242
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and hence
ρP − Ad∗(w)ρP = ρQ − Ad∗(w)ρQ.

As Z is unimodular, we have

ρQ(X) = tr ad(X)
∣∣
nQ

= − tr ad(X)
∣∣
m+a+h

= − tr ad(X)
∣∣
h
= 0 (X ∈ ah).

Therefore, ρQ ∈ (a/ah)
∗ and, as w normalizes ah, also Ad(w)∗ρQ ∈ (a/ah)

∗. It follows
that

Ad∗(w)ρP − ρP ∈
( ∑
α∈Σ(wPw−1)

R≥0α
)
∩ (a/ah)

∗

and
ρP − Ad∗(w)ρP ∈

∑
α∈Σ(P )

R≥0α.

Since (A.1) is proper and contains both Ad∗(w)ρP−ρP and ρP−Ad∗(w)ρP , we conclude
that ρP = Ad∗(w)ρP . This proves the claim.

Appendix B: Intertwining operators

Let S be a parabolic subgroup of G with Langlands decomposition S = MSASNS . Fur-
ther, let ξ be a representation of MS on a Hilbert space Vξ and λ ∈ a∗S,C. In this appendix
we are concerned with a description of the action of standard intertwining operators on
D′(S : ξ : λ). In the course of this appendix we will prove all assertions in Proposition
4.1. We begin by introducing some spaces of functions.

Recall the map aS : G→ AS which is given by

x ∈ NSaS(x)MSK (x ∈ G).

We write LS,ξ,λ for the space of equivalence classes of measurable functions ϕ : G→ Vξ
such that

x 7→ a−Reλ+ρS
S (x)∥ϕ(x)∥ξ

is integrable. Here two functions are equivalent if and only if only differ on a set of
measure 0. We endow LS,ξ,λ with the norm

ϕ 7→
∫
G

∥a−λ+ρSS (x)ϕ(x)∥ξ dx <∞.

With this norm LS,ξ,λ is a Banach space.

Lemma B.1. For every compact subset C of G there exists a constant c > 0 such that for
every g ∈ C and x ∈ G

c−1|a−λ+ρSS (xg)| ≤ |a−λ+ρSS (x)| ≤ c|a−λ+ρSS (xg)|.
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IV. The most continuous part of the Plancherel decomposition

Proof. Let C be a compact subset of G, let g ∈ C and let x ∈ G. Then

aS(xg) ∈ aS(x)aS(Kg).

Since KC is a compact subset of G and a±λ±ρSS is continuous, there exists a constant
c > 0 so that

c ≥ |a∓λ±ρSS (y)| (y ∈ KC).

With this constant c the desired inequalities hold.

It follows from Lemma B.1 that LS,ξ,λ is invariant under right translations by elements
of G. We write R for the right-regular representation of G on LS,ξ,λ.

Proposition B.2. The representation
(
R,LS,ξ,λ

)
is a continuous Banach representation.

Proof. The proof is the same as the proof for [38, Proposition 2.9].

Let VS,ξ,λ be the space of smooth Vξ-valued functions on G that represent a smooth
vector for R in LS,ξ,λ. The local Sobolev lemma ensures that every smooth vector in
LS,ξ,λ can indeed be represented by a smooth Vξ-valued function. See also [43, Theorem
5.1]. We endow VS,ξ,λ with the unique Fréchet topology so that the natural bijection
VS,ξ,λ → L∞

S,ξ,λ is a topological isomorphism. Note that

VS,ξ,λ =
{
ϕ ∈ E(G, Vξ) :

∫
G

∥a−λ+ρSS (x)R(u)ϕ(x)∥ξ dx <∞ for every u ∈ U(g)
}
.

Lemma B.3. For ϕ ∈ VS,ξ,λ the function

G→ Vξ; x 7→
∫
MS

∫
AS

∫
NS

a−λ+ρSξ(m−1)ϕ(manx) dn da dm

is defined by absolutely convergent integrals and forms an element of C∞(S : ξ : λ).
Moreover, the map

VS,ξ,λ → C∞(S : ξ : λ)

thus obtained is G-equivariant and continuous.

Proof. Let ϕ ∈ VS,ξ,λ. By Fubini’s theorem the integral

T ϕ(x) :=
∫
MS

∫
AS

∫
NS

a−λ+ρSξ(m−1)ϕ(manx) dn da dm (B.1)

is absolutely convergent for almost every x ∈ K and the function T ϕ : K → Vξ thus
obtained is integrable. Since L(man)T ϕ = a−λ−ρSξ(m−1)T ϕ, it follows that the integral
T ϕ(x) is absolutely convergent for almost every x ∈ G and the function T ϕ : G → Vξ
thus obtained is locally integrable.

We claim that the integral (B.1) is in fact absolutely convergent for every x ∈ G and
that T ϕ is a smooth function for every ϕ ∈ VS,ξ,λ. From [19, Théorème 3.3] it follows
that

VS,ξ,λ = span
{
π(f)ϕ : f ∈ D(G), ϕ ∈ VS,ξ,λ

}
. (B.2)
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Therefore, to prove the claim it suffices to show that for every f ∈ D(G) and ϕ ∈ VS,ξ,λ
the function T

(
π(f)ϕ

)
is smooth. Let f ∈ D(G) and ϕ ∈ VS,ξ,λ. Then, by Fubini’s

theorem

T (π(f)ϕ)(x) =

∫
MS

∫
AS

∫
NS

a−λ+ρSξ(m−1)

∫
G

f(y)ϕ(manxy) dy dn da dm

=

∫
G

f(x−1y)
(∫

MS

∫
AS

∫
NS

a−λ+ρSξ(m−1)ϕ(many) dn da dm
)
dy

=

∫
G

f(x−1y)T ϕ(y) dy.

Since T ϕ is locally integrable, the last expression defines a smooth function in x ∈ G.
This proves the claim. Note that it follows from the claim that T ϕ ∈ C∞(S : ξ : λ) for
every ϕ ∈ VS,ξ,λ. This proves the first statement in the lemma.

The equivariance of T is clear. It thus remains to prove the continuity. Let L1(K : ξ)
be the space of integrable functions ϕ : K → Vξ that satisfy

ϕ(mk) = ξ(m)ϕ(k) (m ∈M ∩K, k ∈ K).

As stated above, the restriction of T ϕ to K is integrable for every ϕ ∈ VS,ξ,λ. Moreover,∫
K

∥T ϕ(k)∥ξ dk ≤
∫
G

∥a−λ+ρSS (x)ϕ(x)∥ξ dx.

Therefore T defines a continuous map VS,ξ,λ → L1(K : ξ) which intertwines π
∣∣
K

and
the right regular representation of K on L1(K : ξ). Since

(
π
∣∣
K
,VS,ξ,λ

)
is a smooth

representation, T in fact defines a continuous map VS,ξ,λ → L1(K : ξ)∞. From the local
Sobolev lemma it follows that there is a natural identification between L1(K : ξ)∞ and
the space C∞(K : ξ) consisting of all smooth functions f : K → Vξ such that

f(mk) = ξ(m)f(k) (m ∈M ∩K, k ∈ K).

This identification is a topological isomorphism. See also [43, Theorem 5.1]. Finally, the
restriction map ϕ 7→ ϕ

∣∣
K

is a K-equivariant topological isomorphism between the spaces
C∞(S : ξ : λ) and C∞(K : ξ). This proves the second claim in the lemma.

It follows from Lemma B.3 that for every η ∈ C∞(S : ξ : λ)′ the right-hand side
of (4.2) defines a continuous linear functional on VS,ξ,λ. We thus conclude that every
µ ∈ D′(S : ξ : λ) extends to a continuous linear function on VS,ξ,λ. In fact, the injection{

µ ∈ V ′
S,ξ,λ : µ satisfies (4.1)

}
↪→ D′(S : ξ : λ); µ 7→ µ

∣∣
D(G,Vξ)

(B.3)

is a bijection.
Now let S1 and S2 be parabolic subgroups such that AS1 = AS2 ⊆ A. We identify

a∗S,C by the subspace of a∗C of elements that vanish on a ∩mS .
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Proposition B.4. Let λ ∈ a∗S,C satisfy

⟨Reλ, α⟩ > 0
(
α ∈ Σ(a : S2) ∩ −Σ(a : S1)

)
. (B.4)

For every ϕ ∈ LS2,ξ,λ and almost every x ∈ G the integral∫
NS2

∩NS1

ϕ(nx) dn

is absolutely convergent and the function
∫
NS2

∩NS1
ϕ(n · ) dn thus obtained represents an

element of LS1,ξ,λ. Moreover, the map

LS2,ξ,λ → LS1,ξ,λ; ϕ 7→
∫
NS2

∩NS1

ϕ(n · ) dn

is continuous.

Proof. Let ϕ ∈ LS2,ξ,λ. In view of Fubini’s theorem, it suffices to show that∫
G

∫
NS2

∩NS1

∥∥∥a−λ+ρS1
S1

(x)ϕ(nx)
∥∥∥
ξ
dn dx ≤ c

∫
G

∥a−λ+ρS2
S2

(x)ϕ(x)∥ξ dx (B.5)

for some c > 0.
Using the invariance of the Haar measure on G, we obtain∫

G

∫
NS2

∩NS1

∥∥∥a−λ+ρS1
S1

(x)ϕ(nx)
∥∥∥
ξ
dn dx =

∫
NS2

∩NS1

∫
G

∥∥a−λ+ρS1
S1

(x)ϕ(nx)
∥∥
ξ
dx dn

=

∫
NS2

∩NS1

∫
G

∥∥a−λ+ρS1
S1

(nx)ϕ(x)
∥∥
ξ
dx dn

=

∫
G

∫
NS2

∩NS1

∣∣a−λ+ρS1
S1

(nx)
∣∣ dn ∥ϕ(x)∥ξ dx.

Note that∫
NS2

∩NS1

∣∣a−λ+ρS1
S1

(nx)
∣∣ dn = c(S2 : S1 : −Reλ)a

−Reλ+ρS2
S2

(x) (x ∈ G)

where c(S2 : S1 : · ) is the partial c-function which is given by the absolutely convergent
integral

c(S2 : S1 : ν) =

∫
NS2

∩NS1

a
ν+ρS1
S1

(n) dn

in case λ = −ν ∈ a∗C satisfies (B.4). Hence (B.5) holds with c = c(S2 : S1 : −Reλ).
This proves the proposition.

Corollary B.5. Let λ ∈ a∗C satisfy (B.4). For every ϕ ∈ VS2,ξ,λ and every x ∈ G the
integral ∫

NS2
∩NS1

ϕ(nx) dx (B.6)
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is absolutely convergent and the function
∫
NS2

∩NS1
ϕ(n · ) dx thus obtained is an element

of VS1,ξ,λ. Moreover, the map

VS2,ξ,λ → VS1,ξ,λ; ϕ 7→
∫
NS2

∩NS1

ϕ(n · ) dn (B.7)

is continuous.

Proof. It follows from Proposition B.4 that ϕ 7→
∫
NS2

∩NS1
ϕ(n · ) dn defines a continuous

map between the spaces of smooth vectors in LS2,ξ,λ and LS1,ξ,λ respectively. It therefore
suffices to show that for every ϕ ∈ VS2,ξ,λ and x ∈ G the integral (B.6) is absolutely
convergent and the function

∫
NS2

∩NS1
ϕ(n · ) dn is smooth. In view of (B.2) it suffices to

do this for ϕ of the form ϕ = π(f)ψ with f ∈ D(G) and ψ ∈ VS2,ξ,λ.
Let f ∈ D(G), ϕ ∈ VS2,ξ,λ and x ∈ G. It follows from Proposition B.4 that the

integral ∫
G

f(x−1y)

∫
NS2

∩NS1

ψ(ny) dn dy

is absolutely convergent. Moreover, it depends smoothly on x. By Fubini’s theorem this
integral is equal to ∫

NS2
∩NS1

(
π(f)ψ

)
(nx) dn.

This proves the corollary.

We define

A(S2 : S1 : ξ : λ) := θS2
ξ,λ ◦ A(S1 : S2 : ξ : λ)

∗ ◦ ωS1
ξ,λ

The following diagram commutes.

D′(S1 : ξ : λ)
A(S2:S1:ξ:λ) //

ω
S1
ξ,λ

��

D′(S2 : ξ : λ)

ω
S2
ξ,λ

��
C∞(S1 : ξ : λ)

′

θ
S1
ξ,λ

OO

A(S1:S2:ξ:λ)∗ // C∞(S2 : ξ : λ)
′

θ
S2
ξ,λ

OO

We recall from (B.3) that every distribution µ ∈ D′(S : ξ : λ) extends to a continuous
linear functional on VS,ξ,λ. Therefore, if λ ∈ a∗C satisfies (B.4), then in view of Corollary
B.5 the assignment

ϕ 7→ µ
(∫

NS2
∩NS1

ϕ(n · ) dn
)

defines for every µ ∈ D′(S1 : ξ : λ) a distribution in D′(G, Vξ).

Proposition B.6. Let λ ∈ a∗C satisfy (B.4). For every µ ∈ D′(S1 : ξ : λ) the distribution
A(S2 : S1 : ξ : λ)µ ∈ D′(S2 : ξ : λ) is given by[

A(S2 : S1 : ξ : λ)µ
]
(ϕ) = µ

(∫
NS2

∩NS1

ϕ(n · ) dn
) (

ϕ ∈ D(G, Vξ)
)
.
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For the proof of the proposition we need the following lemma.

Lemma B.7. Let ϕ ∈ C∞(S : ξ∨ : −λ) and consider ϕ as an element of D′(S : ξ : λ).
Then (

ωSξ,λϕ
)
(f) =

∫
K

(
ϕ(k), f(k)

)
dk

(
f ∈ C∞(S : ξ : λ)

)
.

Proof. Let f ∈ C∞(S : ξ : λ). Then(
ωSξ,λϕ

)
(f) =

∫
G

(
ϕ(x), ψ0(x)f(x)

)
dx

=

∫
MS

∫
AS

∫
NS

a2ρSψ0(man) dn da dm

∫
K

(
ϕ(k), f(k)

)
dk.

The claim in the lemma now follows from the observation that∫
MS

∫
AS

∫
NS

a2ρSψ0(man) dn da dm =

∫
MS

∫
AS

∫
NS

∫
K

a2ρSψ0(mank) dn da dmdk

=

∫
G

a2ρSS (x)ψ0(x) dx = 1.

Proof of Proposition B.6. Since (B.7) is continuous and C∞(S1 : ξ∨ : −λ) is a dense
subspace of D′(S1 : ξ : λ), it suffices to prove the identity only for functions µ ∈
C∞(S1 : ξ

∨ : −λ). Let µ be such a function and let ϕ ∈ D(G, Vξ). Then[
A(S2 : S1 : ξ : λ)µ

]
(ϕ)

= ωS1
ξ,λ(µ)

(
x 7→

∫
MS

∫
AS

∫
NS2

∫
NS1

∩NS2

a−λ+ρS1ξ(m−1)ϕ(mannx) dn dn da dm
)
.

It follows from Lemma B.7 that the right-hand side is equal to∫
K

(
µ(k),

∫
MS

∫
AS

∫
NS2

∫
NS1

∩NS2

a−λ+ρS1ξ(m−1)ϕ(mannk) dn dn da dm
)
dk

=

∫
K

∫
MS

∫
AS

∫
NS2

∫
NS1

∩NS2

a−λ+ρS1

(
µ(k), ξ(m−1)ϕ(mannk)

)
dn dn da dmdk.

Since the multiplication maps(
NS1 ∩NS2

)
×

(
NS1 ∩NS2

)
→ NS2 ,

(
NS1 ∩NS2

)
×
(
NS1 ∩NS2

)
→ NS1

are diffeomorphisms with Jacobian equal to 1, we can rewrite this repeated integral as∫
K

∫
MS

∫
AS

∫
NS1

∩NS2

∫
NS1

a−λ+ρS1

(
µ(k), ξ(m−1)ϕ(mannk)

)
dn dn da dmdk

=

∫
K

∫
MS

∫
AS

∫
NS1

(
µ(mank),

∫
NS2

∩NS1

ϕ(nmank)dn
)
dn da dmdk

=

∫
G

(
µ(x),

∫
NS2

∩NS1

ϕ(nx)dn
)
dx.

This proves the proposition.
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[42] G. Ólafsson. Fourier and Poisson transformation associated to a semisimple sym-
metric space. Invent. Math. 90 (1987), 605–629.

[43] N. S. Poulsen. On C∞-vectors and intertwining bilinear forms for representations
of Lie groups. J. Functional Analysis, 9 (1972), 87–120.

[44] M. Rosenlicht. On quotient varieties and the affine embedding of certain homoge-
neous spaces. Trans. Amer. Math. Soc., 101 (1961), 211–223.

[45] Y. Sakellaridis. On the unramified spectrum of spherical varieties over p-adic fields.
Compos. Math. 144 (2008), 978–1016.

[46] Y. Sakellaridis and A. Venkatesh. Periods and harmonic analysis on spherical va-
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