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Summary

This thesis comprises of the four articles

I. The infinitesimal characters of discrete series for real spherical spaces by B. Krotz,
J.J. Kuit, E!M. Opdam and H. Schlichtkrull, [9].

Il. Ellipticity and discrete series by B. Krotz, J.J. Kuit, E.M. Opdam and H. Schlichtkrull,
[10].

III. On the little Weyl group of a real spherical space by J.J. Kuit and E. Sayag, [12].

IV. The most continuous part of the Plancherel decomposition for a real spherical space
by J.J. Kuit and E. Sayag, [13].

The central theme of these articles is harmonic analysis, and in particular Plancherel
theory, on real spherical spaces. In the following, we summarize the main results. The
articles themselves are reprinted in the Chapters I — IV. The notation used in the articles
is not fully consistent. The notation we use in this summary is therefore not in all cases
matching the one in the articles.

Real spherical homogeneous spaces. Let GG be the group of real points of an algebraic
reductive group and H an algebraic subgroup of G. The homogeneous space Z = G/ H is
called real spherical if a minimal parabolic subgroup of G admits an open orbit in Z. The
class of real spherical homogeneous spaces is very rich. It includes the reductive groups
GG (considered as homogeneous spaces for G x (), and reductive symmetric spaces.
Whereas for a reductive symmetric space the subgroup H is reductive, for real spherical
spaces H may be non-reductive. As an example one may consider G = SL(2,R) and
H a connected 1-dimensional subgroup of GG. Up to conjugation H is equal to SO(2),
SO(1, 1), or the unipotent subgroup of upper triangular matrices with diagonal entries
equal to 1. The corresponding homogeneous spaces, namely the Poincare upper half-
plane, the one sheeted hyperboloid and the punctured plane, are all real spherical. For the
first two examples H is reductive, for the third H is not reductive.

Although the class of real spherical homogeneous spaces is very rich, these spaces still
exhibit enough structure to develop interesting harmonic analysis on them. In particular it
is feasible to give a precise description of the Plancherel decomposition for real spherical
spaces. For reductive groups, and more generally for reductive symmetric spaces, such
precise descriptions of the Plancherel decomposition have been given in the past.

In recent years harmonic analysis, and in particular Plancherel theory on real spher-
ical homogeneous spaces has developed very rapidly. The methods differ substantially
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from those used previously for reductive groups and reductive symmetric spaces, and are
inspired by the work [15] of Sakellaridis and Venkatesh for p-adic spherical spaces.

Abstract Plancherel decomposition. From now on we assume that Z = G/H is a
homogeneous real spherical space that admits a non-zero G-invariant Radon measure.
The space L?*(Z) of square integrable functions on Z carries a natural structure of a
unitary representation of (G. The Plancherel decomposition for Z is a decomposition of
this representation into a direct integral of irreducible unitary representations. To be more
precise, L?(Z) decomposes G-equivariantly as

@
(2 = [ 70 My duato)

where G is the unitelry dual of GG, and pz is the Plancherel measure fgr Z, which is a
Radon measure on G. Further, M, is the multiplicity space for 7 € G. An important
property of real spherical spaces is that the multiplicity spaces are finite dimensional, see
[8, Theorem C] and [11].

For general Z, the Plancherel decomposition neither has a purely discrete nature, as
for homogeneous spaces of a compact group, nor a purely continuous nature, as for real
vector spaces acting on themselves by translations. It is rather a mixture of discrete and
continuous components.

The irreducible subrepresentations of L?(Z) occur discretely in the Plancherel de-
composition and are therefore called discrete series representations. The other extreme is
called the most continuous part of the Plancherel decomposition; it consists of the largest
continuous families of representations.

Twisted discrete series representations. Not every real spherical homogeneous space
Z admits non-trivial discrete series representations. An important obstruction lies in the
normalizer of H. The normalizer N¢(H ) of a real spherical subgroup H has the property
that

Ne(H)/H = M x A

with M a compact group and A ~ RZ, for some n € Ny. The natural right action of
N¢(H)/H on Z commutes with the left action of G. If V' is an irreducible subrepresen-
tation of L?(Z), then one can find an equivalent subrepresentation V' of L?(Z) so that A
acts from the right on the functions in V'’ by a character y. By an application of Fubini’s
theorem it is easily seen that the non-zero functions in V'’ cannot be square integrable if .4
is not trivial. However, there is a simple generalization of the discrete series that removes
at least this obstruction for the existence.

Given a unitary character \ of A, one may consider the space L?(Z, \) of square inte-
grable sections of the line bundle over G/ H defined by A (up to a normalizing character
to make the right action of .4 unitary), where H is the inverse image of A under the pro-
jection Ng(H) — Ng(H)/H. The space L*(Z) then decomposes G-equivariantly as a
direct integral

LA(Z) ~ /j LA(Z,\) dA,
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where d is the Haar measure on the unitary character group A of A. The irreducible
subrepresentations of L?(Z, \) for some \ € A are said to belong to the twisted discrete
series of representations for Z. For the group case and more generally for symmetric
spaces full classifications of the (twisted) discrete series of representations exist. We
mention here the explicit parametrization of the discrete series for a reductive group by
Harish-Chandra [5] and the construction of all discrete series representations for reductive
symmetric spaces by Flensted-Jensen [4] and Matsuki and Oshima [14]. For general real
spherical spaces very little is known about the twisted discrete series of representations.
As an example of twisted discrete series representations we consider a minimal parabolic

subgroup P with Langlands decomposition P = M AN. Then Z = G/N is real spheri-
cal. In this case we may identify M with M and A with A. Now L*(G/N) decomposes
as

2] — &
Lz(G/N):/ LQ(G/AN,A)CZA:QBA/g Ind%(E® A ® 1) dy.

feM

The twisted discrete series of representations for G/N consists therefore of the unitary
minimal principal series representations.

Not every real spherical homogeneous Z = G/H space admits non-trivial twisted
discrete series representations. If for example G is a simple group of the non-compact
type and H = K is a maximal compact subgroup, then the L?(G/K) admits no non-
trivial irreducible subrepresentations, even though K is its own normalizer.

Infinitesimal characters of twisted discrete series representations. In the article [9]
the infinitesimal characters of twisted discrete series representations are studied.

Let P be a minimal parabolic subgroup and P = M AN a Langlands decomposition
of P. Denote by m and a the Lie algebras of M and A respectively. Choose a maximal
torus t € m and define ¢ := a + ¢t. Then ¢¢ is Cartan subalgebra of gc. Let W, be the
Weyl group of the root system ¥(gc, ¢) of g¢ in ¢. For 7 € G we denote by x. € ¢&/W,
the infinitesimal character of 7.

Theorem 1 ([9, Theorem 1.1]). There exists a W.-invariant lattice A, C ¢*, rational
with respect to the root system in ¢, such that Re x,. € Az /W, for every twisted discrete
series representation T for Z. Moreover, if 7 is a discrete series representation for Z,
then X is real, and hence x. € Az /W..

Theorem 1 has the following corollary.

Corollary 2 ([9, Corollary 8.4]). Let K C G be a maximal compact subgroup and T a
K-type. Further, let X € A. Then there exist only finitely many twisted discrete series
representations (m, V') for Z with A-character \ such that the T-isotypical component
V7] of  is non-zero.

Theorem 1 implies a spectral gap for twisted discrete series representations. This
is the important ingredient for the uniform constant term approximation for tempered
eigenfunctions in [3].
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Existence of twisted discrete series representations. For the group case the existence
of discrete series representations can be characterized geometrically by the following
theorem of Harish-Chandra.

Theorem 3 ([5, Theorem 13]). The existence of a compact Cartan subalgebra of G is a
necessary and sufficient condition for the existence of discrete series representations for

G.

For the more general class of reductive symmetric spaces Harish-Chandra’s rank con-
ditions generalizes: a reductive symmetric space Z = (G/H admits discrete series repre-
sentations if and only if there exists a compact Cartan subspace in the Killing complement
bt of . Alternatively, this can be phrased as

Z admits discrete series representations <= int{X € b~ | X elliptic} # 0, (1)

where the interior int is taken in h*. The equivalence (1) is conjectured to hold true for all
algebraic homogeneous spaces Z. In [2] the existence of discrete series representations
for a real spherical space Z = G/ H was proven under the condition that h* contains a
relatively open subset of elliptic elements. This result was generalized in [6, Theorem
1.7] to general algebraic homogeneous spaces for G. The other implication is still an
open problem. The existence of twisted discrete series representations for a real spherical
spaces Z = G/ H has been conjectured to be equivalent to

int{X € Ny(h)* | X weakly elliptic} # 0,

where N;(h) is the normalizer of b in g.

In [10] a new proof for the necessity in Theorem 3 is given. The proof is based on
Theorem 1, namely on the fact that infinitesimal characters of discrete series representa-
tions are real. The following is a brief sketch of this new proof.

Let ¢ = ad®it be as before. We show that the existence of a compact Cartan subalgebra
is equivalent to the occurrence of the map

f:c=adit—>¢; X+i¥—» -X+1Y

in the Weyl group W, of the root system of ¢ in gc. By elementary means it is further
shown that if y € ¢*/TV, and occurs as the infinitesimal character of a unitary representa-
tion, then it satisfies

Ox = x. (2

This holds in particular for the infinitesimal characters of discrete series representations.
From a given discrete series representation we construct by using Zuckerman’s translation
functor another discrete series representation, with an infinitesimal character x € ¢*/W.,
so that the stabilizer in the extended Weyl group (I, 6) of any point in the W -orbit x is
trivial. It then follows from (2) that 6 is contained in the Weyl group W.. We expect that
this proof can be generalized to a proof of (1) for real spherical spaces.
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The little Weyl group. Let Gr(g,n) be the Grassmannian of n-dimensional subspaces
of g with n = dim(h). It is easy to see that each subspace in the closure of Ad(G)b in
Gr(g, n) is a Lie subalgebra of g. It is more surprising that each of these subalgebras is
again real spherical. If X € g is an hyperbolic element and £ € Gr(g, n), then the limit

Ey = tlg?o Ad (exp(tX))E

exists in Gr(g,n). For a point z € Z we write b, for its stabilizer subalgebra. We fix a
minimal parabolic subgroup P of GG and a Langlands decomposition P = M AN of P.
Given a direction X € a := Lie(A) we consider the limit subalgebra

h.x = tlggo Ad (exp(tX))hz. (3)

These limit subalgebras play an important role in [9]. In [12] and [13] the limits are used
to analyse P-orbits in Z.

The goal of [12] is a new construction of an invariant of Z called the little Weyl group,
which for real spherical spaces was first defined in [7, Section 9]. Our construction is in
terms of the limit subalgebras b, x.

If X is contained in the negative Weyl chamber with respect to P, then the limit b, x
is up to M-conjugacy the same for all z € Z so that P - z is open. This limit b is called
the horospherical degeneration of h,. We denote the M-conjugacy class of a subalgebra
s of g by [s] and define a;, := a N hy. We define the subgroup of G

Ni = {v € No(a) : Ad()[hy] = [hol}.
In fact, Ny is a normal subgroup of Ng(a) N Ng(ay). For z € Z we further define
V, :={v € Ng(a) : [h.x] = Ad(v)[hy] for some X € a}.
This set is for suitable z € Z a subset of N¢(a) N N¢(ay). For these = we set
W, = V. /Ny C (No(a) N Ne(ay)) /Np.
The main result of the[12] is the following.

Theorem 4 ([12, Theorem 1.1]). For a suitable choice of z € Z the set VV, is a subgroup
of (Na(a) N Ne(ay)) /Ny and acts on a/ay as a finite crystallographic group. This
crystallographic group is naturally identified with the little Weyl group of Z as defined in
[7].

Plancherel decomposition in terms of Bernstein morphisms. In order to summarize
the contents of [13], we first recall the main result from [2].

Real spherical homogeneous spaces admit good compactifications. As one moves
to the boundary of Z in a compactification, the space Z deforms into a real spherical
homogeneous space Z; = G/H;. Such a space Z; is called a boundary degeneration
of Z. It may be viewed as the normal bundle of a G-orbit in the boundary of Z. The
least deformed boundary degeneration is Z itself. The other extreme, the most deformed
boundary degeneration is called the horospherical boundary degeneration Zj.
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In [2] it is shown that the Plancherel decomposition of Z can be described in terms of
twisted discrete series of the boundary degenerations Z;. To be more precise, there exists
a canonical G-equivariant surjective map

B: P L*(Zi)ws — L*(2), (4)
I

where L?(Z)qs is the closed subspace of L?(Z;) that decomposes as a direct integral of
twisted discrete series representations for Z;. This map is called the Bernstein morphism.
The Bernstein morphism is a sum of partial isometries.

The most continuous part of L?(Z). For general [ little is known about the twisted
discrete series for Z;, not even existence. This is different for the most degenerate of
the boundary degenerations, i.e., the boundary degeneration Zy. For Zj the Plancherel
decomposition can be computed rather easily. There exists a parabolic subgroup Q and a
Langlands decomposition Q = MgAg N, so that

H@ = (MQQH)(AQOH)NQ

and the homogeneous space My /(Mg N H) is compact and ag/ag Nh ~ a/ay. As a
consequence L*(Zy) decomposes as

— P
1) ~ @ / M @ TndS(¢ ® A @ 1) dX. )
ety e

Here dA is the Lebesgue measure on i(a/ay)* and i(a/ay)* is a fundamental domain for
the action of the stabilizer of a;, in the Weyl group on i(a/ay)*. The multiplicity spaces
M ¢ are independent of A and can only be non-zero for finite dimensional unitary repre-
sentations § of M. All representations contributing to the Plancherel decomposition of
Z belong to the twisted discrete series of representations for this space.

The closed subspace L2 (Z) := B(L*(Zy)) of L?(Z) is called the most-continuous
part of L?(Z). The properties of the Bernstein morphism and the Plancherel decomposi-
tion (5) of L?(Zy) guarantee that the most continuous part decomposes as

— @
LL(Z)~ P /( . Mex ® IndS(€ @ A @ 1) d). ©)
wa/a T

EGMQ,fu

Here ]/\4\@7fu denotes the set of equivalence classes of finite dimensional unitary represen-
tation of Mg and M ) is the multiplicity space for the representation Ind%(§ RA®1).
In [13] the multiplicity spaces together with their inner products are determined, thus
making the unitary equivalence (6) precise.

For £ € Mgy, and A € i(a/ay)* let He ) be the space of smooth vectors of the
representation Ind%(§ ®A®1). Each multiplicity space M, , can naturally be viewed as a
subspace of the space (’Hé ) of H-fixed functionals on H . We provide a construction
for all functionals in (H; ,)" for generic A € i(a/ay)*. The construction heavily relies on
the theory developed around the limit subalgebras (3) developed in [9] and [12]. We use
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the theory of the constant term developed in [3] to prove that for generic A € i(a/a,)* all
H-fixed functionals on H; , are tempered. Moreover, the multiplicity spaces are in fact
given by

Me = (He )"

Finally, we refine the MaalB3-Selberg relations from [2, Theorem 9.6] to determine the
inner products induced by the Plancherel decomposition on (H, )2 Thus we give a pre-
cise description of the Plancherel decomposition of the most continuous part of L2 (7).

Following Sakellaridis and Venkatesh [15] Delorme introduced scattering operators
for real spherical spaces Z = G/H with G split in [1]. Assuming a conjecture on the
nature of twisted discrete series representation, he shows that the scattering operators
determine the kernel of the Bernstein morphism (4). We give a concrete formula for the
scattering operators for the most continuous part, also for non-split GG. In this case the
scattering operators form a representation of the little Weyl group.
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Zusammenfassung

Diese Habilitationsschrift besteht aus den vier Artikeln

I. The infinitesimal characters of discrete series for real spherical spaces von B. Krotz,
J.J. Kuit, E.M. Opdam und H. Schlichtkrull, [9].

I. Ellipticity and discrete series von B. Krotz, J.J. Kuit, E.M. Opdam und H. Schlicht-
krull, [10].

III. On the little Weyl group of a real spherical space von J.J. Kuit und E. Sayag, [12].

IV. The most continuous part of the Plancherel decomposition for a real spherical space
von J.J. Kuit und E. Sayag, [13].

Das zentrale Thema dieser Artikel ist die harmonische Analyse und insbesondere die
Planchereltheorie auf reell sphéarischen Rdumen. Im Folgenden fassen wir die wichtigsten
Ergebnisse zusammen. Die Artikel selbst sind in den Kapiteln I — IV aufgenommen. Die
in den Artikeln verwendete Notation ist nicht vollstiandig konsistent. Die Notation, die in
dieser Zusammenfassung verwendet wird, stimmt daher nicht in allen Fillen mit der in
den Artikeln iiberein.

Reell sphiirische homogene Riume. Seien GG die Gruppe der reellen Punkte einer alge-
braischen reduktiven Gruppe und H eine algebraische Untergruppe von GG. Der homoge-
ne Raum Z = GG/ H heiBt reell sphirisch, wenn eine minimale parabolische Untergruppe
von G eine offene Bahn in Z zuldsst. Die Klasse der reell sphirischen homogenen Ridume
ist sehr grof3. Sie umfasst die reduktiven Gruppen G (welche als homogene Raume fiir
die Gruppen GG X G angesehen werden) und reduktive symmetrische Raume. Obwohl fiir
einen reduktiven symmetrischen Raum die Untergruppe H reduktiv ist, kann H fiir reelle
sphérische Raume nicht reduktiv sein. Ein Beispiel dafiir ist G = SL(2,R) und H eine
zusammenhingende 1-dimensionale Untergruppe von G. Bis auf eine Konjugation ist
gleich SO(2), SO(1, 1), oder die unipotente Untergruppe der oberen Dreiecksmatrizen
mit diagonalen Eintrdgen gleich 1. Die entsprechenden homogenen Raume, ndmlich die
obere Poincaré-Halbebene, das einschichtige Hyperboloid und die punktierte Ebene, sind
alle reell sphérisch. Fiir die ersten beiden Beispiele ist H reduktiv, fiir das dritte ist H
nicht reduktiv.

Obwohl die Klasse der reell sphirischen homogenen Raume sehr grof} ist, weisen die-
se Rdume immer noch genug Struktur auf, um interessante harmonische Analysis auf ih-
nen zu entwickeln. Insbesondere ist eine genaue Beschreibung der Plancherel-Zerlegung
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Zusammenfassung

fiir reell sphirische Rdume moglich. Fiir reduktive Gruppen und allgemeiner fiir reduk-
tive symmetrische Riume wurden in der Vergangenheit solche genauen Beschreibungen
der Plancherel-Zerlegung gegeben.

In den letzten Jahren hat sich die harmonische Analyse und insbesondere die Plancherel-
Theorie reell sphirischer homogener Raume sehr schnell entwickelt. Die Methoden un-
terscheiden sich wesentlich von denen, die zuvor fiir reduktive Gruppen und reduktive
symmetrische Riume verwendet wurden, und sind inspiriert von der Arbeit [15] von Sa-
kellaridis und Venkatesh fiir p-adische sphérische Riume.

Abstrakte Plancherel-Zerlegung. Von nun an nehmen wir an, dass Z = G/H ein ho-
mogener reell sparischer Raum ist, der ein G-invariantes Radonmaf zulidsst. Der Raum
L*(Z) der quadratisch integrierbarer Funktionen auf Z triigt eine natiirliche Struktur ei-
ner unitdren Darstellung von G. Die Plancherel-Zerlegung fiir Z ist eine Zerlegung dieser
Darstellung in ein direktes Integral irreduzibler unitiren Darstellungen. Genauer gesagt,
zerfillt L?(Z) G-dquivariant als

2(2)= [ e Mydusta),

G

wobei G das unitéire Dual von G und pz das Plancherel-MaB fiir Z ist. Letzteres ist ein
Radon-MafB auf GG. AuBlerdem ist M, der Multiplizitidtsraum fiir 7 € G. Eine wichtige
Eigenschaft reell sphirischer Rdume ist, dass die Multiplizitdtsrdume endlichdimensional
sind, siehe [8, Theorem C] und [11].

Fiir allgemeine Z hat die Plancherel-Zerlegung weder einen rein diskreten Charakter,
wie fiir homogene Riume kompakter Gruppe, noch einen rein kontinuierlichen Charakter,
wie fiir reelle Vektorraume, die durch Translationen auf sich selbst wirken. Vielmehr
handelt es sich um eine Mischung aus diskreten und kontinuierlichen Komponenten.

Die irreduziblen Unterdarstellungen von L?(Z) treten diskret in der Plancherel-Zer-
legung auf und heiflen daher Darstellungen der diskrete Reihe. Das andere Extrem wird
als der kontinuierlichste Teil der Plancherel-Zerlegung bezeichnet; sie besteht aus den
groBten stetigen Familien von Darstellungen.

Darstellungen der getwisteten diskreten Reihe. Nicht jeder reell sphérische homogene
Raum Z ldsst Darstellungen der diskreten Reihe zu. Eine wichtige Beschrinkung liegt
im Normalisator von H. Der Normalisator Ng(H ) einer reell sphérischen Untergruppe
H hat die Eigenschaft, dass

Na(H)/H = M x A,

wobei M eine kompakte Gruppe und 4 ~ RZ fiir ein n € Ny, ist. Die natiirliche Rechts-
wirkung von Ng(H)/H auf Z vertauscht mit der Linkswirkung von G. Wenn V' eine
irreduzible Unterdarstellung von L?(Z) ist, dann gibt es eine zu V #quivalente Unter-
darstellung V’ von L?(Z), sodass A von rechts auf die Funktionen in V'’ wirkt mittels
einem Charakter y. Durch Anwendung des Satzes von Fubini sieht man leicht, dass die
von Null verschiedenen Funktionen in V'’ nicht quadratintegrierbar sein konnen, wenn A
nicht trivial ist. Es gibt jedoch eine einfache Verallgemeinerung der diskreten Reihe, die
zumindest diese Einschrinkung fiir die Existenz beseitigt.
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Fiir einen gegebenen Charakter A von .4 kann man den Raum L?(Z, \) von quadra-
tisch integrierbaren Schnitten des Geradenbiindels tiber G/ H definiert durch ) betrachten
(bis auf einen normalisierenden Charakter, um die Rechtswirkung von A unitéir zu ma-
chen), wobei H das Urbild von A unter der Projektion Ng(H) — Ng(H)/H ist. Der
Raum L?(Z) zerlegt G-iquivariant als ein direktes Integral

LA(Z) ~ /j L*(Z,\) dA,

wobei d\ das Haar-Maf} auf der unitdren Charaktergruppe A von A ist. Die Darstellun-
gen der getwisteten diskreten Reihe fiir Z sind die irreduziblen Unterdarstellungen von
L3(Z, \) fiir einen Charakter A\ € A. Fiir den Gruppenfall und allgemeiner fiir symme-
trische Raume gibt es vollstindige Klassifikationen der Darstellungen der (getwisteten)
diskreten Reihe. Wir erwihnen hier die explizite Parametrisierung der diskreten Reihen
fiir eine reduktive Gruppe durch Harish-Chandra [S] und die Konstruktion aller Darstel-
lungen der diskreten Reihe fiir reduktive symmetrische Rdume durch Flensted-Jensen [4]
und Matsuki und Oshima [14]. Fiir allgemeine reell sphérische Rdume ist sehr wenig iiber
die Darstellungen der getwisteten diskreten Reihe bekannt.

Als Beispiel von Darstellungen der getwisteten diskreten Reihe betrachten wir eine
minimale parabolische Untergruppe P mit Langlands-Zerlegung P = M AN. Dann ist
Z = G/N reell sphirisch. In diesem Fall konnen wir M mit M und .A mit A identifizie-
ren. Der Raum L%(G/N) zerfillt als

L*(B/N) ~ /@ L*(G/AN,\) d\ :@/@ d% (¢ ® A ® 1) dy.
A | ceM A "

Die Darstellungen der getwisteten diskreten Reihe fiir G/N sind also die unitdren mini-
malen Hauptreihendarstellungen.

Nicht jeder reell sphérische homogene Raum Z = G/ H ldsst Darstellungen der get-
wisteten diskreten Reihe zu. Wenn beispielsweise GG eine einfache Gruppe vom nicht-
kompakten Typ und H = K eine maximal kompakte Untergruppe ist, dann hat L?(G/K)
keine nicht-trivialen irreduziblen Unterdarstellungen, obwohl K sein eigener Normalisa-
tor ist.

Infinitesimale Charaktere von Darstellungen der getwisteten diskreten Reihe. Im
Artikel [9] werden die infinitesimalen Charaktere von Darstellungen der getwisteten dis-
kreten Reihe untersucht.

Seien P eine minimale parabolische Untergruppe und P = M AN eine Langlands-
Zerlegung von P. Wir bezeichnen mit m und a die Lie-Algebren von M beziehungsweise
A. Weiter wihlen wir einen maximalen Torus t C m und definieren ¢ := a -+ ¢t. Dann ist
cc eine Cartan-Unteralgebra von gc. Sei W, die Weylgruppe des Wurzelsystems (gc, ¢)
von gc in ¢. Fir 7 € G bezeichnen wir mit Xr € ¢&/W, den infinitesimalen Charakter
von 7.

Satz 1 ([9, Theorem 1.1]). Es gibt ein W -invariantes Gitter A; C c¢*, welches rational
beziiglich des Wurzelsystems in ¢ ist, sodass Re x» € Nz /W, fiir jede Darstellung w der

X1il



Zusammenfassung

getwisteten diskreten Reihe fiir Z gilt. Wenn auflerdem 7 eine Darstellung der diskrete
Reihe fiir Z ist, dann ist x reell und damit x,. € Az /W..

Satz 1 hat das folgende Korollar.

Korollar 2 ([9, Corollary 8.4]). Seien K C G eine maximal kompakie Untergruppe
und T ein K-Typ. Weiterhin sei A € A. Dann gibt es nur endlich viele Darstellungen
(7, V') der getwisteten diskreten Reihe fiir Z mit A-Charakter \, sodass die T-isotypische
Komponente V' |T| von T nicht null ist.

Satz 1 impliziert die Existenz einer spektralen Liicke fiir Darstellungen der getwiste-
ten diskreten Reihe. Dies ist ein wichtiger Bestandteil fiir die gleichméfBige Abschitzung
fiir den Rest in der konstanten Term-Approximierung fiir temperierte Eigenfunktionen in

[3].

Existenz von Darstellungen der getwisteten diskreten Reihe fiir 7. Fiir den Gruppen-
fall ldsst sich die Existenz von Darstellungen der diskreten Reihe durch den folgenden
Satz von Harish-Chandra geometrisch charakterisieren.

Satz 3 ([5, Theorem 13]). Die Existenz einer kompakten Cartan-Unteralgebra von G
ist eine notwendige und hinreichende Bedingung fiir die Existenz von Darstellungen der
diskreten Reihe fiir G.

Fiir die allgemeinere Klasse der reduktiven symmetrischen Rdume verallgemeinern
die Rangbedingungen von Harish-Chandra: Fiir einen reduktiven symmetrischen Raum
7 = G/ H existieren genau dann Darstellungen der diskreten Reihe, wenn es einen kom-
pakten Cartan-Unterraum im Killing-Komplement h* von h gibt. Alternativ kann dies
auch so formuliert werden:

Es existieren Darstellungen der diskrete Reihe fiir Z (7)
< int{X € h* | X elliptisch} # 0,

wobei das innere int in h genommen wird. Es wird vermutet, dass die Aquivalenz (7)
fiir alle algebraischen homogenen Raume Z gilt. In [2] wurde die Existenz von Dar-
stellungen der diskreten Reihe fiir einen reell sphirischen Raum Z = G/H unter der
Bedingung bewiesen, dass int{X € h* | X elliptisch} # (). Dieses Ergebnis wurde in
[6, Theorem 1.7] auf allgemeine algebraische homogene Raume fiir G verallgemeinert.
Die andere Implikation ist noch ein offenes Problem. Es wird vermutet, dass die Existenz
von Darstellungen der getwisteten diskreten Reihe fiir reell sphérische Riume Z = G/H
dquivalent zu
int{X € Ny(h)" | X schwach elliptisch} # ()

ist, wobei Ny (h) der Normalisator von b in g ist.

In [10] wird ein neuer Beweis fiir die Notwendigkeit der Existenz einer kompakten
Cartan-Untergruppe in Satz 3 gegeben. Der Beweis basiert auf Theorem 1, nimlich dar-
auf, dass infinitesimale Charaktere von Darstellungen der diskreten Reihe reell sind. Das
Folgende ist eine kurze Skizze dieses neuen Beweises.
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Sei ¢ = a @ it wie zuvor. Wir zeigen, dass die Existenz einer kompakten Cartan-
Unteralgebra dazu dquivalent ist, dass die Abbildung

f:c=adit—c¢ X+i¥—» -X+4+1Y

in der Weyl-Gruppe W, des Wurzelsystems von ¢ in gc erhalten ist. Mit elementaren
Mitteln zeigen wir weiter, dass wenn x € ¢* /W, reell ist und als infinitesimaler Charakter
einer unitiren Darstellung auftritt, der Parameter y die Gleichung

Ox = x (8)

erfiillt. Dies gilt insbesondere fiir die infinitesimalen Charaktere von Darstellungen der
diskreten Reihe. Aus einer gegebenen Darstellung der diskreten Reihe konstruieren wir
unter Verwendung des Zuckerman’schen Verschiebungsfunktor eine weitere Darstellung
der diskrete Reihe mit einem infinitesimalen Charakter xy € ¢*/W., so dass der Stabili-
sator in der erweiterten Weyl-Gruppe (W, §) von jedem Punkt in den W,-Orbit y trivial
ist.

Aus einer gegebenen Darstellung der diskreten Reihe konstruieren wir unter Verwen-
dung des Zuckerman’schen Verschiebungsfunktors eine weitere Darstellung der diskreten
Reihe mit einem infinitesimalen Charakter y € ¢*/W., sodass sein Stabilisator in der er-
weiterten Weyl-Gruppe (W, #) trivial ist. Aus (8) folgt dann, dass 6 in der Weylgruppe
W, enthalten ist. Wir erwarten, dass dieser Beweis zu einem Beweis von (7) fiir reell
sphirischen Rdume verallgemeinert werden kann.

Die kleine Weyl-Gruppe. Sei Gr(g, n) die GraBmann-Mannigfaltigkeit von Unterrdumen
von g der Dimension n. Es ist leicht zu sehen, dass jeder Unterraum im Abschluss von
Ad(G)b in Gr(g, n) eine Lie-Unteralgebra von g ist. Uberraschender ist, dass jede dieser
Unteralgebren wieder reell sphérisch ist. Wenn X € g ein hyperbolisches Element und
E € Gr(g,n) ist, dann existiert der Limes

Ex = tliglo Ad (exp(tX))E

in Gr(g, n). Fiir einen Punkt z € Z schreiben wir b, fiir seine Stabilisator-Unteralgebra.
Seien P eine minimale parabolische Untergruppe von G und P = M AN eine Langlands-
Zerlegung von P. Bei gegebener Richtung X € a := Lie(A) betrachten wir die Limes-
unteralgebra

h.x = tlggo Ad (exp(tX))hz. 9)

Diese Limesunteralgebren spielen eine wichtige Rolle in [9]. In [12] und [13] werden die
Limes verwendet, um P-Orbiten in Z zu analysieren.

Das Ziel von [12] ist eine neue Konstruktion einer Invarianten von 2, namlich die
kleine Weyl-Gruppe, die erstmals in [7, Section 9] fiir reell sphirische Riaume definiert
wurde. Unsere Beschreibung der kleinen Weyl-Gruppe basiert auf den Limesunteralge-
bren b, x.

Wenn X in der negativen Weyl-Kammer (beziiglich P) enthalten ist, dann ist der
Limes b, x bis auf M -Konjugation gleich fiir alle z € Z fiir die P - 2z offen ist. Dieser
Limes hy wird die horosphirische Entartung von f, genannt. Wir schreiben [s] fiir die
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M -Konjugationsklasse einer Unteralgebra s von g und definieren a;, := a N hy. Weiter
definieren wir die Untergruppe Nj von G als

No :={v € Ng(a) : Ad(v)[ho] = [ho]}-
Dann ist Vy ein Normalteiler von N¢(a) N Ng(ay). Fiir z € Z definieren wir
V., :={v € Ng(a) : [h. x] = Ad(v)[by] fiir einige X € a}.

Fiir geeignete z € Z is diese Menge eine Teilmenge von N¢(a) N N (ay). Fiir diese 2
definieren wir abschlieBend

Wz = VZ/NQ) Q (Ng(a) N Ng(ah))/./\/b
Das Hauptergebnis von [12] ist das Folgende.

Satz 4 ([12, Theorem 1.1]). Bei geeigneter Wahl von z € Z ist VW, eine Untergruppe
von (Ng(a) N Ng(ah)) /Ny und wirkt als eine endliche kristallographische Gruppe auf
a/ay. Diese kristallographische Gruppe ist auf natiirliche Weise isomorph zu der kleinen
Weyl-Gruppe von Z aus [7].

Bernstein-Morphismen. Um den Inhalt von [13] zusammenzufassen, schauen wir uns
zunéchst das Hauptergebnis aus [2] an.

Reell sphirische homogene Riume lassen gute Kompaktifizierungen zu. Bewegt man
sich in einer Kompaktifizierung zum Rand von Z, verformt sich der Raum Z zu einem
reell sphirischen homogenen Raum Z; = GG/ H;. Einen solchen Raum Z; nennt man eine
Randentartung von Z. Eine Randentartung kann als Normalenbiindel eines G-Orbits im
Rand von Z angesehen werden. Die am wenigsten entartete Randentartung ist Z selbst.
Das andere Extrem, die am stirksten entartete Randentartung wird als horosphérische
Randentartung Zj bezeichnet.

In [2] wird gezeigt, dass die Plancherel-Zerlegung von Z mit Darstellungen der get-
wisteten diskreten Reihe der Randentartung Z; beschrieben werden kann. Genauer gesagt
gibt es eine kanonische G-dquivariante surjektive Abbildung

B: P L*(Zi)ws — L*(Z), (10)
I

wobei L?(Z7)4s der geschlossene Unterraum von L?(Z;) ist, der sich als direktes Integral
von Darstellungen der getwisteten diskreten Reihe fiir Z; zerlegt. Diese Abbildung wird
als Bernstein-Morphismus bezeichnet. Der Bernstein-Morphismus ist eine Summe von
partiellen Isometrien.

Das kontinuierlichste Teil von (7). Fiir allgemeine I ist wenig iiber die getwistete
diskrete Reihe fiir Z; bekannt, nicht einmal die Existenz von Darstellungen der getwiste-
ten diskreten Reihe. Anders ist dies bei der am weitesten entarteten Randentartung, der
Randentartung 7. Fiir diesen Raum kann die Plancherel-Zerlegung ziemlich einfach be-
rechnet werden. Es gibt eine parabolische Untergruppe ) und eine Langlands-Zerlegung
Q= MQAQNQ, sodass

Hy = (Mg H)(Ag N H)Ng.
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Der homogene Raum M, /(MqN H) ist kompakt und ag/agNh =~ a/ay. Folglich zerfillt
L*(Zy) als

— &)
L*(Zy) ~ P /(/ | Mye @ IndG(§ @ A® 1) dA. (11)
— Ji(a/ag)l

§eMq

Hier ist d\ das Lebesgue-Mal auf i(a/ay)* und ia/ay)% ist ein Fundamentalbereich
fiir die Wirkung des Stabilisators von a;, in der Weylgruppe auf i(a/ay)*. Die Multi-
plizititsrdume My sind unabhingig von A und konnen nur fiir die endlichdimensio-
nale unitdre Darstellungen £ von Mg ungleich Null sein. Alle Darstellungen, die zur
Plancherel-Zerlegung von Zj beitragen, gehoren zu der getwisteten diskreten Reihe von
Darstellungen fiir diesen Raum.

Der abgeschlossene Unterraum L2 (Z) := B(L*(Zy)) von L*(Z) wird das kontinu-
ierlichste Teil von L?(Z) genannt. Die Eigenschaften des Bernstein-Morphismus und der
Plancherel-Zerlegung (11) von L?(Z) garantieren, dass der stetigste Teil zerfillt wie

—_ @D
L2.(2)~ B Mex @ IndG(E @A © 1) d. (12)

— i(a/ag)®
echomn (a/ap)

Dabei bezeichnet 1, 0.ta die Menge der Aquivalenzklassen der endlichdimensionalen uni-
tiren Darstellungen von Mgy und Mg , ist der Multiplizititsraum fiir die Darstellung
Ind%(§ ®A® 1). In [13] werden die Multiplizitdtsrdume zusammen mit ihren Skalarpro-
dukten bestimmt, womit die unitire (12) Aquivalenz prizise gemacht wird.

Fiir ¢ € Mg, und A € i(a/ay)* sei He ., der Raum glatter Vektoren der Darstellung
Ind%@ ® A ® 1). Jeder Multiplizititsraum M, ) kann auf natiirliche Weise als Unter-

raum des Raumes (H} ,)# von H-festen Funktionalen auf H¢ , gesehen werden. Wir
geben eine Konstruktion fiir alle Funktionale in ()" fiir generisches A € i(a/ay)* .
Die Konstruktion basiert stark auf der in [9] und [12] entwickelten Theorie fiir Limes-
unteralgebren (9). Wir verwenden die in [3] entwickelte Theorie des konstanten Terms,
um zu beweisen, dass fiir generische A € i(a/ay)* alle H-festen Funktionale auf #, )
temperiert sind und die Multiplizititsriume gegeben werden durch

M= (He )"

Zum Schluf} verfeinern wir die Maal3-Selberg-Relationen aus [2, Theorem 9.6], um die
durch die Plancherel-Zerlegung auf (# )" induzierten Skalarprodukte zu bestimmen.
Damit geben wir eine genaue Beschreibung der Plancherel-Zerlegung des kontinuierlich-
sten Teils von L2 _(Z).

Nach Sakellaridis und Venkatesh [15] fiihrte Delorme in [1] Streuoperatoren fiir reell
sphirische Riaume Z = G/H ein, unter der Annahme, dass G spaltend ist. Unter einer
weiteren Annahme einer Vermutung iiber die Natur der Darstellungen der getwisteten
diskreten Reihe zeigt er, dass die Streuoperatoren den Kern des Bernstein-Morphismus
(10) bestimmen. Wir geben, auch fiir nicht spaltende Gruppen G, eine konkrete Formel
fiir die Streuoperatoren fiir den stetigsten Teil. In diesem Fall bilden die Streuoperatoren
eine Darstellung der kleinen Weyl-Gruppe.
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Chapter I

The infinitesimal characters of discrete
series for real spherical spaces

Joint with Bernhard Krétz, Eric Opdam and Henrik Schlichtkrull.

Abstract

Let Z = GG/ H be the homogeneous space of a real reductive group and a
unimodular real spherical subgroup, and consider the regular representation
of G on L*(Z). It is shown that all representations of the discrete series, that
is, the irreducible subrepresentations of L?(Z), have infinitesimal characters
which are real and belong to a lattice. Moreover, let K be a maximal compact
subgroup of GG. Then each irreducible representation of K occurs in a finite
set of such discrete series representations only. Similar results are obtained
for the twisted discrete series, that is, the discrete components of the space
of square integrable sections of a line bundle, given by a unitary character on
an abelian extension of H.
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1 Introduction

Let Z = G/ H be a homogeneous space attached to a real reductive group G and a closed
subgroup H. A principal objective in the harmonic analysis of Z is the understanding of
the G-equivariant spectral decomposition of the space L?(Z) of square integrable half-
densities. The irreducible components of L?(Z) are of particular interest, they comprise
the discrete series for Z. We will assume that Z is unimodular, that is, it carries a positive
G-invariant Radon measure. Then L?(7) is identified as the space of square integrable
functions with respect to this measure.

Later on we shall restrict ourselves to the case where Z is real spherical, that is, the
action of a minimal parabolic subgroup P C G on Z admits an open orbit. Symmetric
spaces are real spherical, as well as real forms of complex spherical spaces. We men-
tion that a classification of real spherical spaces G/H with H reductive became recently
available, see [20] and [21].

For symmetric spaces it is known (see [5], [2]) that the spectral components of L?(Z )
are built by means of induction from certain parabolic subgroups of G. The inducing
representations belong to the discrete series of a symmetric space of the Levi subgroup,
twisted by unitary characters on its center. For real spherical spaces the results on tem-
pered representations obtained in [25] suggest similarly that the spectral decomposition
of L?(Z) will be built from the twisted discrete spectrum of a certain finite set of satellites
Zr = G/Hy of Z, which are again unimodular real spherical spaces. A first step towards
obtaining a spectral decomposition is then to obtain key properties of the twisted discrete
series for all unimodular real spherical spaces.

As usual we write G for the unitary dual of GG and disregard the distinction between
equivalence classes [r] € G and their representatives 7. Representations m € G which
occur in L?(Z) discretely will be called representations of the discrete series for Z. This
notion distinguishes a subset of G which we denote by G H,d. We write @d for the discrete
series of G5, i.e., @d = é{e}7d. Note that in general there is no relation between the sets
@d and G m,a if H is non-trivial.

To explain the notion of being twisted we recall the automorphism group N¢(H)/H
of Z, where Ng(H) denotes the normalizer of H. It gives rise to a right action of
Ng(H)/H on L*(Z) commuting with the left regular action of G. For a real spheri-
cal space Ng(H)/H is fairly well behaved: Ng(H)/H is a product of a compact group
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1. Introduction

and a non-compact torus [24]. It is easy to see that in this case there exists no dis-
crete spectrum unless N¢(H)/H is compact. Let A be a maximal non-compact torus in
N¢(H)/H. Hence if A is non-trivial, there exist no discrete series representations for Z.
In this case we generalize the notion of discrete series as follows. We have an equivariant
disintegration into G-modules

o
L*(Z) ~ /A L*(Z; x) dx
A

Here A denotes the set of unitary characters y of A, and L?(Z; ) denotes the space
of functions on Z, which transform by yx (times a modular character) and are square
integrable modulo .4 (as half-densities, since in general G/N¢(H) is not unimodular).
The set of representations m € G which are in the discrete spectrum of L?(Z; x) is called
the Xt _twisted discrete series and is denoted G Hx- The union G mta of these sets over all
X € A is referred to as the twisted discrete series for Z.

Let P = M AN be a Langlands decomposition of the minimal parabolic subgroup
P. Denote by m and a the Lie algebras of M and A respectively. Choose a maximal
torus t C m and set ¢ := a + it. We note that cc is Cartan subalgebra of g¢ and denote
by W, the Weyl group of the root system X(gc,¢) C ¢*. For every 7 € G we denote
by x» € ¢ /W, its infinitesimal character and recall a theorem of Harish-Chandra ([10,
Thm. 7]), which asserts that the map

X:G = /We, T Xn (1.1)

has uniformly finite fibers. Note that X is continuous if G is endowed with the Fell
topology. R R

A priori it is not clear that X(Gpq) or X(G g ) is a discrete subset of ¢i. /.. How-
ever, we believe this to be true for general real algebraic homogeneous spaces Z. For real
spherical spaces Z it is a consequence of the main theorem, Theorem 8.3 below, which
slightly simplified can be phrased as follows.

Theorem 1.1. Let Z = G/ H be a unimodular real spherical space. Assume that the pair
(G, H) is real algebraic. Then there exists a W -invariant lattice Az C ¢*, rational with
respect to the root system in ¢, such that:

(i) %<G\H,d) C Ay /W,
(ii) Re X(Crra) € Ag/W..
A few remarks related to this theorem are in order.
Remark 1.2.

(1) The statement in (i) implies that the infinitesimal characters Y, are real and discrete
for 1 € G q. Furthermore (see Corollary 8.4 below), these properties of x, lead
to the following. Let K C G be a maximal compact subgroup. For all T € K and
x € A the set R

{m € Gy, | Homg( |K, # 0}
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is finite. In other words, there are only finitely many y-twisted discrete series repre-
sentations containing a given K -type. For p-adic spherical spaces of wavefront type
this was shown by Sakellaridis and Venkatesh in [37, Theorem 9.2.1].

(2) There is a simple relation between the leading exponents of generalized matrix coeffi-
cients attached to m € Gy 4q and the infinitesimal character y, of 7 (cf. Lemma 3.4).
Further, twisted discrete series can be described by inequalities satisfied by the lead-
ing exponents (cf. [25] or (3.3)-(3.4) below). The inclusion Re X(Gyta) C Az/W.
then implies that all real parts of leading exponents are uniformly bounded away from
“rho”. Phrased differently, Theorem 1.1(ii) implies a spectral gap for twisted discrete
series. In [37], Prop. 9.4.8, this is called “uniform boundedness of exponents” and
is a key fact for establishing the Plancherel formula for p-adic spherical spaces of
wavefront type.

(3) The lattice Az can be taken of the form %Z(gc, ¢), where N is an integer which only
depends on g. (We may use the integer N from Theorem 8.3, which is the product
of the integers from Theorem 7.4 and Proposition B.1. The latter two integers only
depend on g.)

Theorem 1.1 is the crucial ingredient for the uniform constant term approximation
for tempered eigenfunctions in [7]. Thus it lies at the heart of the Plancherel theorem
for LQ(Z ) in terms of Bernstein-morphisms, established in [6] and motivated by [37],
Section 11. Notice that the strategy of proof designed in [37] for the Plancherel theorem
differs from the earlier approach where the discrete spectrum is classified first (see [11]
for groups and [2], [5] for symmetric spaces). In [37] the discrete series is taken as
a black box which features a spectral gap, and the Plancherel theorem is established
without knowing the discrete spectrum explicitly. R

For reductive groups an explicit parametrization of the discrete series G4 was obtained
by Harish-Chandra [12]. More generally, for symmetric spaces GG/ H discrete series were
constructed by Flensted-Jensen [8], and his work was completed by Matsuki and Oshima
[35] to a full classification of Gy 4. For a general real spherical space such an explicit
parameter description appears currently to be out of reach and for non-symmetric spaces
the existence or non-existence of discrete series is known only in a few cases. See [26,
Corollary 5.6] and in [15, Corollary 4.5].

More importantly, the existence of discrete series can be characterized geometrically
by the existence of a compact Cartan subalgebra in the group case, and of a compact
Cartan subspace in b in the more general case of symmetric spaces. One can phrase this
uniformly as: R

Gua# 0 <= int{X € b | X elliptic} # 0, (1.2)

where the interior int is taken in h. We expect that (1.2) is true for all algebraic homoge-
neous spaces Z. A geometric characterization for the existence of twisted discrete series
is less clear; in the real spherical case we expect

G # 0 < int{X € Ny(h)* | X weakly elliptic} # 0 (1.3)

with Ny(h) the normalizer of h in g.
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A combination of the Bernstein decomposition of L?(Z) in [6] with soft techniques
from microlocal analysis [13] yields the implication ”<=" in (1.2), see [6, Th. 12.1].
Developing the techniques in [13] a bit further would yield the more general implication
”’<"in 1.3. Let us point out that we consider the implication =" in 1.3 as one of the
most interesting current problems in this area.

Representations of the discrete series feature interesting additional structures. For
instance, for a reductive group Schmid realized the discrete spectrum in L?-Dolbeault
cohomology [38]. This was the first of series of realizations of the discrete series rep-
resentations for reductive Lie groups. Vogan established that the representations of the
discrete series on a symmetric space are cohomologically induced [41]. It would be
interesting to know for non-symmetric spaces to which extent Gy 4 consists of cohomo-
logically induced representations.

1.1 Methods

We first describe the idea of proof for Theorem 1. 1 in the case Z = (' is a semisimple
group. Let 7w € Gd be a discrete series. Let 0 € M and \ € ag be such that there is a

quotient
o =IndS(A® o) —» 7

of the principal series representation Ind%(A®¢). Here induction is normalized and from
the left. Such a quotient exists for every irreducible representation 7 by the subrepresen-
tation theorem of Casselman.

Let now v € w{° be a smooth vector and let ¥ be its image in 7°°. Further let 77 be
any smooth vector in ( Y)>® where 7V is the dual representation of 7. We view 7 as an
element of (7y ,)>° = 7>, v, denote it then by 7, and record the relation

moz(g) == M, 7(9)"'0) = (n, Mo (g ) = muy(g)  (9€G).

We now use the non-compact model for 7y ,, i.e. o-valued functions on N (the opposite
of N), and let v be a o-valued a test function on N. Let g = a € A. As v is compactly
supported on N, the functions 7 + a~2’v(ama~!) form a Dirac sequence on N for
a € A~ tending to infinity along a regular ray, and a partial Dirac sequence in case of
a semi-regular ray. Here A~ = exp(a~) with a= C a the closure of the negative Weyl
chamber determined by /V. Dirac approximation and appropriate choices of v and 7 then
give a constant ¢ = ¢(7,7) # 0 and the asymptotic behavior:

myn(a) ~c-a (a€e A7 a— ). (1.4)

Strictly speaking, the constant ¢ above also depends on the ray along which we go to
infinity, in case it is not regular. The asymptotics (1.4) are motivated by a lemma of
Langlands [33, Lemma 3.12] which is at the core of the Langlands classification. This
lemma asserts for K -finite vectors v and 7, and for \ in the range of absolute convergence
of the long intertwining operator, say /, that
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As our v is compactly supported on N the integral defining I(v) is in fact absolutely
convergent for every parameter \.

As 7 belongs to the discrete series, my 5 is square integrable on GG. One then derives
from (1.4) and the integral formula for the Cartan decomposition G = K A~ K that the
parameter A has to satisfy the strict inequality

Re | > 0. (1.5)

There exists a number N(G) € N such that every rank one standard intertwiner
Iy - IndS(5,A ® 540) = Ind% (A ® o)

is an isomorphism for A\ (o) ¢ ﬁZ (see Proposition B.1 below). Suppose that \(a) &

ﬁz for some simple root & € ¥(n, a). Then we obtain an additional quotient mor-
phism 7 ) s, — 7. As above this implies

Resa )| 0. (1.6)

oy 7
Motivated by (1.6) we define an equivalence relation on af. in Section 7.1 as follows:
A ~ 1 provided p is obtained from A by a sequence A\ = pug, ft1, . . ., 4y = p such that

(@) piy1 = si(p;) for s; = s,, a simple reflection,
®) pi(af) & xig2L-

The equivalence class of A € af is denoted [\] and (by slight abuse of terminology
introduced in Section 7.2) we say that )\ is strictly integral-negative provided all elements
of [\ satisfy (1.6). In particular we see that any parameter \, for which there exists a
discrete series representation (7, V') and a quotient 7y , — V/, is strictly integral-negative.

Using the geometry of the Euclidean apartment of the Weyl group we show in Section
7 (Corollary 7.5) that there exists an N = N(g) € N such that for strictly integral-
negative parameters A € ag one has

MaY) € %Z (aex).
In particular strictly integral-negative parameters are real and discrete.

For a general real spherical space Z = (/H we start with a twisted discrete series
representation 7 and consider it as a quotient 7y , = Ind$(\ ® 0) — 7 of a principal
series representation. The role of 77 € (7)> above is now played by an element 7} €
(7=>°)H where 7~ refers to the dual of 7°°. We let 7 be the lift of 7] to an element of
(myo ).

The function

msz(9) = T(w(g~")0) = n(mrs (g~ )v) = myy(g)

descends to a smooth function on Z = G/H and is referred to as a generalized matrix
coefficient.
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Now 7 is supported on various H-orbits on P\G and we pick one with maximal
dimension, say Pz H for some = € G. Here one meets the first serious technical obstruc-
tion: Unlike in the symmetric case (Matsuki [34], Rossmann [36]), there is no explicit
description of the P x H double cosets, but merely the information that the number of
double cosets is finite [29]. However, for computational purposes related to asymptotic
analysis it turns out that one can replace the unknown isotropy algebra b, := Ad(z)h by
its deformation

e x i= tlim eladXy (X € a” regular).
—00

There are only finitely many of those for regular X and they are all a-stable, i.e. nicely
lined up for arguments related to Dirac-compression. One is then interested in the asymp-
totics of ¢ — m,,,(exp(tX)x) for appropriately compactly supported v. The main tech-
nical result of this paper is a generalization of (1.4) in terms of natural geometric data
related to b, x, see Theorem 5.1 and Corollary 5.3. As above it leads to a variant of (1.5)
in Corollary 6.2 and the final conclusion is derived via our Weyl group techniques from
Section 7.

Acknowledgement: We would like to thank Patrick Delorme for posing the question
about the spectral gap for twisted discrete series representations, and for explaining to us
how to adapt the work of Sakellaridis and Venkatesh for p-adic spherical spaces to real
spherical spaces.

2 Notions and Generalities

We write N = {1,2, 3 ...} for the set of natural numbers and put Ny := NU{0}. Through-
out this paper we use upper case Latin letters A, B, C ... to denote Lie groups and write
a, b, c, ... for their corresponding Lie algebras. If A, B C G are Lie groups, then we
write No(B) := {a € A | aBa™! = B} for the normalizer of B in A and likewise we
denote by Z4(B) the centralizer of B in A. Correspondingly if a, b C g are subalgebras,
then we write N,(b) for the normalizer of b in a.

For a real vector space V' we write V¢ for the complexification V ® C of V.

If L is areal reductive Lie group, then we denote by L,, the normal subgroup generated
by all unipotent elements of L, or, phrased equivalently, L, is the connected subgroup
with Lie algebra equal to the direct sum of all non-compact simple ideals of [.

Let GG be an open subgroup of the real points G(RR) of a reductive algebraic group G
defined over R. Let H be an algebraic subgroup of G defined over R and let H be an
open subgroup of H(R)NG. Define the homogeneous space Z := G/ H. We assume that
Z is unimodular, i.e., carries a G-invariant positive Radon measure. Let zg :=e- H € Z
be the standard base point.

Let P C G be a minimal parabolic subgroup. We assume that Z is real spherical,
that is, the action of P on Z admits an open orbit. After replacing P by a conjugate we
will assume that P - zy is open in Z. The local structure theorem (see [24]) asserts the

7
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existence of a parabolic subgroup () O P with Levi-decomposition () = L x U such that:

P'Z(]:Q'ZOJ
ONH=LNH, @2.1)
L, CLNH.

We emphasize that the choice of L has to be taken in accordance with the local structure
theorem, see [6, Remark 2.2].

Let now L. = K ANy be any Iwasawa-decomposition of L and set Ay := AN H
and Az := A/Apg. We note that Ay is connected. The number rankg Z := dim Ay is an
invariant of Z and referred to as the real rank of Z.

We inflate K7, to a maximal compact subgroup K C G and set M := Zx(a). We
denote by 6 the Cartan involution on g defined by K and set it := #(u). We may and will
assume that A C P. Let P = M AN be the corresponding Langlands decomposition of
P and define n := 0(n).

2.1 Spherical roots and the compression cone

Let ¥ = ¥(g, a) be the restricted root system for the pair (g, a) and

g=aomoPe°

aEX

be the attached root space decomposition. Write (I N )+ C [ for the orthogonal com-
plement of [N b in [ with respect to a non-degenerate Ad(G)-invariant bilinear form on g
restricted to [. From g = q+bh = u® (INh)*'dh and g = qDu we infer the existence of a
linearmap 7" : u — u® (INh)* such that h = INhBG(T) with G(T) C ubud (INh)L
the graph of 7T'.

Set ¥, :=%(u,a) C¥. Fora € ¥, and 3 € £, U {0} we denote by T, 5 : g~* — g°
the map obtained by restriction of 7 to g~* and projection to g°. Then

T| o= >, Tup.

Bex, U{0}
Let M C a*\{0} be the additive semi-group generated by
{a+plaeX,peX,U{0}suchthatT, s # 0}.

We recall from [19], Cor. 12.5 and Cor. 10.9, that the cone generated by M is simplicial.
We fix a set of generators S of this cone with the property M C N[S] and refer to S as
a set of (real) spherical roots. Note that all elements of M vanish on ay so that we can
view M and S as subsets of a7,.

We define the compression cone by

a, ={X €az| (VaeS)a(X) <0}
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and write az i := a, N (—ay) for its edge. We note that
#S = dim az/ClZE .

For an a-fixed subspace s of g, we define
1
p(s)(X) = §tr(ad(X)|5) (X €a).

We write pp for p(p) and pg for p(q). Recall that the unimodularity of Z implies that
Polay = 0, see [23, Lemma 4.2].
Let IT C X7 be the set of simple roots. We let

af :={X ca|Vaecll) £aX) >0}

and write a~~ for the interior (Weyl chamber) of a™~.

We write p : a — ay for the projection and set ap := p~*(az ) and Ap = exp(ag).
Set H = HA g and note that H normalizes H. Obviously H is real spherical as well.
Finally, we define Z := G/H.

2.2 The normalizer of a real spherical subalgebra

Lemma 2.1. Let h C g be a real spherical subalgebra. Then the following assertions
hold:

(i) Ny(h) = b + @ with ™ C m, the sum not necessarily being direct.

(ii) b =b.
(iii) [Ng(h)]n = bu, i.e. every adg-nilpotent element in Ny(h) is contained in b.

Proof. For (i) see [22, (5.10)]. Lemma 4.1 in [24] implies (ii). Finally, (ii1) follows from
). O

3 Twisted discrete series as quotients of principal series

3.1 The spherical subrepresentation theorem

For a Harish-Chandra module V', we denote by V"> the unique smooth moderate growth
Fréchet globalization and by V ~°° the continuous dual of V. If n € (V)7 \ {0},
then the pair (V,7) is called a spherical pair.

For a Harish-Chandra module V' we denote by Vits contragredient or dual Harish-
Chandra module, that is, V' consist of the K -finite vectors in the algebraic dual V* of
V. Further we denote by V the conjugate Harish-Chandra module, that is, V~ =V as
R-vector space but with the conjugate complex multiplication. We recall that V = V in
case V' is unitarizable. In particular if (V) ) is a spherical pair with V" unitarizable, then
sois (V,77) with 7j(v) == n(v).
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Associated to n € (V)" and v € V™ we find the generalized matrix coefficient
on Z

Mog(2) =n(g~v)  (z=gH € Z),
which defines a smooth function on Z. If v € V' then m, , admits a convergent power
series expansion (cf. [25], Sect. 6):

My, (ma - 2o) Z Z i, (m;log a)ah ™ (aec Ay;,meM).

HEE aeNp[S]

Here £ C aj is a finite set of leading exponents only depending on (V,7); the term
“leading” refers to the following relation: forall u, p’ € £, i # 1 onehas o & 1/ +Ny[.S].
Further, for each i € £, o € Ny[S] and v € V, the assignment

Chw: M xaz = C, (m,X)—c;,(m;X)

is polynomial in X and M -finite. Moreover, for each 1 € £ there exists av € V' such that
c?w = 0. The M-types which can occur are those obtained from branching the K-module
spanc{K - v} to M. The degrees of the polynomials are uniformly bounded and we set
dy, = max,ey degc), , € Ny.

Let us set Ay := Z(L) N A. Then L = M A; for a complementary reductive
subgroup My, C L. For a unitary representation (0, V) of M, and A € aj - we denote
by Ind%(A ® o) the normalized left induced representation. Note that the elements v €

Ind%(/\ ® o) are K -finite functions v : G — V,, which satisfy
v(@mag) = a*~*2a(m)v(g)

forallg € G,a € A, u € Uandm € M,
Note that A, Ay = A and that therefore there exists a natural inclusion a3, — aj.
The representations Ind%(/\ ® o) are related to spherical representation theory as follows.

Lemma 3.1. Let (V,n) be a spherical pair with V' irreducible and 1. € a3, C a} aleading
exponent. Then there exist an irreducible finite dimensional representation o of My, with
a (M, N H)-fixed vector, and an embedding of Harish-Chandra modules:

V s IndG((—p + pg) ® o). (3.1)

Proof. This is implicitly contained in [29], Section 4. We confine ourselves with a sketch
of the argument.

Recall d,, and fix a basis X, ..., X, of az. Form € Nj, X = Z?Zl r;X; € az we
set X™ := 2" -....x". Then

cg,v(m;X) = Z cl’fv(m)Xm (me M)

|m‘§du

where ¢}, is an M -finite function. Fix now o € Mandm € N with |m| = d,, such that
the o- 1sotyp1ca1 part of ¢’ L(m ) is non-zero. This gives rise to a non-trivial M -equivariant
map

V>V, vi> CE?U[J] .

10



3. Twisted discrete series as quotients of principal series

It is easy to see that (I N h + u)V is in the kernel of this map. Note that M N M,
is a normal subgroup of M that is contained in M N H. From the fact that o admits a

non-zero M M H-fixed vector it follows that a| MM, is trivial. We may thus extend o

to a representation of M, ~ M x M , by setting a} M = 1. The assertion now
MnMy, Lin

follows from Frobenius reciprocity. O]

3.2 Discrete series and twisted discrete series

For x € (h/h)% ~ ay, 5 c we define the space of functions
C(Z;y) = {¢ € C.(G) : (- ha) =a X¢foralla € Ag,h € H}.

We call x € (h/b)z normalized unitary if

Let A5 be the modular function of 7. By [25, Lemma 8.4] we have
Az(ha) = a2 (h€ Hya € Ag). (3.2)

For g € G, let I, denote left multiplication by g. Let 2 € /\dimZ( /b \ {0}. If
X € (Ij /B)& is normalized unitary, then it follows that for all ¢, ¢ € C. (Z X) the density

|Q|¢,w :Gog— Qb(g)M(Tglg*l)*‘Ql

factors to a smooth density on 7 , and the bilinear form
Co(Z;x) x Co(Z;x) — C; (9,¢) — /A |2,
A

is an inner product. We write L?(Z;y) for the Hilbert completion of C.(Z;y) with
respect to this inner product. Note that the inner product is invariant under the left regular
action of G and thus L?(Z; ) equipped with the left-regular representation is a unitary
representation of G.

Definition 3.2. If x € (6/ h)& is normalized unitary, then we say that the spherical
pair (V,n) belongs to the y-twisted discrete series for Z provided that V' is irreducible,
™(Y)n = —x(Y)pforall Y € b, and My, € L*(Z; ) for all v € V*°. Furthermore,
we say that (V,7) belongs to the twisted discrete series for Z if (V,n) belongs to the
x-twisted discrete series for some normalized unitary x. Finally we say that (V,7) be-
longs to the discrete series for Z provided that V' is irreducible and m,,,, € L*(Z) for all
ve Ve

Lemma 3. 3 If there exits a spherzcal pair (V,n) belonging to the discrete series for Z,
then H=H = H Ag. Hence b / b = 0 and therefore the discrete series for Z coincide
with the O-twisted discrete series for Z.

11
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Proof. Let (V,n) be a spherical pair belonging to the discrete series for Z. The right-
action of Ar commutes with the left-action of G on L?*(Z), and thus induces a natural
action of Ag on (V=) By [27] and [30] the space (V~>°)# is finite dimensional.
We may therefore assume that 7 is a joint-eigenvector for the right-action of A, i.e., the
generalized matrix coefficients of V' satisfy

My ,(gha) = a™*my, ,(9) (e G,h€ Hya € Ag)

for some normalized unitary y € (H/ h)i. Let Ay be a subgroup of A such that Ay x Ap ~
A. If g € G and m,, (g - z0) # 0O, then, if the Haar measures are properly normalized,

[P dz= [ oy )Pas
z 9Q-20
:// // (aoag) "2 |my,,(gnmagag)|® dag dag dm dn
UJMJ Ay JAR/(ANH)
:// // ag 2 |m,, (gnmao)|* dag dag dm dn .
UJM J Ay JAp/(ANH)

Clearly the last repeated integral can only be absolutely convergent if Ar/(A N H) has
finite volume, or equivalently if Ap = AN H. ]

We recall from Section 8 in [25] that (V, 7) belongs to the twisted discrete series for
Z only if the conditions

(R’eu - pQ)|a2\GZ?E < 0’ (33)
(Re,u - pQ)|az,E =0 (34)

hold for all leading exponents pi. Moreover,
ﬂ|azyE =X (35)
when (V1) belongs to the x-twisted discrete series. Note that (3.3) implies (3.4) unless

az g = Qz.

3.3 Quotient morphisms

It is technically easier to work with representations induced from the minimal parabolic
P. Set p?, = pp — pg and observe that there is a natural inclusion

IdZ(A ® o) — IndS((A + pP) @ ofur)

In particular (3.1) yields
V s Ind%((—p+ pp) @ 0), (3.6)

where we allowed ourselves to write o for o|,;.

12
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For general Ind%(\® o) we record that its dual representation is Ind%(—A®c"). The
natural pairing between these two representations is given as follows in the non-compact
picture:

vV (v) = /va(n) (v(n)) dn

for vV € Ind%(—-A ® ¢¥) and v € Ind%(A ® o).
Let now (V1) be an irreducible spherical pair belonging to the twisted discrete series.
Then 7z is a leading exponent for the dual pair (V', 7). By applying (3.6) to V' we embed

Ve Ind%((—ﬂ +pp)®a’).
Dualizing this inclusion we obtain the quotient morphism
Ind((7i — pp) @ ) = V. 3.7)

In view of the P x H-geometry of (5 it is a bit inconvenient to work with representa-
tions induced from the left by the opposite parabolic P. We can correct this by employing
the long Weyl group element wy, € W = W (g, a), which maps P to P. This gives us for
every A € agand o € M an isomorphism

Indg(/\ ®o)— Ind%(wo)\ ® woo); v v(wy-), (3.8)

where woo := g owy € M. With proper choices of A and ¢ we obtain from (3.8) and
(3.7) a quotient morphism of Ind%(\ ® o) onto V.
We write now 7y, for Ind%(\ ® o) and record that functions v € T, , feature the
transformation property
v(mang) = a*PPa(m)v(g). 3.9

To summarize our discussion so far:

Lemma 3.4. Let (V,n) be a twisted discrete series representation for Z and p € af.

a leading exponent. Then there exists a 0 € M and a surjective quotient morphism
T = V with A = Wolt + pp.

We write 73, for the smooth Fréchet globalization of moderate growth. In the sequel
we will model 757, on all smooth functions which satisfy (3.9).

4 Generalized volume growth

4.1 Limiting subalgebras
Define order-regular elements in a~~ by
o reg = {X €07 |a(X) # B(X), 0,8 € X, # B}

In this and the next section we will make heavy use of certain limits of subspaces of g
in the Grassmannian. In the following lemma we collect the important properties of such
limits.

13
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Lemma 4.1. Let E be a subspace of g and let X € a. Then the limit
Ex = tlggo Ad (exp(tX))E,

exists in the Grassmannian. If \y < Ay < --- < \, are the eigenvalues and p1, . .. ,p,
the corresponding projections onto the eigenspaces V; of ad(X ), then Ex is given by

Ex =@ n(EnPV;). 4.1
i=1 j=1

The following hold.
(i) If £ is a Lie subalgebra of g, then Ex is a Lie subalgebra of g.

(i) If X € a=~, then (Ad(man)E) . = Ad(ma)(Ex) for allm € M, a € A and
n € N. Moreover, if X is order-regular, then Ex is A-stable.

(iii) Let C be a connected component of a__,.,. Then (EX)Y = By forall X € C and

o—reg*

Y € C. In particular, if X,Y € C, then Ex = Fy.
(iv) If X, X' €a ", thenanN Ex = anN Ex.

Proof. Let k = dim(FE) and let ¢ : Gr(g, k) — P(A" g) be the Pliicker embedding, i.e.,
¢ is the map given by

L(span(vl, o ,Uk)) =R(vy A+ Awvg). (4.2)

The map ¢ is a diffeomorphism onto a compact submanifold of P(A\" g). The map ad(X)
acts diagonalizably on /\k g, say with eigenvalues p1y < po < -+ < pp. Let & €
A" g\ {0} be so that 1(E) = RE. We decompose ¢ into eigenvectors for ad(X) as

g = Z fz )
i=1
where ¢; is an eigenvector of ad (X ) with eigenvalue ;. Now
Ad (exp(tX))(RE) =R(D_e™g).
i=1

Let 1 < k < m be the largest number so that & # 0. Then Ad (exp(tX))(R&) converges
for t — oo to RE;. Let Ex = ¢ (R&;). Since ¢ is a diffeomorphism, Ad (exp(tX))E
converges to Ey for t — oo.

We move on to prove (4.1). For 1 < ¢ < n we define

E,:Em@vj.
j=1

14
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We will prove with induction that for every 1 < <n

(Ei)x = é}pj(Ej) - (43)

Clearly F; = E N V] is stable under the adjoint action of X, and hence (E;)x = FEj.
This proves (4.3) for i = 1. Assume that (4.3) holds for some i. We claim that

i+1

Dri(E) < (Einr) - (4.4)
j=1

In view of the induction hypothesis it suffices to prove that p;1(Y") € (Eiﬂ)  for every
Y € E;y1 \ E;. We decompose Y as

i+1

Y:ij(y)'

Then p;41(Y) # 0 and thus

i+1
(RY)x = lim R( Y e™py(Y)) = Rpia (V).
j=1

This shows that p; 1 (Y') € (E;;1)x. Therefore, the inclusion (4.4) holds. In fact, equality
holds because the dimensions agree. This proves (4.1).

Observe that [F, E] C F is a closed condition in the Grassmannian. Therefore, the
set of Lie subalgebras in the Grassmannian is a closed set. It follows that £y is a Lie
subalgebra if I is a Lie subalgebra. This proves (i).

Assume that X € a=—. If n € N, then exp(tX)nexp(tX)~! converges to e for
t — 0o. Now

(Ad(man)E) , = tli)r?o Ad(ma) Ad (exp(tX)nexp(tX) ™) Ad (exp(tX))E
= Ad(ma)(Ex).

If X € a, ., then the eigenvalues {a(X) : « € XU{0}} of ad(X) are in bijection with
¥ U{0}. Therefore, all projections p; in (4.1) are projections onto a-eigenspaces, namely
the root spaces and m & a. This implies that E'x is A-stable. This proves (ii).

We move on to prove (iii). It follows from (4.1) that for every X € a~ the limit
Ex is spanned by the limits Ly of the lines L in . Hence we may assume that F
is 1-dimensional. Let X € C and Y € C. For a € X U {0} we define p, to be the
projection g — ¢, along the root space decomposition. Let oy € 3 U {0} be so that
ap(Y) is maximal among the numbers a(Y") with o € ¥ U {0} for which p,(E) # {0}.
By (4.1) we have Ey = p,,(E). Since Y € C and X € C we have o(X) > B(X) if
a(Y) > B(Y). In particular the largest eigenvalue of ad(.X') that appears in F is equal to
ap(X). The projection onto the eigenspace of ad(X) with eigenvalue ay(X) is given by

2. Pa

aexU{0}
a(X)=ao(X)

15
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Therefore,
Ex = Z Pa (E)v
aeXuU{0}
a(X)=ao(X)
and hence
(EX)Y:pao(< Z pa)(E)) :pao(E):EY-
aeXU{0}
a(X)=ao(X)

If X,Y € C, then by (ii) the space Ex is a-stable and therefore (Ey)y = FEx. This
proves (iii).

Finally we prove (iv). Let X € a~ . Let py,, p, be the projections g — mand g — a,
respectively, along the Bruhat decomposition. Since X is regular, it follows from (4.1)
that

Mm@ a)NEx = (pn+ps)(mBadn)NE).

Clearly pa((a ®n) N E) C an Ex. Moreover, if Y € aNExandY’ € (m@a®n)NE
is so that (pm + pa)(Y’) =Y, then pn(Y’) = 0. Hence Y € p,((a @ n) N E). It follows
that

pa((a®n)NE)=anEx.

The left-hand side is independent of X. [

Let C be a connected component of a, ... If X € C, then in view of (iii) in Lemma
4.1 the space Ex does not depend on the specific choice of X. Therefore for every
subspace E of g we may define

Ee = Ex (X €0).
Let z € G. We define the following spaces. First set
e = (Ad(x)h)c.
Observe that by (ii) in Lemma 4.1
bemansn = Ad(m)be,  (meM,a€ A,ne N,heH). (4.5)

We define
a; :=bheNa.

In view of Lemma 4.1(iv) this space does not depend on C. Note that (4.5) implies that
a, only depends on the double coset PxH € P\G/H, not on the representative = € G
for that coset. We further define the a-stable subalgebras

t_1(3,;1: = bC,ac nn, Uc gz = bC,x nn.
Since b¢ , is a-stable, it follows that
bee =T, ® (M@ a)Nhe,) Buc, . (4.6)

Finally we choose n; and u to be a-stable complementary subspaces to fi¢ , in n and uc ,
in n, respectively, so that

n=ne, dng, n=1uc, Dug. “4.7)
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4. Generalized volume growth

Lemma 4.2. Forevery x € G
g = (Ad(x)b +p) & ng.
Proof. Let X € C. In view of (4.7) and (4.6) we have
g=Tc. ®pOTe = (hea+p) BTE. (4.8)
If g # (Ad(z)bh + p) + ¢, then also
g # Ad(a)(Ad(z)h + p +1%) = (Ad(az)h + p) + TG

for every a € A. This would imply that the limit of (Ad(exp(tX)z)h + p) + ng for
t — oo is a proper subspace of g. This in turn would contradict (4.8). Therefore, g =
(Ad(z)h + p) + ng. Moreover, it follows from (4.1) that p N he, = p N Ad(z)h, and
hence

dim(be o +p) = dim(Ad(z)h +p).

Therefore, by comparing with (4.8) we see that the sum (Ad(z)h + p) + ng is direct. [

4.2 Volume-weights
We recall the volume-weight function on Z
v(z) := volz(Bz) (z€2),

where B is some compact neighborhood of e in G. We refer to Appendix A for the
properties of volume-weights. The volume weight naturally shows up in the treatment of
twisted discrete series representations.

The following proposition is a direct corollary of the invariant Sobolev lemma in
Appendix A.

Proposition 4.3. Let (V, 1) be a spherical pair corresponding to a twisted discrete series
representation. Then

sup |mv7n(z)\v(z)% < 00. 4.9)
z€Z

Moreover; if (2, )nen is a sequence in Z such that its image in Z tends to infinity, then

[y, (20)|v(20)7 = 0. (4.10)

n—oo

The basic asymptotic behavior of v on the compression cone is
via-z) xa (a€Ay). (4.11)

See [23, Proposition 4.3]. We investigate now the growth of v with the base point 2,
shifted by an element = € G, i.e., we investigate how v(az - z) grows fora € A™.
Recall the parabolic subgroup () = LU from (2.1). For z = e, we have he, =
(INh) @ u, and thus
p(hC,e) = —PQq-
Hence the following proposition is a partial generalization of the lower bound in (4.11)
for shifted base points.

17



I. The infinitesimal characters of discrete series for real spherical spaces

Proposition 4.4. Let v € G and X € a™. Let C be a connected component of a, ., such
that X € C. Then there exists a C' > 0 such that

v(exp(tX)z - z) > Ce?Plhes)X) (t>0).

Proof Set N* = exp(n%). Since exp : 1 — N is a polynomial isomorphism the group
N” is an affine subvariety of N. Define an affine subvariety of N by U* := exp(ug).
Let a” be the orthogonal complement of a, in a and set A” := exp(a”). Further let
Xi,..., X} be a basis of a subspace in m which is complementary to py(he,) in m,
where p,, is the projection g — m along the Bruhat decomposition. We may assume in
addition that the X; are so that M; := exp(RX;) ~ R/Z. Now

k
a®m= ((m®a)Nbey) EBa’”@@RXj.
j=1
Further, we define the affine variety M := M; X ... x M. Form = (my,...,my) € M
weset o(m) :=mq ... -my € M.
For t € R define a; := exp(¢X) and consider the algebraic map

P, UX N ' xA*x M x H— G: (u,m,a,m, h) — unap(m)axh .
We have

g=uw oW @a” ®PRX; & he..
j=1
Note that if Ad(ax)h would not be transversal to V' := u? & ng & a” & @le RX; for
some a € A, then it would not be transversal for any a € A since V' is A-invariant. This

would contradict the fact that h¢ , is transversal to V. We thus conclude that for every

a€ A
k

g=u;Pn;da’ P @RXj @ Ad(ax)bh .
j=1

In particular this holds for a = a;. This implies for generic ¢, and hence in particular for
t > 0, that the map P, is dominant and as such has generically finite fibers, with a fiber
bound independent of ¢. See [9, Prop. 15.5.1(1)].

Let Ug, N%, A%, Mp and Hp be relatively compact, open neighborhoods of e in
U, N*, A~ ¢(M) and H respectively. We choose these sets small enough so that
UsNpA3Mp C B. Then

v(ax - 2) > / 1U§ﬁ§AIBMBatx-zo(Z> dz. (4.12)
z
For y € G, let F, be the projection onto H of ®; ' ({y}). If yh € U5Nz A5 MpaxHp

then y € U5N AL MpacHph™'. Hence Hph~' contains an element from F), and h
belongs to (F,)* Hp. Therefore,

/HlUgN%A}gMBatxHB(yh) th/Hl(Fy)—lHB(h)dh 1U,§,N§AgMBatx-z0<y'ZO)

< #0, ({y}) volu(Hp) Lys s az mparezo (U - 20) -
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4. Generalized volume growth

Let c = (nvoly(Hp)) ~', where 7 is the generic fiber bound. Then for generic y € G we
have

1U§N§Ag/\43ataz.zo(y $70) 2 C/H LyeWs Az MpanaHs (yh) dh.

By inserting this inequality into (4.12) we obtain

v(a - z0) > / C/ 1U§N§AgMBatxHB(yh) dh dyH
z JH
= C/GlUgN”gAgMBata:HB(y) dy

= C/; 1U§NIBA‘}‘3MBat1HBx—1a_t (y) dy :

For the last equality we used the invariance of the Haar measure on G.
We define = := UL N A% M p and set

U, : ExacHpr ™' = G; (& y) — Eaya_y .

The fibers of W, are bounded by the fibers of ®;, and hence are generically finite with fiber
bound independent of ¢ for ¢ > 0. Let w¢ be the section of /\dlm “Tq corresponding to
the Haar measure on G. Then

c
v(ax - z9) > E// 1 Viwe ,
= $HBCC7

where k is the fiber bound of W,.
We finish the proof by estimating W ;wq. Forg € G, letl, : G — Gandry,: G — G
be left and right-multiplication by g, respectively. Let

€=, yexHpr™', Y€ T:Z and Y; € Ty(xH:v_l).
Letv:R — ¢ 'Zand§ : R — xHpx~'y~! be smooth paths so that
7(0) =6(0) =e, +'(0)=(Tule)"'Yy and &'(0) =T,r,1Ys.

Then
A ad(s)ai],_y = +(0) + Ad(a)5'(0) = (1) Vi + Ad(a) (Tyr,+15).

Now &7 is a smooth path in = with (£v)(0) = £ and (£7)'(0) = Y;. Likewise, dy is a
smooth path in z Hgx ! satisfying (dy)(0) = y and (dy)'(0) = Y.
The tangent map of W, is determined by the following identity of elements in 7:G

d
T(E,y) (raty—la_t o \Ijt) (Yi’ }/é) = 5 \Ijt (57(8)7 5(8)3}) atyilaft }520

ds
d d
= Lerls)ad(s)ai,_, = Tle(Tr()ad(sha ],
= Y3 + Tl Ad(a) (Tyry 1 Y3) (4.13)
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I. The infinitesimal characters of discrete series for real spherical spaces

We write b x , for the limit for ¢ — oo of Ad(a;) Ad(x)b in the Grassmannian. Let Y
be a non-zero eigenvector of ad(X) in hx , and let &« € 3 U {0} be such that a(X) is the
eigenvalue. It follows from (4.1) with £ = Ad(z)b, that there exists an element

e+ > g’)nAd@).
BexXU{0}
B(X)<a(X)

Let Y be a right-invariant vector field on 2Hz " such that Y (¢) = Y”. Then

lim e T (Tary-1a_, © ¥4) (0, ?(y)) = lim e~*X) (Telg o Ad(at)) (Tyryfli}(y))

t—o00 t—o00

= lim e~to() (Tez£ 0 Ad(at)) (Y.

t—o00

For # € X U {0} with (X)) < a(X), let Y € g be so that

Y=Y+ Y Y

Bexu{0}
B(X)<a(X)
Then
O Ad(@)Y =Y+ > oY
BexU{0}
B(X)<a(X)
Therefore,

lim ¢~ Ty ) (Fay=1a-0 © ¥e) (0, ?(y))

t—00
_ : p—a r_
=TleY +lim Y ) "TlY; = T.IY .
BeXU{0}
B(X)<a(X)

The convergence is uniform in y and uniform on compact sets in £&. Combining this with
(4.13) yields that for every Y; € T¢= and Y as before we have

lim e*ta(X)T(&y) (Taty—la_t o \Ift) (Yl, ?(y)) =Y +T.lY,

t—o00

where again the convergence is uniform in y and uniform on compact sets in £. Define
PXz =5 tr (ad(X)‘hX ). It follows that

_ _ *
e Qth,z\IJ:wG — o 2tPX .z (Tatyfla,t o \Ijt) wa
converges for ¢ — oo to a nowhere vanishing continuous section of the vector bundle

/\dlim G (E xxH qu) . The proposition now follows from the facts that = and 2 Hgz ™!
are relatively compact and that p(he ) (X) = px.s- O
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4. Generalized volume growth

4.3 Escaping to infinity on Z

Recalla = b + ap. For a connected component C of a,",., and Y € C, define i)\c@ =
lim;_,o, Ad(exp(tY)z)h. Obviously we have he . < bc . and that he , is a-invariant. We
define

a :=bhe,Naa,.

It follows from Lemma 4.1(iv) that the space aZ does not depend on the connected com-
ponent C of a, ... Furthermore, it is independent of the representative x € G of the
double coset PxH € P\G/H, cf. (4.5). Note that a” = ap.

Proposition 4.5. Let X € a= \ a”. Then {exp(tX)zH | t > 0} is unbounded in Z.

Proof. Set a, := exp(tX). We argue by contradiction and assume that {a,zH | t > 0}
is relatively compact in Z. Then there exists a compact set C' C G such that

ax € CeH (t>0). (4.14)

Let R R
bl = (Ad(x)h)x )

With d := dima we notice that the natural map

7 = Gry(g), gH — Ad(g)h

is continuous and thus (4.14) implies that there exists a ¢ € C' such that Hl = Ad(c:p)ﬁ.
Since Ad(a;)h' = ! for all ¢ € R we thus obtain that Ad(c'a,cx)h = Ad(x)h and in

particular Ad(c)™'X € Ny(Ad(z)h) = Ad(z)N4(h). Recall from Lemma 2.1 (i, ii) that
Ny(h) = b + m for some subalgebra m C m. Hence it follows that

X € b + Ad(cz)@ =: b'. (4.15)

We claim that X € 61. To see this, assume that X ¢ Hl. Since X is hyperbolic and
the elements in Ad(cx)m are elliptic, X ¢ Ad(cx)m. Let X, € Ad(cz)m be so that
X e 61 + Xm. Let H' and H' be the connected algebraic subgroups with Lie algebra
equal to h' and Hl, respectively. The map RX — RX,; tX — ¢X, induces a non-
trivial algebraic homomorphism from R* to the compact group H'/H*. This leads to a
contradiction as such algebraic homomorphisms do not exist. This proves the claim.

Let C be a connected component of a, ", so that X € C and let Y € C. Then by
Lemma 4.1 (iii)

(El)Y = (Ad(w)ﬁ)y = ac,x-

Therefore,
Xeb'na=(h'na), COBY)yNa=he,Na=al,

which is the desired contradiction. OJ
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I. The infinitesimal characters of discrete series for real spherical spaces

5 Principal asymptotics

In this section we analyze the asymptotic behavior of generalized matrix coefficients m,, ,,
where ) € (w;f;o)H . Before we state the main theorem, we introduce some notation.

Leto € Mand \ € ac. We identify 757, with the space of smooth sections of the
vector-bundle V,, ® Cy x p G — P\G. The support of a section or a functional is defined
in the usual way as a closed subset of P\G. For an open subset U of P\G we define
735, (U) to be the space of all v € 757, with compact support contained in U. We write
.o (U) for the continuous dual of 75°, (U).

For z € G we define [x] € P\G to be the coset Pz.

It follows from Lemma 2.1(iii) that h N Ad(z~')n C . Moreover, for every Y € al
there exists a Y, € nsuchthatY + Y, € Ad(x)a. (See equation (4.1) in Lemma 4.1.)

Therefore for x € (E/ h)i and * € G we may define x, € (aZ)% to be given by the
singleton

De()} = x([Ad@) (Y +m)nb) (v ea), 5.

Note that Xiv{a. = 0 and that x, only depends on the H-orbit P\ PxH, not on the repre-
sentative x € G of the orbit.

Theorem 5.1. Let n € (w;f;o)H and let v € G. Assume that there exists an open neigh-
borhood Y of [x] in P\G such that

suppnNY = P\PzHNTY. (5.2)

Let C be a connected component of a,_,.,. For every X € C there exists a neighborhood
Q of le] in Tz~ and a unique pair of a constant rx > 0 and a non-zero functional

Nx.x € Tyg (Q), satisfying

lim et(A(X)-HJP(X)+2p(ﬁc,z)(X)—TX)W;\/U(eXp(tX)x)n = Nx- (5.3)

t—o00

Here the limit is with respect to weak-* topology on my *(€2).
For X € C outside of a finite set of hyperplanes He, there exists a w € —Ny[II], so
that w(X) = rx, and so that nx , satisfies

Ty o (bea)nxe = {0}, (5.4)
eV )xa= (= A—pp—2p(cs) +w)(Y)nx. (Y €a). (5.5)

Moreover, if x € (H/h)(*c and 1 satisfy

TeY)n=—-xY)n (Y ebp), (5.6)

then
W;\/7U(Y)77X,x = _Xx(y)nX,x (Y € af) : (5.7
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5. Principal asymptotics

Remark 5.2. For every non-zero H-invariant functional n € m, ** there existan z € G
and an open neighborhood Y of [z] in P\G such that (5.2) holds. Indeed, let O, be an
H-orbit in supp(n) of maximal dimension and let x € Oy. The action of H on P\G
admits finitely many orbits. (See [4] and [29].) Since H is a real algebraic group, and
P\G is areal algebraic variety, and the action of H on P\ is real algebraic, the closure
of any H-orbit O in P\G consists of O and H-orbits of strictly smaller dimension. See
[16, Proposition 8.3]. Therefore,

T:=0OyU U 0.
OeP\G/H
dim(O0)>dim(Og)

is an open neighborhood of [x] and supp(n) N YT = O,.

Before we prove the theorem we list some direct implications, which will be crucial
in the following sections.

Corollary 5.3. Let n € (ﬂ;f)H and let v € G. Assume that there exists an open
neighborhood Y of [x| in P\G such that (5.2) holds. Let C be a connected component of
i

o—reg*

(i) Forevery X € C there existsary > 0andav € Ty such that
Moy (xp(tX)z - 20) ~ (A =P () =20(7c 2)(X) +7x ) (t = o).

(ii) There exists a w € —Nyl[II] such that

A

= (= pp—2p(fc,) +w)

az

(iii) Let x € (H/h)(’g and assume that (5.6) is satisfied. Then there exists a w € —Ny|I1]
such that

A

of = (—pp—2p(fc,) +w) ar + Xa-

Here x,. is given by (5.1).

Proof. Ad (i): The functional nx . is non-zero, hence there exists a v € 75, (€2) for which
nx.(v) = 1. The claim now follows from (5.3).

Ad (iii): Let X € C \ Hc. Since af = Hc,m N a, the identity follows from (5.5) and (5.7).
Ad (ii): The identity follows from (iii) since Xa:‘ =0. [

(&

In the remainder of this section we give the proof of Theorem 5.1.

We fix an element z € G and a connected component C of a, .. Recall thatnz C 1
is an a-invariant vector complement of ¢ ,, so that n = n¢, ®© ;. By Lemma 4.2 we
have

g = (Ad(x)b +p) @ ng.
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I. The infinitesimal characters of discrete series for real spherical spaces

Choose a subspace p’ of p so that g = Ad(x)h & ng @ p’. Let
Yo, = NG+ P
be minus the restriction of the projection g — n¢ & p’ along this decomposition. Then
Y 4+9(Y)eAdz)y (Y €fey).
Forevery Y € n¢ ,
Y=>01+¢)(Y)=9¢ ) eIm(l+¢)+ng+p.
Combining this with a dimension count yields
g=Im(1+¢) dn;dyp. (5.8)
For the proof of Theorem 5.1 we need the following lemma.

Lemma 5.4. Let X € C and let ) - Ne . — 0g + p as above. The limit
vy = lim Ad (exp(tX)) o ¢ o Ad ((exp(—tX))

exists in the space of linear maps n¢ , — 0, + p. Moreover, if X € C, then ¢x = .

Proof. Let X, € C. If F is aline in the set Ad(x)h \ (Ad(z)b N p), then in view of (4.1)
in Lemma 4.1, the limit E'x, is a line in n. Since this limit is also contained in b ,, it is
in fact contained in h¢c, N1 = N¢ . In particular, if Y € ng, \ {0}, then Y +¢(Y) €
Ad(z)h \ (Ad(z)h N p) by (5.8), and hence the limit of Ad (exp(tXo))R(Y + ¢(Y))
is a line in n¢ ,. Since n; @ p is stable under the adjoint action of A, the eigenvalues of
ad(Xp) occurring in the decomposition of ¢(Y) into eigenvectors must be smaller than
the largest eigenvalue occurring in the decomposition of Y into eigenvectors. Therefore,
it follows that

1A (exp(tX0) oY)
t=oo || Ad (exp(tXp))Y||

=0 (Yene\{0}). (5.9)

For o € 3 U {0} let p, be the projection onto g* with respect to the root space
decomposition. Here g° = m @ a. Let a, 8 € X U {0}. It follows from (5.9) that
pg © Y o p, # 0 implies that o(Xy) — S(Xo) > 0. Since this holds for every X, € C, it
follows that

v= Y psotvopa.
a,BexU{0}
(a=p)lc>0

Now

Ad (exp(tX)) o v o Ad (exp(—tX)) = Z et(ﬁ(x)_a(x))pﬁ 0 1) 0 Py

a,BeXU{0}
(a=B)lc>0
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5. Principal asymptotics

If X € C, then (o — 6)‘6 > 0 implies that «(X) > §(X). Therefore,

B
tli}r&Ad(eXp(tX))owoAd(eXp(—tX)): Z P oY op,.

a,BeXU{0}
(a=B)[c>0
a(X)=p(X)
The first claim in the lemma now follows with
Yx= Y psothopa. (5.10)
a,BeXU{0}
(a—B)lc>0
a(X)=8(X)

If X € C then the sum in (5.10) is over the empty set, and hence 1)y = 0. This proves
the second assertion in the lemma. ]

It follows from (5.8) and the inverse function theorem that for sufficiently small neigh-
borhoods V; of 0 in n¢ ,, and V5 of 0 in ng, the map

O:Vix Vo= P\G;  (Y1,Y2) = Pexp(Ys) exp (Y1 + (V1))
is a diffeomorphism onto an open neighborhood of [x]. Moreover,
Vi3Y — @(Y,0)

is a diffeomorphism onto a submanifold of P\G contained in P\PzH. Because the
dimension of the image equals the dimension of P\ Pz H, it in fact covers an open neigh-
borhood of [x] in P\PxH.

We view WEOMV and O (V} x V5, V;) as spaces of smooth sections of vector-bundles
and write ®* for the pull-back along @, i.e., ®* is the map 7>, ,v — C=(V} x V5, V)
given by ®*v = v o ®. This map has a continuous extension to a map

CI>*:7T/§Z°—>D’(V1><V2)®V;.

Similarly we have a pull-back map 73°, — C>(V} x V5, V) which we also denote by
®*. We note that there exists a strictly positive smooth function J on V; x V5 such that

p(0) = 7p(JP"9) (5.11)
for every ¢ € 7, > and ¢ € 75°, with supp ¢ C ®(V; x Va).
Let n = dim(V5) and let ey, ..., e, a basis of ng of joint eigenvectors for the action

of ad(a). We write 0; for the partial derivative in the direction ¢;, and whenever i is an
n-dimensional multi-index we write 0 for 95" ... 0k,

Now ®*n is a V*-valued distribution on V; X V5. From the condition (5.2) on the
support of 7 it follows that the support of ®*7 is contained in V; x {0}. It follows from
[39, p. 102] that there exist a minimal k£ € N and for every multi-index p with |u| < k a
V. r-valued distribution 7, on V; such that

o= N ®0". (5.12)
lnl<k

Here 0 is the Dirac delta distribution at 0 on ng. Note that this decomposition of ®*7 is
unique.
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I. The infinitesimal characters of discrete series for real spherical spaces

Lemma 5.5.
(i) For each multi-index i, the distribution 1), is given by a real analytic function
Ju:Vi= V5,
ie. n, = f,dY, where dY is the Lebesgue measure on V.
(ii) For eachY, € V; there exists a  of length || = k so that f,(Y1) # 0.

Proof. In the first part of the proof we follow the analysis of Bruhat as it is described in
[42, Section 5.2.3]. For h € H we write U;, = <I>_1(Q>(V1 X Vg)h_l) and define the real
analytic map

pn - Up — Vi x Vo v»—)q)_l(cb(v)h).

Note that p;, maps Uy, N (V4 x {0}) to V} x {0}. We further write
Upp:={veV;:(v,0) € Uy}

and we define the map &, : Uj,; — V4 to be given by pp,(v,0) = (§4(v),0) for v € V.
For all multi-indices p and v with |p, |v| < k there exists a real analytic function

Muw  {(hyv) € HXx Vi :v e Uy} - R

such that
Py ®0"6) = > Au(h, ) ®0"6  (heH).
v|<k
(The domain of definition of )\, , is equal to the inverse image of ®(V;, V) under the
smooth map V; x H — P\G; (v,h) — ®(v,0)h~!, and hence it is open.) Note that
pulling back along p;, does not increase the order of the transversal derivatives, hence
v = 0 whenever |v| > |u|. We apply this identity to (5.12) and obtain

=3 ) Aulh, )gm @076

<K |v|<|ul

—Z( > Nwlh )Gin,) © 0.

lwl<k  k>|v|>]|ul

Since 7 is an H-invariant functional we have pj (®*n) = ®*n on U,. Together with the
uniqueness of the decomposition (5.12) this implies for each y that

W‘Uhl Z )\/LV gh’rlu (hGH)

W=l

We now apply the pull-back along &, to this identity with h replaced by h~! and thus
obtain

= M (71 &())n (5.13)

[v]>]pl

Uh,l '
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5. Principal asymptotics

Here we used that &, ' (Uy,-11) = Up,.1.

Let n = dim(ng) and let S be the set of multi-indices € Nj with |u| < k. We write
p,. for the projection of (V) onto the u'" component and define  to be the (V,7)®-valued
distribution on V; which for a multi-index p is given by

puC =Ny -
Forh € H and v € Uy, let A(h,v) € End ((V;})¥) be given by

Dy © A(h, U) OPy = )\u,u (h_17 fh(v)) :

Then
&i¢=NAh, )],

We will finish the proof of the lemma by invoking the elliptic regularity theorem to
show that  is locally given by a real analytic (V*)%-valued function. To this end, let D
be a real analytic elliptic differential operator of order d > 0 on the trivial vector bundle
Vi x (V) — V4. (Such differential operators exist, e.g. A ® 1 where A is the Laplacian
on V; and 1 the identity operator on (V)%.) Let uy, ..., u; be a basis of Uy(h). Since H
acts transitively on P\ Pz H, there exist real analytic functions ¢; : V; — End ((V;/)")
such that for ¢ € C>(V4, (V)®)

ZC] uj 5h¢ )} (UGV&)-

Let vy € V3. Since D is elliptic of order d > 0, there exists a neighborhood U of vy such
that the operator D', which for ¢ € C> (U, (V})®) is given by

ZC] Vo) £h¢ A(h, )¢) (U)’h:e (vel),

is a real analytic elliptic differential operator on the vector bundle U x (V*)% — U. Note
that D'¢ = 0 on U. By the elliptic regularity theorem, there exists a real analytic function
f:U — (VF)°such that ( = fdY; on U. (See for example [43, Theorem IV.4.9] for
the smoothness of the solutions and [17, p. 144] for the analyticity.) Since vy was chosen
arbitrarily, it follows that f extends to an analytic function on V; and that { = f dY; on
Vi. Let f, = p,f. Then f, is real analytic and 7, = f,dY;. This proves (i).

By (5.13) we have for every p of length |u| = &

Ful () =Y N (1 6(0)) £,(V1) (h€ HY; € Upy).
lv|=k

Let Y € V; be such that f,(Y;) = 0 for all v of length |v| = k, then the right-hand side
vanishes at the point Y for all 4 € H such that Y; € Uy, ;. This implies that the left-hand
side vanishes on an open neighborhood of Y;. Since the f,, are analytic, it follows that all

f,. for 1o of length |p| = k vanish on V. Assertion (ii) now follows from the definition of
k. O
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I. The infinitesimal characters of discrete series for real spherical spaces

Proof of Theorem 5.1. Let ® be as before. Recall that ﬂfg(lm(q))) is the space of all

v € 735, with compact support contained in the image Im(®) of ®. Letv € 755, (Im(®)).
It follows from (5.11), (5.12) and Lemma 5.5(i) that

n(v) = & n(J¢*(v))

-y |u|/ [J(Yl,Yg)fu(H)(v<eXp(Y2)eXp (V; + ¢(Y1))x))] .
lul <k o
By the Leibniz rule the integrand on the right-hand side is equal to
> (’j) 08T Y] || ) [0 (exp(v) exp (Vi + e ) ||

v<p

Note that the Jacobian J is a real analytic function. By Lemma 5.5(i) also the func-

tions f,, are real analytic. Let ey, .. ., €, be a basis of ni¢ , consisting of joint eigenvectors
for the action of ad(a) on n¢,. For a multi-index x and Y € ¢, define Y* € R in
the usual manner with respect to the basis €y, ..., €,. By shrinking V; and V, we may

assume that the Taylor series of J and the f, are absolutely convergent on V; x V5 and
V1, respectively. Let

<—1>'“'(‘:) (%7 TV, Vo) |y, o fu(V1) = D Yier, (5.14)

K

be the Taylor expansion of the function on the left-hand side. Here for every multi-index
r the coefficient ¢}, , is an element of V. Since the series on the right-hand side of (5.14)
is absolutely convergent on V] and since v has compact support in Im(®), we can apply
Lebesgue’s dominated convergence theorem to interchange the integral and the sums, and
obtain

-y Z/ Y“C“ a{,Q exp(Yg)eXp (Y1+w(Y1)):E)] LAY (G15)
PR -
where
Ci= > &, eV;.
|| <k,u>v
Recall that ey, ..., e, is a basis of n; consisting of joint eigenvectors for the action of

ad(a) onng. For amulti-index v, letws,, € —Ny[II] be the a-weight of e7* - - - el € U (1),
where U (1) denotes the universal enveloping algebra of n. Further, for a multi-index ~
we define w; ,, € —Nyl[II] to be the a-weight of €7 - - - €l» € U (7). Define

=:={(v,k): C; #0}.

Let X € C be fixed. The set {wy,(X) —w; »(X) : (v, k) € =} is discrete. Moreover, it is
bounded from above as there exists only finitely many multi-indices v of length at most
k and wy ,,(X) > 0 for every k. Define

ry = max{ws,(X) —wi(X): (v,k) € E} (5.16)
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and
EX = {(V, KJ) € E : WQ’V(X> - wl,H<X) = T‘X} 3

By Lemma 5.5(ii) there exists a multi-index /i of length k such that f, (0) # 0. If we
take ;1 = v = po then the left-hand side of (5.14) is non-zero in Y; = 0. Therefore,
the coefficient C}, = ¢} , # 0, and hence (119,0) € E. Since w1 = 0, we have
rx > wo,(X) > 0.

We will now specify the domain €2 that appears in the theorem. For this we first
introduce a family of diffeomorphisms. For ¢ € R, let a; := exp(tX). We define

U, - Ad(a)Vi x Ad(a)Va — P\G;  (Y1,Ya) — <I><Ad(at‘1)Y1, Ad(aglm) vl

Observe that W, is a diffeomorphism onto its image for every ¢ € R. For every (Y1,Y2) €
Ad(a;)Vi x Ad(ay) Vs we have

(%1, Y2) = Pexp (Ad(a; )Yz ) exp (Ad(a;)Yi + v (Ad(a;)11) )a;
= Pexp(Ys)exp <Y1 + Ad(at)@/)( Ad(at_l)Yl)> )

Let Gx be the graph of ¢)x. Then g = p ® Gx @ n¢, and thus there exist open
neighborhoods W; and W5 of 0 in n¢ , and ng; respectively such that the map

‘IJOOZW1XW2%P\G,

given by
Voo (Y1,Ys) = Pexp(Ya) exp (Y1 + vx (V1)) ,

is a diffeomorphism onto an open neighborhood of [e] in P\G. The map ¥, is a limit of
the maps W, in the following sense. Since Ad(a;) acts with eigenvalues larger or equal
than 1 on n¢ , and ng, there exist bounded open neighborhoods U; and U of 0 in n¢ , and
ng, respectively, satisfying

Uy CWin()Ad(a)Vi and T, C Wy N[ )Ad(a,)Va.

t>0 >0

It follows from Lemma 5.4 that

Im (Y3, Y2) = U (V,Y2) - ((V1,Y2) € U X Th) (5.17)

where the limit takes place in the space of smooth maps U; x Uy — P\G. We claim that
for sufficiently large R > 0 there exists an open neighborhood (2 of [e] in P\G such that

QC Uo(Uy x Up) N [ (U1 x Us). (5.18)

t>R

Indeed, the constructive proof of the inverse function theorem (see for example Lemma
1.3 in [32]) gives a lower bound on the size of the open neighborhood of [e] € P\G
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I. The infinitesimal characters of discrete series for real spherical spaces

that is contained in W,(U; x Us) in terms of the tangent map of ¥, at (0,0). The claim
therefore follows immediately from (5.17).

For (v, k) € Z, let ny" € m, (€2) be the functional which for v € 7%, () is given
by

Ny (v) = / Y Cr [8)”/20<exp(Y2) exp (Y1 + wX(Yl))H dy; . (5.19)

Uy 2=

We claim that (5.3) holds with rx given by (5.16) and 7x , by the sum
X, 1= ny" (5.20)

(v,rk)EEX

where the sum is convergent in W;;O(Q) with respect to the weak-x-topology.
To prove the claim, let ¢ > R and consider v € 75, (€2). For every Y, € ng and
Y eg.
[mao (@ a; " )v] (exp(Ya) exp(Y)z) = a;)‘fppfu<exp (Ad(ay)Y>) exp (Ad(aQY)) :

From (5.15) it follows that

a?erPn(mg(x’la;l)v) (5.21)
-y Z/ yn(jn ayv exp (Ad(a,)Y3) exp (Ad(at)(Yl +¢(Y1))m L
<k &

If 1 <i < nand «is the root so that e; € g%, then Ad(a;)e; = af’e;, and hence

d%v(exp (Ad(ay)(se;)) exp (Ad(at)Y)) = ay div < exp(se;) exp (Ad(at)Y)> :

Applying the previous identity repeatedly yields
Oy, v ( exp ( Ad(at)YQ) exp ( Ad(at)Y)> |Y2:O
= a0y v < exp(Ya) exp ( Ad(at)Y)) |Y2:0 :
Combining this identity with (5.21), we obtain
a;\“”n(ﬂ,\ o(x 7 a; )

_ Z Z W2V/U Y/C" [8}”,2v<exp(Y2)exp <Ad(at)(y1 +¢(Y1))>ﬂ

v|<k K

ay; .

Yo=0

By definition of w; 4,
(Ad(a;"))" =a, Y (V1 € Tiea).
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We now perform a substitution of variables and obtain that

/U1 YrC: [6§2v<exp(Yg) exp <Ad(at)(Y1 + T/J(E))))} 4y,

Y2=0

_ at—?ﬂ(ﬁc,z)—wLn / Y'IHCS [Uy,t(}/i)} dY'l 7
Ad(at)Ur
where
v,+(Y1) = 8}”,2v<exp(Y2) exp (Yl + Ad(at)gb(Ad(a;l)iG)))

for Y1 € Ad(a;)U;. It follows from (5.18) and the fact that v is supported in €2, that

Y>=0

supp(v,+) C Uy.
Now

e (NXHop O 2000 ) X) 1) () (27141

_ Z Z et (wz,u(X)waﬁ(X)frx) EGHCS[UVJ(YVI)] dy; . (5.22)

<k & 0

Since U; is bounded, the support of the functions v, ; is bounded uniformly in ¢ > 0.
Therefore, v,,; converges for ¢ — oo in the space C2°(U,, V) to the function

Y, — 85”/2v<eXp(Y2) exp (Y1 + Q/JX(Yl)))

)

Yo=0

and thus we obtain,

lim [ VECH[,.(Y))]dYs

t—o00 U,

:/Ul Yyos [%v(exp%)exp (Y1+¢X<Y1))ﬂ

For the last equality we used (5.19).

Let r = supy,p, ||Y1]]. Since U; is bounded, we have » < oco. Moreover, since
U, C V;, we also have that r is strictly smaller than the convergency radius of the Taylor
series in (5.14), and hence

L Y=t ().

Yo

> e < oo (5.23)

As v,; is bounded uniformly in ¢ > 0 and v, and et(“’ZV(X)—wl,n(X)—TX ) < 1 for
all t > 0 and (v,k) € Z, it follows from (5.23) that the series in (5.22) is absolutely
convergent uniformly in £ > 0. Therefore,

ACX)+pp (X)+2p(fic,) (X)—7x ) 0 (Mo ( a; )o0)

= Z Z lim (et(WQ’”(X)_wl’“(X)_TX)/ YOy vy (Y1) le)
t—o00 U

vI<k = :

= > %),

(v,k)EEX

lim et(
t—o0
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I. The infinitesimal characters of discrete series for real spherical spaces

This proves the claim that (5.3) holds with rx given by (5.16) and 7x ,, by the convergent
sum (5.20).

We claim that ny , # 0. Letv € Wﬁf’a(ﬂ). Since v is compactly supported, it follows
from (5.23) and Lebesgue’s dominated convergence theorem, that we may interchange
the sum and the integral, so that

Nx (v Z / Y"C"€ 85”/2 exp(Yg)eXp (Y1 + @/JX(Yl))ﬂ dY;
U1 Y2=0
(v,k)EEX
_ Z/ Fux (1) |80 ( exp(3) exp (Vi + tx (1)) )| v, (524)
<k U1 o
where F, x : Uy — V} is given by the absolutely convergent series
F,x(W):= > Y{Cr. (5.25)

{k:(v,r)EEXx }

If {x : (v,k) € Zx} # 0, then F, x is not identically equal to 0 since it is given by an
absolutely convergent power series with at least one non-zero coefficient. Since Zx # ()
there exists at least one multi-index vy so that [, x is not identically equal to 0.

Let v, € V, and let ¢; € C°(U;) and ¢ € C°(Uy). We now take v to be the
element of 75°, (€2) that is determined by

o(exp(¥)exp (Vi +vx (1)) = a1()ea(Ya)v, (Vi € U1, Y2 € U).
(Recall that W, is a diffeomorphism, and hence v is well defined.) Then
Mxa(®) = 37 065(0 / Fyox (Y1) (0,)) 61 (V1) dY;
lv|<k
We assume that v,,, ¢; and ¢ satisfy
(a) 0"0(0) = 1
(b) If v # v, then 9" p5(0) = 0

(c) Y1 — F,, x(Y1)(v,) is not identically equal to 0,

(d) g’ (Fx(Y1)(vo)) 1 (Y1) dYy = 1.

Under these assumptions we have 1y ,(v) = 1, and hence nx , # 0.

We move on to show (5.4) for X € C. Letaw € XU {0} andlet Y € (he . Ng®) \ {0}.
For Y’ € g, we write
> Yis:

BeXU{0}
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5. Principal asymptotics

with Y 5 € g for every 8 € ¥ U {0}. In view of (4.1) in Lemma 4.1 there exists an
element Y’ € b such that Y, , =Y and « is the unique element of X U {0} satisfying

a(X) = max{f(X) : f € BU{0},Y, 5 # 0}.
For every v € 737, we have
e—ta(X)et(/\+pp+29(ﬁc,z)—wx)(X)WX’U ( exp(tX)x) WXJ(y')n
Z et('B’o‘)(X)ﬂxa(Y;ﬂ) [et(k+pp+2p(ﬁc,x)fwx)(X)WX’U ( exp(tX):c) 77]
BexU{0}
— T\ 0'(3/;/ )nX#C - W;\/,U(Y)HX,I (t - OO) :

Here the limit is taken with respect to the weak-* topology. Since Y’ € b, we have
7 ,(Y")n = 0, hence 7y ,(Y)nx . = 0. This proves (5.4).

For X € C, we have ¢x = 0 by Lemma 5.4. Let N¢_, be the connected subgroup of

G with Lie algebra i , and let dn denote the Haar measure on N . Then the expression
(5.24) for nx , simplifies to

Nxa(v Z/ Frx (1) |30 ep(V) ep(m) ) || ani
lv|<k nc,x 2=
— Z / F, x(log(n)) [85”/21)(exp(Y2)ﬁ>} o dn (ven, ().
<k /N o=

Since fic. € beg, it follows from (5.4) that 7y (e .)nx. = {0}. Because of the
invariance of the Haar measure on Nc,z, this implies that F, x is constant for every v.
Therefore, only terms with k = 0 can contribute to F), x in the series in (5.25). In
particular it follows that (v, k) € Zx implies that x = 0. Moreover, rx in (5.16) is equal
to ws ,,,(X) for some multi-index 4o with the property that f,,(0) # 0 and f,(0) = 0
for every p1 > po. Let w := wy,, € —Ng[II]. Then Zx consists of pairs (v,0) with
wa,(X) = w(X). The formula for ny , simplifies further to

Txe0) = J e (epm)

|<k
w2, (X)=w(X)

dﬁ, (v € 7T§°U(Q)) ,

Yo=

(5.26)
with ¢, := (=1)I".7(0,0)£,(0) € V7 \ {0}.

If we further impose on X € C the condition that x(X) # x'(X) whenever x, x’' €
—Np[II] are two different elements, each of which being a sum of at most & roots in —,
then wy ,(X) = w(X) if and only if w, , = w. Equation (5.5) then follows directly from
(5.26).

It remains to prove that (5.6) implies (5.7). Let Y € aP. Then Ad(z~')(Y +n)Nh
is non-empty, see (4.1) in Lemma 4.1. Let Y’ € Ad(z"1)(Y +n) N b. Then for every
vE TS,

ot OFop+2p(iic o) —wx ) (X) - (eXp(tX) )™ (Y
_ et()\-i-pP'f‘QP(”C,m) X)( )\70(Ad(exp(fX)iL‘)Y’)ﬂ'X,a(eXp(tX)x)n
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I. The infinitesimal characters of discrete series for real spherical spaces

converges to my (Y )nx . for t — oo. Moreover, it follows from (5.6) that it also con-
verges to —x(Y")nx,, for ¢ — oo. Here again the limits are taken with respect to the
weak-x topology. It thus follows that

W;\/J(Y)TIX@ - _X(Y,)nX,z .
Now (5.7) follows as x(Y') = x.(Y). O

6 Integrality and negativity conditions

Let us denote by (-, -) the Euclidean structure on a*. For o € a*\{0} we define oV € a
by a" =2 ((('X’z)) € (a*)* = a. Recall that if « € X then o is called the co-root of « and
YV = {a" | o € ¥} is aroot system on a, called the dual root system.

For a connected component C of a,",, and x € G, define l¢ . := be, N Obc .. Note
that [¢ , 1s a reductive a-stable subalgebra of h¢ , and lc , N a = a,. Moreover, it follows
from (4.5) that l¢ ;anen, = Ad(m)le, form € M,a € A,ne€ Nandh € H. For A € af.
we set

YN = {a e X\ a") € Z}.

Lemma 6.1. Let (V,n) be a spherical pair belonging to the twisted discrete series and
assume that there is a quotient wy, — V. Consider 1 as an H-fixed element of 7T;§°
and let x € G satisfy the support condition (5.2). (See Remark 5.2.) Then the following
assertions hold.
(i) A, € (=pp +Z[M])|_ .
(ii) Let x € (H/f))?{j be normalized unitary. If (V,n) belongs to the x-twisted discrete
series, then

AL, € Lz

2

oz € ag—i—ilmxw.

Let C be a connected component of a Then the following hold.

o—reg*
(iii) X(a,le.) C 2(N).

(iv) ReA(X) < 2p(le, N n)(X) for all X € —C C a*. The inequality is strict for
Xe-C\dl

Proof. Assertion (i) is immediate from Corollary 5.3(ii) for any choice of C. We move
on to (i1). By (3.2) we have

| det Ad(ha)| ol =0 (heH,a€ Azp).

We thus see that Re y(Y’) = —3 trad(Y” | o/ forevery Y’ € h. Let Y € af. It follows

from (4.1) in Lemma 4.1 that there exists an element Y in Ad(z™')(Y +n) N H Now

1 1
Re x.(Y) =Rex(Y') = gt ad(Y')| , € §Zspec(ad(Y’)) :

}g/
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The eigenvalues of ad(Y”) are equal to the eigenvalues of ad(Y"). Therefore,

1
Rex, € §Z[H]

Since (V,n) is x-twisted, assertion (ii) now follows from Corollary 5.3(iii) for any choice
of C.

Assertion (iii) is a consequence of (i) since [, N a = a, and hence o” € a, for all
o€ E(Cl, [C,x)-

Moving on to (iv) we first observe that if (V) n) is a spherical pair of the twisted
discrete series and 7y, — V/, then Corollary 5.3 (i) combined with the bound (4.9) and
Proposition 4.4 results for X € —C C a™ in the inequality

(—ReX—pp —2p(ice)) (= X) +7r-x < —p(he)(—X).

al -

Hence
(—ReA)(X) > (pp +2p(0c.) — p(be)) (X) (6.1)

forall X € —C. If X € —5\ af , then instead of (4.9) we may use (4.10) in conjunction
with Proposition 4.5 and conclude that in that case the inequality is strict.
Let v¢ ,, be an a-stable complement of [¢ , in h¢ . Note that

2p(new) — p(bea) = —2p(lee N 1) + p(oc, NT) — p(bes Nn).
Since ve , N O(vc,) = 0, it follows that

_ 1
pr+2p(Mc.) = plbes) € =2p(lee N n) + SN [ET].
Now (iv) follows from (6.1). L]
Corollary 6.2.

(i) Let x € (E/f))f{: be normalized unitary. There exists a finite set S, of pairs (b, v),
where b is a subspace of a and v € b*, with the following property. If (V,n) is
a spherical pair belonging to the x-twisted discrete series of representations, and
there is a quotient 7y, — V, then there exists an w € spang (E()\)) and a pair
(b,v) € S, such that

1 .
Al € SZIm]f, + v,

Re AM(X) < w(X) (X €a"),
Re M(X) < w(X) (X €at\b).
(ii) If (V,n) is a spherical pair belonging to the discrete series of representations, and

there is a quotient Ty , — V/, then there exists an w € spang (Z()\)) and a subspace
b of a such that

)\‘b € (—pp —i—Z[H])‘b c %Z[H] b
ReA(X) <w(X) (X eah),
ReMX) <w(X) (X eat\b)
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Proof. Ad (i): Let S, be the set of pairs (aZ, x,) where z runs over a set of representatives
in G of H-orbits in P\G. Consider 1 as an H-fixed element of 7, >°. Then there exists
an H-orbit in P\G so that the support condition (5.2) is satisfied. See Remark 5.2. Let
x € G be the representative of the orbit. The assertions now follow from (ii), (iii) and
(iv) in Lemma 6.1 withw = >~ 2p(lc , N'n), b = af and v = Im x,.

Ad (ii): If V belongs to a discrete series representation, thenH = h by Lemma 3.3, and
therefore af = a,. We set b = a, and use (i) in Lemma 6.1 instead of (ii). [l

7 Negativity versus integrality in root systems

In this section we develop some general theory which is independent of the results in
previous sections.

7.1 Equivalence relations

Let X be a (possibly non-reduced) root system spanning the Euclidean space a*. We
denote by W the corresponding Weyl group. Let IT C ¥ be a basis, ¥ the corresponding
positive system and C' C a = (a*)* be the closure of the corresponding positive Weyl
chamber, i.e.

C={zrea|(Vaecll) a(z)>0}.

Further we use the notation C* = C\{0}.
We define an equivalence relation on af. by A ~ 1 provided that ;. is obtained from A
via a sequence

A:M()nulr"a,ul =H,
where for all 7:

(@) pip1 = si(p;) with s; = s,, the simple reflection associated to «; € II,
(b) wi(e)) € Z.

The equivalence class of A is denoted by [A].
A root subsystem Y° of the root system ¥ is a subset of ¥ that satisfies:

(a) XY is a root system in the subspace it spans,
(b) ifa,farein X’ andy = a+ 5 € X, then vy € V.

A root subsystem X° C 3 has a unique system of positive roots ©>* contained in 7.
Given now A € ag we define

Y)Y i={a" € T\ a") € Z}
Y(A) ={aeX|\a") e Z}.
Clearly X(\)Y is a root subsystem of 3V, but observe that ¥(\) might not be a root

subsystem of ¥. We call an element ;1 € a* a weight of X(\) if u(a¥) € Z for every
a € X(A). The set of weights of 3(\) forms a lattice in a* which contains Re(\).
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Next we define an equivalence relation on W by u ~ v provided that uC' and vC are
connected by a gallery of chambers (uC = Cy, CY, ..., C; = v(C') such that for each i, C;
and C;;, are separated by Hp, with 3; € 3\X () an indivisible root for each .

Let X(A\)* = X(X) N X*. We denote the closure of the corresponding positive cham-
ber by C'(\) C a.

Lemma 7.1. Let \ € af.. Then the following assertions hold:

(i) C(X\) equals the union of the sets w(C') where w runs over [e],, the equivalence
class of e € W.

(ii) Let u € a.. Then \ ~ y if and only if there exists a w € W with w™" € [e]\ such
that 1 = w.

Proof. We start with the proof of (i). Let D be the union of the sets w(C') where w runs
over [e],. By definition C'()\) is the closure of a connected component of the complement
of the union of the hyperplanes H, with « € X()), namely the connected component
which contains int(C).

Clearly C'()) is the closure of the union of the open chambers it contains. These are
of the form w(int(C')), where w varies over a subset of [e],; indeed, the latter follows
since the hyperplanes intersecting int (C ()\)) are hyperplanes of roots which are not in
Y(A). Hence C'(\) C D, since D is closed. But clearly we can not extend any further
beyond C'(\) while staying in D, since all the walls of C'(\) are hyperplanes of roots in
Y ()). Hence the equality is clear and (i) is established.

Moving on to (ii), let A = g, 11, - . ., iy = 1 be a sequence connecting A and p = wA
such that p; 11 = s;(11;), with s; a reflection in a simple root «;, and 1; () & Z for all .
Let wy = e and w;;; = s;w;. Furthermore, let 3; = w; ' (), so that w;; = w;sg,. Then
B; is an indivisible root and

ABY) = wiM(o)) = piley) ¢ Z,
that is, 5; € X\X(\). We may assume that w; = w. Therefore, the gallery
C,w;H(O),wy, ' (C),...,w 1 (C)
yields an equivalence w1 ~ e. The converse is also true. If the gallery
(Co=C,Cy,...,Cr=w(C))
defines an equivalence e ~, w™!, then Cj;; = s5,(C;) with 8; € \X()) an indivisible
root for all 4. Let w; € W so that C; = w; 'C, and j1; := w;(\). Since Hg, is a common

face of C; and C;; (by definition of gallery), we have sg,w; ' = w; 's,, for some simple
root o; = w;3; € II. Note that

pilay) = wid(ey') = A(B) ¢ Z.

This implies that A and w(\) are equivalent and finishes the proof of (ii). O]
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7.2 Integral-negative parameters

Letus call A € af weakly integral-negative provided that there exists aw) € spang(X(A))
and a subspace a) C a such that

(Re)\—w,\)‘c <0,

(Re)\—w,\ <0.

>‘C\u)\

Further, we call \ € af. integral-negative provided that there exists a wy € spang(2(\))
and a subspace a) C a such that

)\|M :ReA\M,
(ReX —wy)|, <0,
(Re)\—aa)‘o\aA <0.

Finally, we call A € a. strictly integral-negative if there exists a wy € spang(X(A)) such
that

(Re X — wy 0.

Nevoy <

Remark 7.2. These definitions are motivated by our results from the previous section.
Let a C g and X(g, a) be as introduced in Section 2, and let ¥ be the positive system
determined by the minimal parabolic subgroup P. Let (V,7) be a spherical pair and

assume that there exists a quotient morphism 7, — V for some A € af and 0 € M.
Then from Corollary 6.2 we derive the following.

(i) 2X is weakly integral-negative if V' belongs to the twisted discrete series for Z. In
fact we may take a, and w) to be equal to b and w as in Corollary 6.2(i).

(ii) A is integral-negative if V' belongs to the discrete series for Z.

Remark 7.3. Sometimes more is true for parameters of the discrete series and A is

actually strictly integral-negative. This for example happens in the group case Z =
GxG/G~QG.

Let us define the edge of A\ by
e:=¢\)={X €a|(VaeX(N) a(X)=0},

i.e., ¢ is the intersection of all faces of C'(\).
Notice the orthogonal decomposition

a=e®spang 2(A\)". (7.1)
Theorem 7.4. Let \ € ai. Then the following assertions hold:

(i) Suppose that [\ consists of weakly integral-negative parameters. Then there exists
aw € W with w™' ~, e such that ¢ C w™'a,y. Moreover, Re A!e = 0. Finally,
there exists an N € N only depending on Y. such that Re A\(a") € %Zfor alla € 3.
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7. Negativity versus integrality in root systems

(ii) If [\ consists of integral-negative parameters, then )\|e = 0. In particular, A =

Re A\

(iii) If [\] consists of strictly integral-negative parameters, then ¢ = {0}. In particular,

Y(N)Y has full rank.

Proof. We start with (i). Let u € [)], that is g = w for some w € W with w™! ~y e
by Lemma 7.1(ii). Since y is weakly integral-negative there exists a subspace a,, of a and

an w, € spang > such that (Re u — w < 0and (Repy —w < 0. The latter
u € spang X(p) 1= W)l ong, 1= W)

conditions are equivalent to (Re A\—w™'w),) |w710\w71au < 0and (ReA—w™'w,)| ., <
0. Now define a function f : a — R by
f(X) == max w ™ wa (X) (X €a).
wT vy €e
By Lemma 7.1(i) we have C(\) = -1, w™'C, and thus
(ReA—f) ‘cu)\uw_lww—lam <0, (7.2)
(ReA = f)]gny <0- (7.3)

Recall that ¢ is the intersection of all faces of C'(\). Since wX(\)Y = X (wA)Y for every
w € W, we have w™'w,,» € spang (Z(X)). It follows that w‘lwm}e — 0 and thus f|e =
0. Since ¢\ |J,, 1., . w™ 'y is invariant under multiplication by —1, it follows from (7.2)
thate C (J, 1. wla,y. Hence ¢ C w'a,, for some w € W with w™! ~ e. It now
follows from (7.3) that Re A| = 0.

We call a root subsystem >’ of X parabolic if >’ is the intersection of ¥ with a sub-
space. Let X p(\) C X be the parabolic closure of ¥(\) C ¥, i.e., the smallest parabolic
root subsystem of X containing ¥(\). Then Xp(A\) = ¢t NE, and (N\)Y C ¥p(N)V isa
root subsystem of maximal rank of the corresponding dual parabolic subsystem > p(\)Y
of X2V. By the above, Re()\) € et, and by definition of ¥()\), Re()\) is a weight of $()).

Let N be the index of the root lattice of ¥ p(\) in the weight lattice of () (which
is a lattice containing the weight lattice of X p(\)). Then N Re(]) is in the root lattice of
¥ p(A) and thus, a fortiori, in the root lattice of X. In particular, NV Re() is integral for X
(i.e., as a functional on XV).

Since there are only finitely many root subsystems of maximal rank in any given root
system, and only finitely many parabolic root subsystems, we see that we can choose the
bound N € N independent of A\ (only depending on 32). This completes the proof of (i).

We move on to (ii). From (i) it follows that there exists a w € W with w~=! ~ e such
that ¢ C wla,y. Now A(e) € Mwa,y) = wA(aey) € R. It follows that )\‘e is real
and thus A!e = 0 by (i). It then follows from (7.1) that A = Re \.

Finally for (iii) we observe that [A] being strictly integral-negative implies, as above,
Re A(X) < f(X) forall X € C(A) \ {0} and therefore Re A| , < 0. The latter forces
e =0,ie,e={0}. O
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I. The infinitesimal characters of discrete series for real spherical spaces

7.3 Additional results

The assertions in this subsection are of independent interest, but not needed in the re-
mainder of this article.

Given a full rank subsystem (X°) of ¥V we note that Z[(X°)"] has finite index in the
full co-root lattice Z[%"] and thus

Z[SV])Z[(20)Y @Z/d 7

for d; € N. Set N(X°) := lem{dy, ..., d,} and note that N(X%)a" € Z[(X°)"] for all
o€ X.

The following corollary is particularly relevant for the group case 7 = G x G/G.
See Remark 7.3.

Corollary 7.5. Let A\ € af. be such that [\ consist of strictly integral-negative parame-
ters. Then

MNaY) € ——7Z (a€eX).
Note that
Ny :=lem{N(X°) | (X°)Y is full rank subsystem of XV} .

is finite as there are only finitely many full rank subsystems of 3V. Therefore, Ny, is an
upper bound for the indices N (3()\)) which only depends on X.

Remark 7.6. Full rank subsystems can be described by repeated applications of the
“Borel-de Siebenthal” theorem. That is: The maximal such subsystems are obtained by
removing a node from the affine extended root system (and we can repeat this procedure
to obtain the non maximal cases).

In type A, there are no proper subsystems of this type, since the affine extension
is a cycle, so removing a node will again yield A,,. Hence if X is of type A, then the
condition that [\] consists of strictly integral-negative parameters implies that [\] = {\},
and X is integral on all coroots.

8 Integrality properties of leading exponents of twisted
discrete series

For every a € Il and A € af we set A\, := s,(A\) and 0, := 0 o s,. Further we let
Io(A) : 7, — 75, be the rank one intertwining operator. If we identify the space of
smooth vectors of 7y , with C°(K x s V,) then the assignment

i — End(C®(K %1 V), A= Io(A)

is meromorphic. In the appendix we prove:
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8. Integrality properties of leading exponents of twisted discrete series

Lemma 8.1. There exists a constant N € N only depending on G with the following
property: If N(o¥) & ~Z, then I,()) is an isomorphism.

Combining Lemma 8.1 with Remark 7.2 we obtain:

Corollary 8.2. Let N € N be as in Lemma 8.1. Let (V,n) be a representation of the
twisted discrete series and 7y, — V a quotient morphism. Then the equivalence class
[2N \] consists of weakly integral-negative parameters. If moreover (V,n) belongs to the
discrete series, then 2N \| consists of integral-negative parameters.

Proof. If a € Il and o € (2N \), then I,,(\) is an isomorphism by Lemma 8.1. There-
fore the composition of 1,(\) with the quotient morphism 7, , — V gives a quotient
morphism 7, ,, — V. It then follows from Remark 7.2(i) that 2\, and thus also 2NV ),
is weakly integral-negative. By repeating this argument we obtain that the equivalence
class [2N )] consists of weakly integral-negative elements. If (V1) belongs to the dis-
crete series, then we use (ii) in Remark 7.2 instead of (i). [l

Recall the set of spherical roots S C a¥ and recall that S C Z[Y]. Let y € (h/ h)e
be normalized unitary and let i € a7, be a leading exponent of a y-twisted discrete series
representation (V7). Then we know from (3.3), (3.4), and (3.5) that we may expand p
as

u:pQ+ana+iJ/ (ca €R). (8.1)

aesS

with
(@) ¢, >0forall o € S,

(b) v€aywithv| —=Tmx| .
Theorem 8.3. Let 77 = G/H be a unimodular real spherical space. There exists an
N € N and for every normalized unitary x € (E/U)E a finite set ), C a* with the
following property. Let (V,n) be a spherical pair corresponding to a x-twisted discrete
series representation and let p be any leading exponent of (V,n), which we expand as
W= PQ + Y peg Catt +iv asin (8.1). Then the following hold.

(i) co € %Nforalla € Sandv € 9),.

(ii) If in addition (V,n) belongs to the discrete series, then v = 0, i.e., u € a}. In
particular, the infinitesimal character of V' is real.

Proof. We let \ := woi + pp and recall from Lemma 3.4 that there exists a o € M such
that 7, , — V. By Corollary 8.2 there exists a constant N (G) € N, depending only on G,
such that the equivalence class [2/V(G) )| consists of weakly integral-negative elements.
By Theorem 7.4 (i) there exists an N’ € N, only depending on G, such that

1
ReA(a") € WZ (aeX).
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I. The infinitesimal characters of discrete series for real spherical spaces

This implies that Re A € %Z(H) for some N” € N depending only on . Since the
spherical roots are integral linear combinations of simple roots, it follows that there exists
a N € N (only depending on Z) such that ¢, € %N. Moreover, it follows from Corollary
6.2(1) and Theorem 7.4(i) (cf. Remark 7.2) that the imaginary part of \ is contained in
a finite subset of a* depending only on x. This proves (i). For the second assertion we
use (ii) in Theorem 7.4 instead of (i). The infinitesimal character of V' is equal to the

infinitesimal character of 7 ,, which is real since A is real. L]
Theorem 8.3 (ii) implies the following.

Corollary 8.4. Fix a normalized unitary x € (f]\/ h)e and a K-type . There are only
finitely many x-twisted discrete series representations V for Z such that the T-isotypical
component V1| of V' is non-zero.

Proof. (cf. [12, Lemma 70, p. 84]) Let t C m be a Cartan subalgebra of m. Set ¢ :=
a + it and note that cc is a Cartan subalgebra of gc. We inflate ©7 = X*(g,a) to a
positive system > (gc, ¢) and write pp for the corresponding half sum. Observe that
pB = pp + pu € c*. We identify o with its highest weight in 7t* and write (-)? for
the quadratic form on c¢¢ obtained from the Cartan-Killing form. Let C; be the Casimir
element of g. Note that C; acts on 7 , with A\ € ag, as the scalar

A+ +pu)? = (pB)*.

Let t; O t be a Cartan subalgebra of € and p; € ut; be the Weyl half sum with respect
to a fixed positive system of X(tc,t;) C ite-. As before we identify 7 € K with its
highest weight in it;. We write (-)? for the quadratic form on t;c obtained from the
Cartan-Killing form. Further we let C denote the Casimir element of €. The element
A := Cy + 2C; is a Laplace element and thus (Av,v) < 0 for all K-finite vectors in a
unitarizable Harish-Chandra module V.

Let now V' be a y-twisted discrete series representation and 7y, — V a quotient
morphism. For 0 # v € V|[r]| we obtain

0> (Av,v) = ((Cy +2C)v,v)

— (<A +0+pu)? = (p)” = 2({1 + pe)i — <p3>?)> (v,0).

This forces
A+ o+ pu)’ = (pB)* < 2((1 + pe)i — (pe)i)

and in particular

(ReA)? — (Im A)* — (p)* < 2({7 + pe)e — (pe)i) -
By Theorem 8.3 (i) Re A is discrete and Im A is contained in a finite set that only depends

on Z. The assertion now follows from the fact that the map X from (1.1) has finite
fibers. O
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8. Integrality properties of leading exponents of twisted discrete series

Appendices

Appendix A: Invariant Sobolev Lemma

The aim of this appendix is an invariant Sobolev lemma for functions on Z that transform
under the right action of A, i by a unitary character.

Recall that a weight on Z is a locally bounded function w : Z — R., with the
property that for every compact subset {2 C (' there exists a constant C' > 0 such that

w(gz) < Cw(z) (z€Z,g€9Q).

Further recall that there is a natural identification between the space of smooth densities
on Z and the space of functions

C(G: Ap) == {f € C=(G): f(-h) = A} (h)f forh € H},
where A7 is the modular character
AE:ITI—>R>0; ha +— a2 (a€ Agp,he H).
See Sections 8.1 and 8.2 in [25]. Note that smooth functions f : G — C satisfying
f(-ha) = a2t f (he Hiae€ Azp)

for some v € a7 p, are in the same way identified with smooth half-densities on Z.
Let B be a ball in G, i.e., a compact symmetric neighborhood of e in GG. Recall that
the corresponding volume-weight v is defined by

vp(2) := volz(B2) (z€Z).

Note that if B’ is another ball in G, then there exists ¢ > 0 such that

1
—vp < vp < cvpr.
c

In the following we drop the index and write v instead of vp.
The following lemma is a generalization of the invariant Sobolev lemma of Bernstein.
See the key lemma in [3] on p. 686 and [31, Lemma 4.2].

Lemma A.1. For every k > dim G there exists a constant C' > 0 with the following
property. Let v € ay p and let [ € C*(Z) be a smooth function which transforms
as f(z-a) = f(z)a”@*™ for all a € Az, and let Q; be the attached half-density on
7Z = G/H. Then

1f(2)] < Cv(2) 72|l pz2w (2 € 2).

Here 2 € 7 is the image of z € Z and || - || pz2.% is the k’th L*-Sobolev norm on BZ.
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I. The infinitesimal characters of discrete series for real spherical spaces

Let Aj be a closed subgroup of A such that the multiplication map Ay x A — A
is a diffeomorphism. Let A, be the cone such that A; Ap/Ar = A%. By taking inverse
images of the projection Ay = A/(ANH) — Az = A/Ap we get

AjAg/(ANH)=A5. (A.1)
We recall from [25, Section 3.4] that there exists a finite sets F, V) C G such that
WAz g C Az gWH (A.2)

and R
Z =FK A%W - Zp -
For the proof of the invariant Sobolev lemma we need the following lemma.

Lemma A.2. There exists an a; € A and a constant ¢ > 0, depending only on the
normalization of the Haar measures on K and Ay, such that for all compactly supported

measurable non-negative densities f on 7 we have
/f>cZ/ f (kajaw)a=% da dk .

Proof. Let f be a compactly supported measurable non-negative density on Z and let
¢ Z — R5( be a compactly supported continuous function such that

/ o(zap)ag® dag = f(3) (€ 2).
Ap/ANH

Here Z € Z denotes the image of z € Z. Then by the Fubini theorem for densities (see

[1, Theorem A.8])
fpr= e

We will use Lemma 3.3 (1) in [28] to obtain a lower bound for this integral. The esti-
mate in that lemma involves the integration over the conjugate of the maximal compact
subgroup by some element in A, which we shall denote by a;. We apply the lemma to
the function z — ¢(a; - z) on Z, and write the estimate in terms of the original maximal
compact subgroup K. By this we obtain a constant ¢ > 0 such that

/gp( dz > ¢ / / (kajaw)a™?2 da dk .

weW

Using that the measure on Z is GG-invariant and (A.1), we obtain

/ o(z) dz>c // / o(kajaapw)ay a2 dag da dk .
Z AE/AﬂH

In view of (A.2) we now have

/ 2)dz>c ) / f (karaw)a*? dadk = ¢ ) / f (kayaw)a=?2 da dk .

wew weWw

weWw

O
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8. Integrality properties of leading exponents of twisted discrete series

Proof of Lemma A.1. We will prove that there exists a constant C' > 0 such that for every
non-negative smooth density ¢ on Z and every x € G

/Bcb(gx) dg < oL 9. (A.3)

v(r) Jpeh

On the left-hand side ¢ is considered as a function on G that transforms under the right-
action of H with the modular character. Before giving the proof of A.3 we derive the
lemma from it. By the local Sobolev lemma, applied to the function f(-z) on G, we
obtain the following bound by the k-th Sobolev norm of f( - z) over the neighborhood B
of e € G:

[F ) < CIFC-2)l .2k

The constant C' is independent of f and z. Choose x € G such that z = xH. Using A.3
for the square of each derivative up to k of {2, we also have

1
1FC )2 < C@ 19415, 2 21

The lemma follows from these inequalities.
For a measurable function x : Z — R, let ¢, : G — R be such that

xz/wa«h)dh.

Then for every a € Az i we have

/wa(m)dxz/Z/wa(gha)dhdgH: \detAd(a)}h}/ZX(z.a) dz .

Since | det Ad(a)]h] = a~?P, and by the invariance of the Haar measure the left-hand
side is independent of a, it follows that

/Z (@) dz = a2 /Z (2 dz .

We may apply this to x = 15, and obtain
v(-a) = a *ev (a€Azp).

We conclude that ‘1—, may be considered as a density on Z.
Let B C G be a ball and define wg : 7 — R< by

wp(3) = /BA% (ze?).

If B’ is another ball in GG, then we may cover B’ by a finite number of sets of the form
gB. Since v is a weight, it follows that there exists a ¢ > 0 such that

1
—Wpr S Wpg S CWp . (A4)
C
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Let 2 be a compact subset of G. Let B' = {g'bg : g € 2,b € B}. Then

N 1 1 N =
wa@) = [ 1< [ L-wa®) (eZgen).
Bgz V gB'z vV
From (A.4) it follows that there exits a ¢ > 0 such that
wp(g%) <ewp(3) (€ Z,9€Q).

We thus see that wp is a weight.
We claim that there exists a ¢; > 0 such that for every z € Z

wp(2) > . (AS)

Since wp is a weight, it suffices to show that infa0 €AZ woeW wp(apwp - 2p) > 0 to prove
this claim.

Let ag € A% and wy € W. It follows from the inequality (3.6) in [28] and Lemma
A.2 that there exists a an element a; € A and a constant C' > 0 such that,

wp(agwy - 2p) > C E / / 1 Bagwe-zo (ka1aw - Zp) da dk
KJAz
zZ

weWw

> C’/ / 1 Bagwe -z (ka1awy - 2o) da dk
K Jaz
zZ

> C’/ / 1 Baguwo 2o (kawy - Zp) da dk .
K alA%

For the last equality we used the invariance of the measure on Az. Let A, be a compact
subset of A with non-empty interior and A.Az p/Azr C alAé. By enlarging B, we
may assume that B is invariant under left translations by elements from K on the left and
A, C B. Since [, dk =1, we have

/ / 1 Baguwe 2o (Kawy « Zo) da dk = / 1 Baguwg-zo (QWo * 20) da .
K alAé a1A§

Ifa e aOAcAZ,E/AZ,E, then awg - ,/Z'\() c ACCL()U)O : /2,'\0 Q Baowo : /Z\O. Therefore,

/ 1 Bagwo-zo (awo ’ /Z\O) da > / 1a0AcAZ,E/AZ,E (CL) da.
a1A§

a1 AZ
137

Since ag € A% and A%A% - A%, the set apA Az /A i is contained in a1A§ and thus

/ 1a0AcAZ,E/AZ,E (a) da = /
alAé A

and hence

laoAcAz,E/AZ,E (a) da = / 1AcAZ,E/AZ,E (a) da )

2 Az

Wil 20) 2 C [ Laauias(a)da.

Az
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The claim (A.5) now follows as the right-hand side is independent of ay and strictly
positive.

Let ¢ be a non-negative smooth density on Zandletz € G. To prove (A.3) we
may assume that supp ¢ C Bz H and that B~* = B. Since v is a weight, there exists a
constant co > 0 such that v(z) < cov(y) for every y € Bx. If y = bx with b € B, then

0) [ dlga)dg < exvlw) [ otor )y < cavly) [ law) dg
B B B2
Note that v¢ is right H-invariant, hence

0 [ otgr)dg < covlw) [ olands (v e Ball).

#5990 [ 550 =5 L L %]

Let ¢c; > 0 be as in (A.5). Then

Jotondg< - [ onrag [ <t [ (] ot aa).

Now we use Fubini’s theorem to change the order of integration. We thus get

/aﬁgrc dg < CIV( )/32 [/yeBmﬁaﬁ(gy)] dg
(@ )/32 / ¢9y
:CQVO(( /<Z5

This implies (A.3) as by assumption supp ¢ C BzH. [

Therefore,

<

Appendix B: Intertwining operators

The main result of this appendix is the following proposition.

Proposition B.1. There exists a N € N such that for every a € 11, 0 € M and )\ € ag
with (") ¢ +Z, the standard intertwining operator Io(\,0) : Torsa0 — Tao iS
defined and an isomorphism.

Before we prove the proposition, we first prove a lemma.

Lemma B.2. Assume that the split rank of G is equal to 1 and let o be the simple root of

(g,a). There exists a N € N such that for every o € M and v € a}. with v(a") & +Z,
the representation T, , is irreducible.
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Proof. Let t be a maximal torus in m. Let h = a @ it. Then h¢ is a Cartan subalgebra
of gc. We define ¥(h) C b* to be the set of roots of (gc, hc), choose a positive system
Y7 (h) and define

Let £ € t be the Harish-Chandra parameter of some constituent o of the restriction of
o to the connected component of M. Then £ — p,, is the highest weight of oy.

We view ti. and ag. as subspaces of hi by extending the functionals trivially with
respect to the decomposition he = tc & ac. We write p, and p; for the restrictions ac and
tc respectively. Let 6 be the involutive automorphism on h¢ thatis 1 on t¢ and —1 on ac.
We denote the adjoint of 6 by 6 as well.

Now assume that 7, is not irreducible. We write v = (§,v) € t& & ai. By [40,
Theorem 1.1] there exists a 8 € X(h) such that v(3Y) € Z and either

(@ 7(8Y) > 0,7(08Y) < 0and 03 # —B, or
(b) 05 = .

Note that in both cases (a) and (b) p,/3 is non-zero and is in fact a root of (g, a). Therefore,
paf € {+a,+2a}. Let k € {+1, +2} be such that p,5 = ka. Then

o KIBIE 20maB)  KIBIZ [ 206mB) _ KIBI (, 26piB)
/o) = L TAT -~ T ) = 7151 ) € T B~ 1)

Let d be the determinant of the Cartan matrix of the root system X, (t¢) of mc in tc.
The lattice Aw(tc) of integral weights of mc in tc is contained in $Z[%(tc)]. Note that
P, € € An(tc). Let [ be the square of the length of the shortest root in 3(h). Then
12(h)[1* € {1,21,31} and (X(h), 3(h)) € £Z. Therefore,

(An(te), An(te)) € (5(t0), Slte)) € 552,

and since pf3, € € An(te),

2epd) 1
162 €6 ™

Since 6 € 3(h) and by the Cauchy-Schwartz inequality
2(B,65)
1811?

Taking into account that 0 < ||p.S||* < ||8]|* we obtain

1812 2|8)? 4
T A D

e {0,+1,+2} .

and thus

v(a’) e

RIBIZ o 2epB)y 1
il ™) <
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Proof of Proposition B.1. Let N € N be as in Lemma B.2. For a € II let G, be the
connected subgroup of G with Lie algebra generated by the subspace g~ 2*® g~ *@g*®g>*
of g. Note that the real rank of GG, is equal to 1. We define the subgroups

A, =AnG,, M, =MnG,, P,=PnNnG,.

Write o, and )\, for a‘ M and )\‘a respectively. Let [ 2()\&, 0,) be the standard inter-
twining operator

I’y 04) Indgj(sa)\a ® Sala) — Indgj (Ao ® 04) -
By equation (17.8) in [18] we have
I.(\,0)f(e) = ]g(Aa,aa)(f|Ga)(e) (f €mXya0)- (B.1)

The poles of the meromorphic family I2(\,, 0,) are located at the \, € a, such that
Ao(@¥) € —Ng. See [18, Theorem 3]. It follows from (B.1) that I, (), o) is defined for
AaY) ¢ —Nj.

Now assume that A(a) ¢ Z. Let ¢g € C°(N, V,) be such that [5 . ¢o(7) dn #
0. Define ¢ € 733, Sao by setting ¢| 5 = ¢o. Then the integral

[VOSQN ¢(ﬁ) n

is absolutely convergent and non-zero. Hence I,,(\, o)¢(e) is non-zero. In particular this
shows that both I,,()\, o) and I?()\,, 0,) are non-zero.

If I,(\, o) is not injective, then there exists a ¢ € 757, . such that I,(\,0)¢ = 0
and ¢(e) # 0. It then follows from (B.1) that I2()\,, 0, ) is not injective either. Since
I%(A\a, 04) is non-zero, Indgg (Sada ® Sa04) is not irreducible. Similarly, if 1,(\, o)
is not surjective, then its adjoint I,(\, 0)* = I,(—s,\, so0") is not injective, hence it
follows that Ind%® (— A, ® o) is not irreducible. It now follows from Lemma B.2 that if
I(\, 0) is not an isomorphism then A(a) € +Z. O
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Chapter 11

Ellipticity and discrete series'

Joint with Bernhard Krétz, Eric Opdam and Henrik Schlichtkrull.

Abstract

We explain by elementary means why the existence of a discrete series
representation of a real reductive group G implies the existence of a compact
Cartan subgroup of G. The presented approach has the potential to generalize
to real spherical spaces.
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1 Introduction

Let G be a connected reductive algebraic group defined over R and G := G(R) its group
of real points. In this article we give an elementary proof that Harish-Chandra’s compact
Cartan subgroup condition is necessary for G to have discrete series. To explain the
background, we first describe the problem in the more general context of real spherical

spaces.

1.1 Real spherical spaces

Let H C G be an algebraic subgroup defined over R and H = H(R). A suitable frame-
work for harmonic analysis on Z := G/ H is obtained by the request that Z is real spher-
ical, i.e., there exists an open orbit on Z for the natural action of a minimal parabolic

subgroup P of G.

"This article was published in J. reine angew. Math. 782 (2022), 109-119.
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II.  Ellipticity and discrete series

Our interest is to obtain a geometric criterion for the existence of discrete series on a
unimodular real spherical space Z. We recall that by definition the discrete series for Z
consists of the irreducible subrepresentations of the regular representation of G on L?(7).
The following condition for its existence was conjectured in [8, (1.2)]:

Conjecture 1.1. Let Z be a unimodular real spherical space. A necessary and sufficient
condition for the existence of a discrete series representation for Z is that the interior of
(hY)en in bt is non-empty.

Let us explain the notation. Let g, be the Lie algebras of G and H. Then h* ~
(g/b)* is the cotangent space 17 Z at the base point zyp = H € Z, and the index ‘ell’
stands for elliptic elements.

The sufficiency of the condition has been established in [3]. We recall the result:

Theorem 1.2. Let Z be a unimodular real spherical space. If the interior of (h)ey in b+
is non-empty, then there exist infinitely many representations in the discrete series for Z.

A central tool in the proof of this theorem is a property of the infinitesimal characters
of discrete series representations for Z, derived in [8]. The same property is crucial for
our approach to necessity. Some notation is needed in order to describe it.

Let G = K AN be an Iwasawa decomposition for G and P = M AN the associated
minimal parabolic subgroup, with M = Zx(A) the centralizer of A in K. Lett C m be
a maximal torus. Then ¢ = a + t is a maximally split Cartan subalgebra of G, unique up
to conjugation. With cg = a + it we obtain a real form of ¢¢c which is characterized by
the property that all roots v € ¥, = X(gc, ¢¢c) C cf. are real valued on cg. Let V' be the
Harish-Chandra module of a discrete series representation for Z, and let its infinitesimal
character be denoted xy € Hom,,(Z(g),C). Using the Harish-Chandra isomorphism
we identify xy with a We-orbit [Ay] = W, - Ay € /W, where W, is the big Weyl
group, i.e. the Weyl group of the root system >, with respect to the Cartan subalgebra c.

The mentioned result of [8] asserts that there exists an explicit IV -invariant rational
lattice £, such that

[Av] C L C ey (1.1)

for all discrete series representations V' of Z. Let us emphasize in particular that the
parameters Ay of the discrete series are real, as the lattice £ lies in the real form c.

The purpose of this article is to explore whether this property of the infinitesimal
character can be used to establish the conjectured necessity of the condition. To be more
precise, we show that this is the case for the group, regarded as a spherical space. We
believe the approach has the potential to generalize to all real spherical spaces.

1.2 The group case

In the remainder of this article we consider the group case. The group G is a real spherical
space when looked upon as a geometric object under its both-sided symmetries of G x G.
Specialized to this case the conjecture is Harish-Chandra’s beautiful geometric criterion
for the existence of discrete series representations for (G, which results from his deep
study of discrete series [4, 5].
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2. Notation

Theorem 1.1. (Harish-Chandra, [5, Theorem 13]) A necessary and sufficient condition
for G to admit discrete series is that it has a compact Cartan subgroup.

As mentioned, we provide an elementary proof of the necessity, based on the property
(1.1) for G. In the case at hand the proof of this property is also elementary, as explained
in the introduction to [8].

Let us describe the argument. Let o be the conjugation on g¢ with respect to g. We call
an element A € . strongly regular provided that the stabilizer of A in the extended Weyl
group W o := (W, —o) C Aut(X,) is trivial. We show that the existence of a unitary
representation with a strongly regular real infinitesimal character implies the existence
of a compact Cartan subgroup, see Corollary 3.6. Knowing that infinitesimal characters
of discrete series are real, the existence of a discrete series representation with strongly
regular infinitesimal character therefore requires the existence of a compact Cartan sub-
group. Finally, we complete the proof by using the Zuckerman translation principle [9] to
produce from any representation of the discrete series a discrete series representation with
strongly regular infinitesimal character, see Corollary 5.8. The tools used for this belong
to general representation theory of Harish-Chandra modules. Beyond the characteriza-
tion of square integrability in terms of the leading exponents of asymptotic expansions,
the only property of discrete series used at this stage is the existence of the lattice £
satisfying (1.1).

Acknowledgement: We thank Joseph Bernstein and the referee for valuable com-
ments.

2 Notation

Throughout this article we let G be the open connected subgroup of G(R) where G is a
connected reductive group defined over R. We write G¢ for the connected group G(C).
As usual we denote the Lie algebra of GG by g and keep this terminology for subgroups of
G, i.e., if H C G is a subgroup, then we denote by b its Lie algebra. If fj is a Lie algebra,
then we write hc for the complexification of b.

Fix a Cartan involution § of (G and denote by K = G the corresponding maximal
compact subgroup. The Lie algebra automorphism of g induced by 6, and its linear
extension to gc, will be denoted by 6 as well. We write g = ¢ + s for the associated
Cartan decomposition. We fix a maximal abelian subspace a C s and write A = exp(a).
Further we let M = Zx(A) and select with t C m a maximal torus. We write 7" for the
Cartan subgroup Z,(t) of M.

We denote by o : gc — gc the complex conjugation with respect to the real form
g, and let U := K exp(is) be the §-stable maximal compact subgroup of G¢, which
is obtained as the fixed point subgroup of the antilinear extension # o ¢ of the Cartan
involution & to G¢.

We extend a by t to a Cartan subalgebra ¢ := a -+t of g, and use the symbol o also for
the restriction of ¢ to ¢c. We write X, = X(gc, ¢c) for the corresponding root system and
Yq := Xo\{0} for the corresponding restricted root system. Further we set cg := a -+ it.
Note that X. C c5, that o preserves . and cr and that a|CR = —0 " We write C¢ for
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II.  Ellipticity and discrete series

the maximal torus of G¢ with Lie algebra c¢c. As G is a connected algebraic reductive
group, the torus C¢ is connected. We further define C' := G N C¢ and Cpy := Cc N U.
Note that C' = T'A and Cy = T exp(ia).

Let us denote by W, the Weyl group of the root system . and likewise we denote
by W, the Weyl group of the restricted root system ,. With respect to >, we have the
restricted root space decomposition

g:a@m@@ga.

Q€

In the sequel we fix with ¥ C ¥, a positive system. We then let ¥ C ¥, be any
positive system which is compatible with X1, i.e., 1 = XF|,\{0}.

The positive system X defines a maximal nilpotent subalgebra n = @aezj g“. Put
N = expn and note that P = M AN C (G defines a minimal parabolic subgroup of G.
We write P and @ for 0P and n, respectively.

3 Reading of the existence of a maximal compact Cartan
subgroup from the infinitesimal character

As usual we write Z(g) for the center of the universal enveloping algebra U(g) of gc.
Recall that according to Harish-Chandra the characters x of Z(g) are parametrized by
¢&./W. as follows. For any positive system .S of ¥, we set

Us = @ gc,a

acs

and write pg for half the trace of ad(c) on ug. Using the Poincaré-Birkhoff-Witt theorem
we may decompose an element Z € Z(g) as

7 € Ckv+-u_324(g)u5 3.1

with C's € U(c), see the proof of [7, Lemma 8.17]. The element [A] € ¢f /W, parametriz-
ing  is then given by
X(Z) = (A = ps)(Cs) 3.2)

and does not depend on the choice of S.
Every irreducible Harish-Chandra module V' admits an infinitesimal character

xv:Z(g) —C
which then corresponds to a IV -orbit
U\V]:::Ilﬁ '/\V

for some Ay € . The following lemma is standard. For convenience we include its
short proof.
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3. Reading of the existence of a maximal compact Cartan subgroup

Lemma 3.1. Let V' be an irreducible Harish-Chandra module. The following hold.
1. [Ay] = [=Av], where V is the contragredient of V.
2. If V is unitarizable, then [Ay] = [—oAy].

Proof. Let Z — Z" denote the principal anti-automorphism of Z/(g). Then x(Z) =
xv(ZY) for Z € Z(g). Let S be any positive system of ¥.. Let Z € Z(g) and let
Cs € U(c) be as in (3.1). By (3.2)

XV(Z) = (Af/ — ps)(Cs).

As
ZV e C¢+usU(gu_g,

we have
xv(Z) = (Av = p—s5)(Cs) = (=Av — ps)(Cs).

This proves 1.

The conjugate representation V of V' has infinitesimal character [A¢] = [o(Ay)]. If V
is unitarizable, then the representation is isomorphic to its conjugate dual, hence assertion
2. O

We recall that an element A\ € cf. is regular provided that the stabilizer of A in W,
is trivial. Notice that the complex conjugation ¢ and — id induce automorphisms of 3,
i.e., they determine elements of Aut(>,). In particular —o € Aut(X,). We define the
extended Weyl group of W, as the following subgroup of Aut(3,):

Wc,ext = <WC7 _o->gr0up C Aut(zc) .

Furthermore A € (. is called strongly regular in case the stabilizer in W ¢ is trivial.

According to Harish-Chandra (see [5, Theorem 16]) the infinitesimal characters of
representations of the discrete series V' of G are real, i.e., Ay € cf/W.. A simplified
proof of this fact was recently given in the more general context of real spherical spaces,
see [8, Theorem 1.1].

Proposition 3.2. Assume that there exists a representation V' of the discrete series for G
with infinitesimal character [A] € ¢ /W.. Then the following assertions hold.:

1. A\ € ¢}, and there exists an element w € W, such that w - A = —o(A).

2. If in addition A is strongly regular, then there exists an element w € W, such that
w = —o on c. In particular, —c|. € W, C Aut(cy).

Proof. As mentioned above, A € cf. Since representations of the discrete series are also
unitarizable, Lemma 3.1 gives [—oA] = [A]. This shows the first assertion and the second
is a consequence thereof. O]
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II.  Ellipticity and discrete series

We recall that W, = Ng.(cc)/C and W, = Ng(a)/M. We denote by W? the sub-
group of W, consisting of the elements which commute with 6, and recall the exact se-
quence

1= Wy =W W, =1 (3.3)

where W, is the Weyl group of the root system >, := > (mc¢, tc), which can be realized
as NV M (t) / T.

Lemma 3.3. Let 7 be an automorphism of gc and Jc a Cartan subgroup of Ge. If T acts
trivially on jc, then there exists at € J¢ so that T = Ad(t).

Proof. Since 7 acts trivially on jc, it preserves all root spaces g, 7 € ¥;. Hence there
exists for all v € ¥; numbers ¢, € C such that 7| g2 = Cy -idgy. Letnow ¢ € Jc be such
that Ad(¢) coincides with 7 on all simple root spaces g, v € II;. Now ¢ := Ad(¢t) "t o7
is an automorphism of g¢ which acts trivially on be = jc + @wezj g¢ and leaves all
other g7, v € Ej*, invariant. In fact, ¢ acts trivially on all negative root spaces. To see
this, let v € X" and 0 # E, € gl and 0 # F, € g¢". Then 0 # [E,, F}] € jc. As ¢ acts
trivially on jc we have

[Ew F’Y] = ¢[E'w Fw] - [Ew ¢F7]7
and hence ¢F, = F,. It follows that 7 = Ad(t). O
Proposition 3.4. The following assertions are equivalent:
1. —0|g € W
2. 0. € W
3. 0 is an inner automorphism of gc.
4. There exists a g € U such that 0 = Ad(g) as an automorphism of gc.

Proof. Since —o and 6 coincide on cg, the equivalence of (1) and (2) is clear.

Suppose now that (2) holds. Since G‘a € W, there exists a k € Ng(a) so that
€|u = Ad(/{:)‘a. Since Nk (a) C Ng (M), the restriction of Ad(k)~'6 to cg defines an
element of W, whose restriction to a is trivial. In view of (3.3) Ad(k)~'6 defines an
element of WW,,, and thus there exists an m € M so that Ad(l{:)*19|it = Ad(m) }it. Now
Ad(km) and 6 coincide on cg. Let w = km.

Let 7 = 6 o Ad(w). Since 7 is an automorphism of gc with 7|,. = id,., it follows
from Lemma 3.3 that there exists a t € C¢ so that 7 = Ad(¢). Since # commutes with
Ad(w) (as w in K) we have 7> € Ad(K). Hence (1) = (r2) U 7(7?) is a relatively
compact subgroup of Ad(C¢). Consequently we see that ¢ can in fact be chosen in Cy,.
It follows 6 = Ad(tw™"') with g := tw™' € U. This proves (4).

The implication of (3) from (4) is trivial.

Finally, if (3) holds, then there exists a ¢ € G¢ so that § = Ad(g). Since 6 preserves
the Cartan subalgebra cg, we have g € Ng.(cg). Therefore, 0. = Ad(g)|.. € W,. This
proves (2). O]

58



4. Power series expansion

The following statement can also be found in [1, Lemma 1.6].

Corollary 3.5. The Cartan involution 0 is an inner automorphism of gc if and only if
€ C g is a reductive subalgebra of maximal rank. In that case g admits a compact Cartan
subalgebra.

Proof. Assume that ¢ is an inner automorphism of gc. By Proposition 3.4 there exists a
g € U so that Ad(g) = 6. As g is semi-simple, the group K¢ := G is equal to Zg.(g).
The centralizer of a semi-simple element contains a maximal torus of G¢, and therefore,
rank K¢ = rank Gc.

If € is reductive of maximal rank, then there exists a Cartan subalgebra ) of g in €.
The Cartan involution # acts trivially on . Now Lemma 3.3 is applicable to 7 = 6 and
jc = be. It follows that @ is inner. O]

Corollary 3.6. Suppose that there exists a representation of the discrete series for G with
strongly regular infinitesimal character. Then G admits a compact Cartan subgroup.

Proof. The assertion follows from Propositions 3.2 and 3.4 and Corollary 3.5. ]

4 Power series expansion

In this section we summarize a few basic facts regarding the power series expansions of
the matrix coefficients of an irreducible Harish-Chandra module V'. We denote the dual
Harish-Chandra module of V' by V. Recall that V' is given by the K -finite vectors in the
algebraic dual V* of V. As before we identify the infinitesimal character of V' with an
We-orbit [Ay] = W, - Ay C cf.

Let us denote by a™ the positive Weyl chamber in a with respect to X7 and denote
by a* the closure of a* ™. Likewise we set ATT = exp(a™) and AT = exp(a™). As
usual we denote by p = 3 > v+ (dim g*)a € a* the Weyl half sum.

Now given an irreducible Harish-Chandra module V' each K-bi-finite matrix coeffi-
cient

G > g mys(g) == (t(g)v,v)

forv € V and & € V admits a power series expansion on AT, see [7, Ch. VIII]. To be
precise, we have

my5(a) = Z pf,,@(log a)as=’ (ae AT veV,oeV)

¢€[Av]la—No[Z]

with unique polynomials pfw on a which are of bounded degree and depend bilinearly on
the pair v, v. In case V' belongs to the discrete series only those elements & contribute for
which Re |+ is negative, i.e., Re {(X) < 0 for all X € a™\{0}.

By definition, an element ¢ € [Ay]|, — No[X] is called an exponent of V if piﬁ #0
for some v, v. The maximal elements in the set of exponents with respect to the ordering
given by § = & if § — & € Ny[X[] are called the leading exponents. We denote
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II.  Ellipticity and discrete series

by & C a the set of leading exponents and note that by [7, Theorem 8.33] we have
Ev C [Av]|a- Then

mys(a) = Z p,s(loga)a®™  (a€ ATT).
teEy—No[=d]

The coefficients pﬁ’f, for A € &y determine the principal asymptotics of the matrix
coefficient in the sense that

myi(a) = Z p)5(log a)a* " + lower order terms (a€ ATT).
AeEy

The condition that V" belongs to the discrete series can be read off by its set of leading
exponents. Let

Co=(a") ={Aea |AX) >0, Xea'}= > Rua
acext

be the dual Weyl chamber. By [7, Theorem 8.48] V' belongs to the discrete series if and
only if it satisfies the condition

Re&y C —intC. 4.1

Lemma 4.1. Let F' = F), be a finite dimensional representation of G with highest weight
w with respect to =} and let V' be a Harish-Chandra module of the discrete series. The
following are equivalent:

1. Rep|s + Re&y C —intC.
2. All matrix coefficients of V @ F, are contained in L*(G).
Proof fv@ f €V ®@F,and 9 ® f € V @ Fy, then
Mygroef = Moo Mg f- 4.2)

The assertion (1) = (2) now follows from (4.1) as spec, F, C pu|a — No[Ef] C pla — C.
The other implication follows immediately from (4.2) with suitable choices of f and
f. []

5 Application of the translation principle

For a Harish-Chandra module V' we denote by Hy(n, V') the finite dimensional n-homology
of degree 0, and recall that the covariant functor Hy(m, -) is right exact. Notice that
Hy(n, V) is a module for M A. By the Harish-Chandra homomorphism we have

Z(m) ~ Ut

Moreover we note Z(a + m) = U(a) ® Z(m). Therefore we can consider the spectrum
of a finite dimensional Z(a 4+ m)-module as a Wy,-invariant subset of ¢f. In addition we
consider p as a Wy,-invariant element of ¢f by extending it trivially on t.
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5. Application of the translation principle

Lemma 5.1. Let V' be an irreducible Harish-Chandra module with infinitesimal charac-
ter [A]. Then the following assertions hold:

1. speczigim) Ho(M, V) C —p+[A].
2. spec, Hy(m, V) C —p+ &y — No[E]].

Proof. For (1) see [6, Cor. 3.32]. For the inclusion in (2), let A € spec, Ho(w, V).
Recall that it follows from Casselman’s version of Frobenius reciprocity that elements
A € spec, Hy(m, V') correspond to embeddings of V' into a minimal principal series rep-
resentation Ind% (a ® (A + p)) (see [2] or [6, Theorem 4.9]). Without loss of generality,
we may assume that V C Ind$ (o0 ® (A + p)). As in the derivation of [8, (1.4)] one sees
that A\ 4+ p occurs as an exponent of V, and hence is contained in &, — No[X]. [

For the rest of this section we let V' be a Harish-Chandra module of the discrete series
with infinitesimal character [A] = W - A € ¢ /.. We set

A" :={v e [A]|Rev|s € —intC} = {v € [A] | Rev|a+\jo} < O}.

Lemma 5.2. Let V' be a Harish-Chandra module of the discrete series with infinitesimal
character [\]. Then
SPeCz(qim Ho(M, V) C —p+ [A]F. (5.1)

Proof. Immediate from Lemma 5.1 and (4.1). [l

We pick the representative A € [A] such that A := A|, € Ey. In view of [8], The-
orem 1.1 and Remark 1.2(3), there exists an N € N, independent of the discrete series
representation V, so that VA is integral. We select such an N and set ;o := NA. Let i
be the unique dominant integral element in W, - 119 and let F), be the corresponding finite
dimensional representation of G with highest weight p1 € cj.

We are interested in the Z(g)-isotypical decomposition of V' ® F),. Let

XA4po * Z(g) —C

be the character corresponding to [A + ji0]. According to Zuckerman [9, Theorem 1.2 (1)]
the element [A + po] appears in specz ) (V ® F),) and thus the corresponding isotypical
component

W:={veV®F,|(3keN)(Vze Z(g)) (2 — Xaru(2)" v =0} (5.2)

is non-zero. Let J C W be a maximal submodule and set U := W/J. Then U is an
irreducible Harish-Chandra module with infinitesimal character

[Av] = [A+ po] = [(N +1)A].
Lemma 5.3. For any finite dimensional representation F' and any p > 0 we have
SpeCZ(aer) HO(ﬁa V ® F) C —p + [AW— + SpeCZ(aer) F.
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Proof. Filter F' as P-module as

such that Fy/Fy_ is an irreducible P-module foreach 1 < k < n. In particular, each
Fy./Fy_1 is a trivial n-module and thus Hy(n,V ® F},/F}_1) = Ho(n,V) ® F}/F}_; as
M A-modules.

We apply now H, to the exact sequence of M A-modules

0=2>VRF1->VRF,—>V®F,/F,1—0.
and obtain the right exact sequence
Ho(n,V ® Fr_1) = Hy(n,V ® F},) — Hy(n,V)® Fy,/Fr—1 — 0.
This implies
SPeCz(qim) Ho(W, V @ F,) C speczqim) Ho(M, V @ Fy1) Uspeczqim) (Ho(n, V) @ F)
and the assertion follows by induction on k and (5.1). O

Lemma 5.4. Let ;i1 € ¢ be dominant and integral and let F), be the highest weight
representation with highest weight . Let pig € W, - pand let A\ € R po. Further, let
v € [A], o0 €spec, F, andw € We. Ifw(A + py) = v + o, then wA = v and wpy = o.

Proof. Let r > 0 be so that yip = rA. We have o € spec, F), C conv(W, - p9). In
particular, ||o|| < ||uol|- Moreover, ||v|| = ||A]|. The Cauchy-Schwarz inequality applied
to v and o then gives that 0 = rv. It follows that ¢ = wy and v = wA. [

For a Harish-Chandra module U and infinitesimal character [Ay/] we define a subset
[AU]g - [AU] by
[AU}g = {T - [AU] | Tlu - EU} .

Proposition 5.5. For U = W/J as defined after (5.2) one has [Ayle C [A+ uo|t. In
particular, U is square integrable.

Proof. First recall that W C V ® F), is a direct summand as it is a generalized Z(g)-
eigenspace. Thus Hy(n, W) C Hy(n,V ® F),) as M A-module and therefore

SPEC 2 (g pm) Ho(M, W) C —p + [A]" + speczqim) Fu
by Lemma 5.3. Now U = W/J is a quotient of W and thus the natural map
Ho(n, W) — Ho(n,U)
is surjective. We conclude that
SPeCz (qim Ho(M,U) C —p + [A]" 4 specz(gym) Fiu- (5.3)

On the other hand we have specz () Ho(1,U) C —p + [Ay] by Lemma 5.1(1). Com-
paring this with (5.3) and applying Lemma 5.4 yields

SPeCz(qim Ho(M,U) C —p + [Ay]".

Finally, from (4.1) we deduce that U is square integrable. U
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5. Application of the translation principle

Repeated application of Proposition 5.5 yields:

Corollary 5.6. There exists a N € N such that if V' is a representation of the discrete
series with infinitesimal character [\, then for every k € N there exists a representation
U of the discrete series with infinitesimal character [(kN + 1)A] and

Eu C[(kN +1)AJT] .

Corollary 5.7. Suppose that there exists a representation of the discrete series. Then
there exists a representation of the discrete series with strongly regular infinitesimal char-
acter.

Proof. Let V be a representation of the discrete series with infinitesimal character [A]
such that A = A]a € &y. By Corollary 5.6 there exists a discrete series representation Vj,
for every & € N with infinitesimal character [(kN+1)A] and & := &y, C [(EN+1)A]T|,.
Since [A]*]; C —intC, we have

lim dist(&, —0C) > klim (kN + 1) dist([A]T]q, —0C) = 0.
—00

k—o0

It follows that for any p« € ¢y there exists a £ such that
&, + conv (VVc . ,u‘a) C —intC.

In view of Lemma 4.1 this implies that for every m € N and any choice of fundamental
representations F, , ..., F), there exists an € N so that for every k € N with k& > n all

matrix coefficients of the representation
Vi®F,®...0F,, (5.4)

are contained in L?(G). Let A € [A] be the dominant element with respect to X}. In
view of [9, Theorem 1.2(1)] the representation (5.4) contains a subrepresentation with
infinitesimal character [(kN 4+ 1)A + 1y + ... + i)

The proof will be finished by showing that (kN + 1)A + iy + ... + fiy, is strongly
regular for a suitable choice of 1, ..., u,, and for all £ sufficiently large. The strongly
regular elements comprise the complement of a finite union of proper subspaces of (.
We first choose m and 4, ..., i, such that g := py + - -+ + p,, 1s outside of those
subspaces which contain A. Then so is (kN + 1)]\ + p for any k. Clearly each remaining
subspace can contain (kN + 1)[\ + p for at most one value of k. ]

Corollary 5.8 (Harish-Chandra). If a real reductive group G admits a representation of
the discrete series, then there exists a compact Cartan subalgebra.

Proof. Combine Corollary 5.7 with Corollary 3.6. U

63



IIL.

Ellipticity and discrete series

References

[1]

(2]

(3]

(4]

[5]

[6]

[7]

[8]

[9]

64

J. Adams, Discrete series and characters of the component group. On the stabiliza-
tion of the trace formula (eds. L. Clozel et al), Stabilization of the Trace Formula,
Shimura Varieties, and Arithmetic Applications, vol. 1, pp. 369-387, Int. Press,
Somerville, MA, 2011.

W. Casselman, Jacquet modules for real reductive groups. Proceedings of the In-
ternational Congress of Mathematicians (Helsinki, 1978), pp. 557-563, Acad. Sci.
Fennica, Helsinki, 1980.

P. Delorme, F. Knop, B. Kr6tz and H. Schlichtkrull, Plancherel theory for real
spherical spaces: Construction of the Bernstein morphisms, J. Amer. Math. Soc.

34 (2021), no. 3, 815-908.

Harish-Chandra, Discrete series for semisimple Lie groups. I. Construction of in-
variant eigendistributions, Acta Math. 113 (1965), 241-318.

Harish-Chandra, Discrete series for semisimple Lie groups II, Acta Math. 116
(1966), 1-111.

H. Hecht and W. Schmid , Characters, asymptotics and n-homology of Harish-
Chandra modules, Acta Math. 151 (1983), no. 1-2, 49-151.

A.W. Knapp, Representation theory of semisimple groups. An overview based on
examples. Princeton Mathematical Series, 36. Princeton University Press, Princeton,
NJ, 1986.

B. Krétz, J.J. Kuit, E.IM. Opdam and H. Schlichtkrull, The infinitesimal characters
of discrete series for real spherical spaces, Geom. Funct. Anal. 30 (2020), no. 3,
804-857.

G. Zuckerman, Tensor products of finite and infinite dimensional representations of
semisimple Lie groups, Ann. of Math. (2) 106 (1977), no. 2, 295-308.



Chapter I11

On the little Weyl group of a real
spherical space

Joint with Eitan Sayag.

Abstract

In the present paper we further the study of the compression cone of
a real spherical homogeneous space Z = G/H. In particular we provide
a geometric construction of the little Weyl group of Z introduced recently
by Knop and Krotz. Our technique is based on a fine analysis of limits of
conjugates of the subalgebra Lie(H) along one-parameter subgroups in the
Grassmannian of subspaces of Lie(G). The little Weyl group is obtained
as a finite reflection group generated by the reflections in the walls of the
compression cone.
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III.  On the little Weyl group of a real spherical space

1 Introduction

In this article we present an elementary construction of the little Weyl group of a real
homogeneous spherical space Z = G/H, which was first defined in [15]. Here G is
the group of real points of an algebraic reductive group defined over R and H the set of
real points of an algebraic subgroup. We assume that H is real spherical, i.e., a minimal
parabolic subgroup P of G admits an open orbit in Z. Our construction does not rely
on algebraic geometry. Instead we further develop the limit construction of spherical
subalgebras from [19]. More specifically we use a fine analysis of limits of conjugates of
the subalgebra Lie( H) along one-parameter subgroups in the Grassmannian of subspaces
of Lie(G).

Our main interest is in G-invariant harmonic analysis on a real spherical homogeneous
space Z. If Z admits a positive G-invariant Radon measure, then the space L?(Z) of
square integrable functions on Z is a unitary representation for G. Recently large progress
has been made towards a precise description of the Plancherel decomposition for real
spherical spaces, see [18], [8], [19], [7], [5] and [20]. From the last two mentioned articles
it is seen that the little Weyl group plays an important role in the multiplicities with which
representations occur in L?(Z). Such a relationship was earlier observed in the work of
Sakellaridis and Venkatesh on p-adic spherical spaces in [23] and the description of the
Plancherel decomposition for real reductive symmetric spaces by Delorme, [6] and Van
den Ban and Schlichtkrull [1], [2]. The theory we develop to construct the little Weyl
group is central to our article [20], in which we determine the most continuous part of the
Plancherel decomposition of a real spherical space.

For harmonic analysis it is important to understand the asymptotics of the generalized
matrix-coefficients of /-invariant functionals on induced representations. An example
of this is Theorem 5.1 in [19], where the asymptotics of an /{-fixed linear functional
is described in terms of a limit of translates of this functional. Such a limit-functional
is no longer invariant under the action of Lie(H) or a conjugate of it, but rather by a
corresponding limit of conjugates of Lie( H ) in the Grassmannian of subspaces in Lie(G).
In our approach the elements of the little Weyl group are obtained by examining such limit
subalgebras.

We will now describe our construction and results. For convenience we assume that
Z is quasi-affine, i.e., a Zariski open subvariety of an affine variety. For a point z € Z we
write b, for its stabilizer subalgebra. We fix a minimal parabolic subgroup P of G and
a Langlands decomposition P = M AN of P. Given a direction X € a := Lie(A) we
consider the limit subalgebra

b..x = lim Ad (exp(tX))b..

where the limit is taken in the Grassmannian. If X is contained in the negative Weyl
chamber with respect to P, then the limit b, x is up to M -conjugacy the same for all z €
Z with the property that P - z is open. Such a limit is called a horospherical degeneration
of b,. We fix a horospherical degeneration by, i.e., hp = b, x for some choice of X in the
negative Weyl chamber and z € Z for which P - z is open. The M-conjugacy class of a
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1. Introduction

subalgebra s of g we denote by [s]. We define
Niy = {v € Ne(a) : Ad(v)[ba] = [Bo]}.
which is a subgroup of GG. For z € Z we further define
V, = {v € Ng(a) : [h,x] = Ad(v)[hg] for some X € a}. (1.1)

and the set of cosets

W, =V, /Ny C G/Nj.

The main result of the paper is that for a suitable choice of z € Z the above set admits
the structure of a finite Coxeter group and

The group W, is a finite crystallographic group, which can be identified with the little
Weyl group as defined in [15].

Our strategy is to obtain the little Weyl group as a subquotient of the Weyl group
W (g, a) by first determining a cone that can serve as a fundamental domain. The per-
spective of limit subalgebras suggests that for a given point z € Z we should consider all
directions X € a for which the limit b, x is M-conjugate to g, i.e., we should consider
the cone

C.:={X €a:h,x]=[hl}

If Pz is open, then C, contains the negative Weyl-chamber and therefore has non-empty
interior. However, in general the cone C, strongly depends on the choice of z. It turns out
that when C, is maximal then it is a fundamental domain for a reflection group. Thus our
first step is to identify points z for which the cone C, is maximal. For this we introduce
the concept of an adapted point.

The definition is motivated by the local structure theorem from [17]. The local struc-
ture theorem provides a canonical parabolic subgroup () so that P C (). Let [ be the
Levi-subalgebra of q := Lie(Q) that contains a. We denote by * the orthocomplement
with respect to a G-invariant non-degenerate bilinear form on g. We say that a point
z € Z is adapted to the Langlands decomposition P = M AN if

(i) P - zisopen
(ii) there exists an X € a N b so that Z4(X) = lo.

It follows from the local structure theorem that every open P-orbit in Z contains adapted
points. Adapted points are special in the sense that their stabilizer subgroups H, intersect
with P in a clean way:

PNH,=(MNH.)(ANH.)(NNH,).

In fact AN H, and N N H, are the same for all adapted points z in Z. In the present
article adapted points play a fundamental role because their cones C, are of maximal size
and identical. Therefore, C := C,, where z is adapted, is an invariant of Z. It is called
the compression cone of Z. The closure C of the compression cone is a finitely generated
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III.  On the little Weyl group of a real spherical space

convex cone. In general it is not a proper cone in the sense that it may contain a non-
trivial subspace; in fact ay, := Lie(A N H.) is contained in the edge of C. We denote the
projection a — a/ay, by py. The cone p,(C) is finitely generated convex cone in a/ay. It
is this cone that will be a fundamental domain for the little Weyl group.

The passage from the cone py (C) to the reflection group requires some multiplication
law among certain cosets of 1V (g, a). For this we consider N (a)-conjugates of by that
appear as a limit b, x, i.e., we consider the set V. defined in (1.1). If 2 € Z is adapted
and v € V,, then v=! - z is again adapted. If moreover, v" € V,1., then there exists an

X € aso that
[hz,Ad(v)X] = Ad(”)[hv_l-z,X] = Ad(UU/)[h@],

and hence vv’ € V,. If V,-1., would be the same for all v € V., then this would define
a product map on V,. However, a priori this is not the case for all adapted points z. It
turns out that this can be achieved by restricting further to admissible points, i.e., adapted
points z for which the limits b, x are conjugate to by for all X € a outside of a finite set
of hyperplanes. One of the main results in this article is that admissible points exist; in
fact every open P-orbit in Z contains admissible points. Moreover, the sets )V := V), are
the same for all admissible points.
The set V is contained in

N = NG(a) N NG([Q,HC + ah)a

where [g ¢ is the sum of all non-compact simple ideals in [;. The group N is a normal
subgroup of N and N/ N is finite. We define

W=V /Ny CN/Np. (1.2)

Now W is finite and closed under multiplication in the group N /ANj. It therefore is a
group. We now come to our main theorem, see Theorem 12.1.

Theorem 1.1. The following assertions hold true.

(i) The group W is a subgroup of N /Ny, and as such it is a subquotient of the Weyl
group W (g, a) of the root system of g in a.

(ii) The group W acts faithfully on a/ay as a finite crystallographic group, i.e. it is a
finite group generated by reflections si, ..., s, and for each i, j the order m, ; of
s;5; is contained in the set {1,2,3,4,6}.

(iii) The cone py(C) is a fundamental domain for the action of W on a/ay. Moreover, VW

is generated by the simple reflections in the walls p,(C).
In fact, VV is equal to the little Weyl group of Z as defined in [15, Section 9].

For the proof of the theorem we use two results from the literature. The first is the
local structure theorem from [17], which we use to establish the existence of adapted
points. The second is the polar decomposition from [16], which we use to describe the
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closure of Ad(G)b. in the Grassmannian. Besides these two theorems the proof is essen-
tially self-contained. It is based on an analysis of the limits §, x, where z € Z is adapted
and X € a.

The heart of the proof is to show the existence of admissible points. For this we first
classify the adapted points and study the correspondence between adapted points in 2
and in its boundary degenerations. For the horospherical boundary degeneration G/ H
of Z the existence of such points is clear, but it cannot be used to deduce anything for
Z. We thus consider the second most degenerate boundary degenerations, for which
the existence of admissible points can be proven by a non-trivial direct computation.
The existence of admissible points in Z is then proven by a reduction to these boundary
degenerations. The realization of )V as a reflection group is then obtained from the natural
relation between the little Weyl group of a space and its degenerations.

For convenience of the reader we give a short description of each section in this paper.
In §2 we recall the definition of a real spherical space and introduce our notations and ba-
sic assumptions. We then properly start in §3 by defining the notion of adapted points. We
further prove several properties of adapted points, in particular that they satisfy the main
conclusion from the local structure theorem, and we provide a kind of parametrization. In
the short section §4 we provide a description of the stabilizer subalgebra b, of an adapted
point z in terms of a linear map 7. This description is a direct generalization of Brion’s
description in the complex case ([4, Proposition 2.5]) and was also used in [16]. In the
following section, Section §5, we discuss limits in the Grassmannian of k-dimensional
subspaces of the Lie algebra g and we collect all properties of such limits that will be
needed in the following sections. We introduce the compression cone in §6. The main
result in the section is that the compression cone C, is of maximal size if z is adapted and
does not depend on the choice of the adapted point. It therefore is an invariant of Z.

In §7 we describe the relation between limits subalgebras, open P-orbits in Z and the
compression cone. This description gives the first indication that the little Weyl group
may be constructed from such limits. The sections §8 and §10 serve as a preparation for
the proof of the existence of admissible points. In §8 we describe the Ad(G)-orbits in the
closure of Ad(G)b. in the Grassmannian. Each of the subalgebras in this closure gives
rise to a boundary degeneration of Z, i.e., a real spherical homogeneous space which is
determined by a subalgebra contained in the closure of Ad(G)b,. In §10 we show that
there is a correspondence between adapted points in Z and adapted points in a boundary
degeneration. After these preparations we can prove the existence of admissible points in
§11. This is done through a reduction to the same problem for the second-most degenerate
boundary degenerations of Z.

In §12 we finally define the set WV by (1.1) and (1.2) using an admissible point z.
We then prove that W has the properties listed in Theorem 1.1. It is relatively easy to
see that )V is a group acting on a/ay. For the proof that it is generated by reflections an
explicit computation on the walls of the compression cone is needed. This computation
is performed in Section 9.

In Section 13 we prove that the group )V is a crystallographic group and show how to
attach to it a reduced root system, the spherical root system.

The technique developed in the body of the paper works under the assumption that
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Z is quasi-affine. In Section 14 we extend many of the concepts that were studied in the
previous sections to any real spherical space, in particular we construct the little Weyl
group YV and hence the reduced root system X7 in this generality. This is done by a
standard trick that is based on a theorem of Chevalley.

We end this introduction with a short account of related works on the little Weyl
group. Recall that an algebraic G-variety Z defined over k£ = C is called spherical if a
Borel subgroup of G defined over k£ admits an open orbit in Z. Here G is an algebraic
connected reductive group defined over k. In [4] Brion first introduced the compression
cone for complex spherical varieties and showed that the asymptotic behavior of such
varieties is determined by a root system: the spherical root system. The little Weyl group
is the Weyl group for this root system.

By now, there are several constructions of the little Weyl group for complex varieties.
Next to the construction of Brion, Knop gave a vast generalization. In fact, in [11] he
constructed the little Weyl group for an arbitrary irreducible G-variety and connected it
to the ring of G-invariant differential operators on Z, see [13]. We also mention here a
second construction by Knop in [12] and the explicit calculation of these groups by Losev
[21].

In the case where k is an algebraically closed field of characteristic different from 2,
Knop gave in [10] a construction of the little Weyl group and the spherical root system.
The technique is close in spirit to Brion’s approach for £ = C. Moving to fields that are
not necessarily algebraically closed, a natural concept is that of a k-spherical variety, i.e.,
a G-variety Z defined over k for which a minimal parabolic subgroup P of G defined
over k£ admits an open orbit. In [15], the authors assume that k is of characteristic 0 and
use algebraic geometry to define the little Weyl group of such a space Z = Z(k). The
construction is based on algebra geometric invariants attached to the variety Z, especially
the cone of G-invariant central valuations on Z, as is the case for Knop’s construction for
k = Cin [11]. This valuation cone serves as a fundamental domain for the action of W7.

The compression cone plays an important role in this work. It was first considered
for real spherical spaces in [16] by employing the local structure theorem of [17]. In
[4] Brion showed that in the complex case the closure of the compression cone may be
identified with the valuation cone. This argument generalizes to real spherical spaces.

The compression cone can be viewed as a dual object to the weight-monoid used
by algebraic geometers to study spherical spaces. In the present work the compression
cone is defined purely in terms of limits of subalgebras in the Grassmannian and is from
our point of view better suited for application in harmonic analysis, like in [19]. We
mention here our article [20], in which we determine the Plancherel decomposition of the
most continuous part of L?(Z). A major step towards this is the construction of H-fixed
functionals on principal series representations. For the analysis of P-orbits that is needed
for this, we use the theory of limits of subalgebras.

Our approach to the little Weyl group is closest to that taken by Brion in his article
[4] on complex spherical spaces. However, there are notable differences. Brion studies
the relation between the closure of Ad(G)b, in the Grassmannian and the wonderful
compactification. In our approach compactifications do not enter directly. Further, Brion
uses explicit computations related to the structure of h, for a well chosen point z. Some
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of these computations are adapted in Section 9 to the case of real spherical spaces. It
appears that Brion’s computations do not generalize easily to real spherical spaces as they
rely on the fact that root spaces are 1-dimensional. We therefore put more attention to
the compression cone and the limits b, x for generic elements X € a and adapted points
z € Z. We do not fix a specific point z, but rather study the dependence of compression
cones and limit subalgebras b, x on adapted points z. In particular we obtain the group
law for the little Weyl group from these considerations as explained above, rather than
from explicit computations.

We thank Bernhard Krotz, Friedrich Knop and Vladimir Zhgoon for various discus-
sions on the subject matter of this paper.

2 Notation and assumptions

Let G be a reductive algebraic group defined over R and let G be an open subgroup of
G(R). Let H be a closed subgroup of G. We assume that there exists a subgroup H of G
defined over R so that H = G N H(C). We define

Z:=G/H

We fix a minimal parabolic subgroup P of GG and a Langlands decomposition P = M AN.
We assume that Z is real spherical, i.e., there exists an open P-orbit in Z.

Until Section 14 we assume that Z is quasi-affine. The assumption is used in one
place only, namely for Proposition 3.1. In Section 3 we will define a notion of adapted
points in Z. Proposition 3.1, and therefore the assumption that 7 is quasi-affine, is needed
to show that adapted points exist. In Section 14 we will consider real spherical spaces Z
that are not necessarily quasi-affine and describe a reduction to the quasi-affine case.

Groups are indicated by capital roman letters. Their Lie algebras are indicated by the
corresponding lower-case fraktur letter. If z € Z, then the stabilizer subgroup of Z is
indicated by H, and its Lie algebra by b,.

The root system of g in a we denote by .. If () is a parabolic subgroup containing
A we write ¥(Q) for the subset of X of roots that occur in the nilpotent radical of q. We
write X7 for X(P). We further write a~ for the open negative Weyl chamber, i.e.,

a ={Xea:aX)<0foralla € X"}

We fix a Cartan involution # of G that stabilizes A. If ) is a parabolic subgroup
containing A, then we write () for the opposite parabolic subgroup containing A, i.e.,
@ = 0(Q). The unipotent radical of ) we denote by Ng. We further agree to write N
for Ng.

We fix an Ad(G)-invariant bilinear form B on g so that —B( -, 6 - ) is positive definite.
For I/ C g, we define

E+={Xe€g:B(X,E)={0}}.

If F is a finite dimensional real vector space, then we write F¢ for its complexification

E ®g C. If S is an algebraic subgroup of GG, then we write S¢ for the complexification of
S.

71



I1I.

On the little Weyl group of a real spherical space

3 Adapted points

In this section we introduce the notion of an adapted point in Z. We further parameterize
the set of adapted points and end the section with some applications which will be of use
in the following sections.

We recall that we have fixed a minimal parabolic subgroup P and a Langlands de-
composition P = M ANp of P. For z € Z, let H, be the stabilizer of z in G and let b,
be the Lie algebra of H,.

The following proposition is a reformulation of the so-called local structure theorem
[17, Theorem 2.3].

Proposition 3.1. There exists a parabolic subgroup () with P C (@), and a Levi decom-
position () = LoNg with A C Lgq, so that for every open P-orbit O in Z

Q-0=0,

and there exists a z € O, so that the following hold,

(i)

QNH,=LyNH.,

(ii) the map

Ng x Lg/LogNH, — Z, (n,l(LoNH,)) —nl-z

is a diffeomorphism onto O,

(iii) the sum lg . of all non-compact simple ideals in | is contained in 1y,

(iv) there exists an X € aN bt sothat Lo = Zg(X) and a(X) > 0 for all o € %(Q).

Remark 3.2.

@)

(ii)
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The point z € O with the properties asserted in the above proposition is in general
not unique. On the other hand the parabolic subgroup () and its Levi-decomposition
are uniquely determined by O. (Of course, the parabolic subgroup () and the Levi
decomposition of () do depend on the choice of the minimal parabolic P and its
Langlands decomposition P = M ANp, but these choices we have assumed to be
fixed.)

Property (iv) in Proposition 3.1 is not explicitly stated in [17, Theorem 2.3], but
does follow from the proof of the theorem if Z is quasi-affine. For completeness,
we give here an account of how this follows.

Let zy € Z be so that P - 2, is open. In the proof of [17, Theorem 2.3] an iterative
process is used to produce a sequence of parabolic subgroups

G=Q2Q120Q:2 ...,

each containing P. Further, for each i € N a hyperbolic element X; € (;_1Nh,,)*
is constructed, with the property that L; := Z5(X;) is a Levi subgroup of ); and
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the restriction of ad(X;) to ng, has only strictly negative eigenvalues. Since the
sequence of parabolic subgroups descends it stabilizes, and hence there exists a
parabolic subgroup () with ); = () for sufficiently large ¢ € N. This is the parabolic
subgroup () in Proposition 3.1.

Since A C @ C @; and Z(X;) is a Levi subgroup of @);, there exists an n € Ny,
sothat A C L; := nZg(X;)n™" = Zg(Ad(n)X;). Moreover, as Ad(n)X; is an
hyperbolic element in [;, there exists an [ € L; so that X := Ad(In)X; € a. We set
zi=1In-20 € P-2. Now L; = Zg(X!) and X! € (anbh,.)t. Weset z := 2,
Lg := L; and X' := X for some i € N with (); = . Then ), L and z satisfy
(1), (1) and (iii) in the proposition.

Each iteration uses a finite dimensional representation as input. To be more precise,
for the ¢-th iteration a finite dimensional representation of L;_; is used as input with
the property that it contains a cyclic vector whose stabilizer is L,_; N H,, . As
Z is assumed to be quasi-affine, the theorem of Chevalley guarantees the existence
of such representations. The representation that is used can freely be chosen from
the set of representations with the mentioned property. If for the first iteration a
representation is chosen with the additional requirement that it contains a lowest
weight that does not vanish on any of the o with & € X(Q), then the process
yields )1 = (@, and hence only one iteration is needed. Moreover, in this case
X := —X] has the property listed in (iv). It thus remains to show that there exists a
finite dimensional representation of GG with a lowest weight that does not vanish on

aY for every o € 3(QQ) and that contains a cyclic vector whose stabilizer is equal
to H,.

It follows from [17, Lemma 3.4 & Remark 3.5] that the lowest weights of irreducible
finite dimensional H-spherical representations span (a/(a Nbh.))". Therefore, the
lattice of lowest weights of H,-spherical representations contains a weight A so
that A\(a¥) # 0 for all « € X with ¥ ¢ anb,. Let X’ € (anh,)" be as
above. As the centralizer of X' is equal to L, it follows that for every o € X
we have a” € aN b, only if g, C lg. Therefore, there exists an irreducible finite
dimensional H -spherical representation V' with lowest weight A so that A(«") # 0
for all & € ¥(Q). Let W be any finite dimensional representation that contains a
cyclic vector whose stabilizer is equal to .. Then for sufficiently large n € N the
representation W ® V" contains a cyclic vector whose stabilizer is equal to H,
and admits a lowest weight does not vanish on any of the a¥ with o € X(Q), as
requested.

The assumption that 7 is quasi-affine is crucial here. Up until Section 14 this is the
only place where the assumption is explicitly used.

Definition 3.3. We say that a point 2 € Z is adapted (to the Langlands decomposition
P = M ANp) if the following three conditions are satisfied.

(i) P-zisopenin Z,ie.,p+bh, =g,
(11) [Q,nc g hza
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III.  On the little Weyl group of a real spherical space

(iii) There exists an X € a N b so that Z;(X) = lo.
Remark 3.4.

(a) It follows from Proposition 3.1, that every open P-orbit O in Z contains an adapted
point.

(b) If a point z € Z satisfies (i) and (iii), then (ii) is automatically satisfied. We will give
a proof of this fact later in this section, see Proposition 3.19.

(c) (ii1) can be stated alternatively as
(iii’) There exists an X € a N bt so that a(X) # 0 for all « € X(Q).

(d) The set of adapted points in Z is L¢-stable. To see this, let = € Z be adapted. The
Levi-subgroup Lg decomposes as

Lo = MALg ue, 3.1
where Lg . 1s the connected subgroup with Lie algebra [g ... Note that
LQ,nc g Hz (32)

since [gne C h,. Letm € M,a € Aand! € Ly .. Then! -z = z, and therefore,
Pmal - z = P - z is open and

aN by, = aNAd(ma)by = Ad(ma)(anb;) =anh;.

mal-z

Moreover, g is Lg-stable and hence [, € Ad(l)h, = b, forall I € Lg. This
proves the assertion.

Example 3.5. Let Z = G/Np and let z := e - Np. We claim that the set of adapted
points is equal to M A - z.

Let W := Ng(A)/M A be the Weyl group of 3. The Bruhat decomposition of G
provides a description of P\ Z,

J = |_| Pw - z.
weW

There is only one open P-orbit in Z, namely O := P - z. Since for every p € P

p N hp-z =p N Ad<p)ﬁP = {0}7

we have () = P. It is now easy to see that z satisfies (i) — (iv) in Proposition 3.1. Since

the set of adapted points is M A-stable, it suffices to show that the only adapted point in

Np - z1s z in order to prove the claim. Let n € Np and assume that n - z is adapted. Now
L = Ad(n)p, and hence

anb., =anAdn)p C pnAdn)p=Adn)(pNp) = Ad(n)(m & a).

Since n - z is adapted, there exists a regular element X € a N bt . It follows that
X € Ad(n)(m @ a), and hence Ad(n™1)X € m & a. This implies that n stabilizes X.
Since X is regular, it follows that n = e.
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3. Adapted points

Proposition 3.6. Let z € Z be adapted. Then the following hold.
(i) QN H. = Lyn H.,
(ii) The map
No x Lo/LoNH, = Z, (n,l(LgNH.)) —nl-z
is a diffeomorphism onto P - 2.
Remark 3.7.

(a) The proposition shows that besides (iii) and a weaker version of (iv), which hold by
definition, also (i) and (ii) in Proposition 3.1 hold for adapted points z € Z.

(b) Let z € Z be adapted. We claim that
MANH,=(MnNH,)(ANH,) =(MnH,)exp(anh,). 3.3)

To prove the claim, we first note that M AN H,, M N H, and AN H, are algebraic
subgroups of GG, and that M N H., is a normal subgroup of M A N H,. Define A’ and
M’ to be the images of the projections of M AN H, onto A and M, respectively. Then
A’ and M’ are algebraic subgroups of A and M, respectively. Moreover, AN H, and
M N H, are normal subgroups of A" and M’, respectively. Let

¢:AJ(ANH,)— M /(MnNH,)
be the unique map so that
ap(a) € (MANH,)/(MNH,)(ANH,) (aE A’/(AﬂHz)).

Then ¢ is an algebraic homomorphism. An algebraic homomorphism from a split
torus to a compact group is necessarily trivial. It follows that A* = AN H,, and
hence M’ = M N H,. Moreover, the group A N H., is connected since A N H, is
an algebraic subgroup of A and A is isomorphic to a vector space. This proves (3.3).
From (3.1), (3.2) and (3.3) it follows that

M/(MNH,) x A/exp(ay) = Lg - 2; (m(M N H,),aexp(ay)) — ma - z

is a diffeomorphism. Therefore, if z € Z is adapted, then (ii) in Proposition 3.6 can
be replaced by

(i1”) The map

No x M/(MNH,) xA/explanh,) = Z;
(n,m(M N H.),aexp(anh.)) — nma -z

is a diffeomorphism onto P - z.

Before we prove the proposition, we first prove a lemma.
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III.  On the little Weyl group of a real spherical space

Lemma 3.8. Let 2 € Z be adapted and let ¢ € (). Then q € L if and only if there exists
an element

X €eanb;nb,,
so that lg = Zy(X) (and thus o(X) # 0 for all o« € 3(Q)). In that case

anbhr =anh,..

Proof. Assume that there exists an element X € anhi N hiz so that o(X') # 0 for all
a € X(Q). Letl € Ly and n € N be so that ¢ = In. We will show that n = e. Since
aY € b, forevery a € ¥ with g, C [, we have a(X) = 0 for these roots. This implies
that [ centralizes X. Now in view of (3.1) also the group L centralizes X. It follows
that

Ad(n™HX = Ad(n "1™ X = Ad(¢7 )X € Ad(¢ " )p}, = bt

q-z z)

and hence Ad(n~')X — X is contained in both h and ng. However, since P - z is open,
we have

b Nng = (h. +q)* = g= = {0}.

Hence Ad(n™1)X = X. Since a(X) # 0 for every a € %(Q), it follows that n = e.
Now assume that ¢ € L. It follows from (3.1) that there exist m € M, a € A and
lhe € Lgne so that ¢ = mal,. Since [, is contained in /, it normalizes f)j and hence

anb,, =anAd(g)b; =anAd(ma)h; = Ad(ma)(anby) =anh;.
The latter set contains an element X with Z;(X) = [ in view of Definition 3.3. []

Proof of Proposition 3.6. Let ¢ € Q N H.. Then b, = Ad(q)b; = b;. Since there
exists an element X € a N b so that Z,(X) = I, it follows from Lemma 3.8 that
q € Lg. Therefore, () N H, C Lo N H,. The other inclusion is trivial. This proves (i).
The map Q/(Q N H,) — Z, ¢ — q - z is a diffeomorphism onto () - z. Since also
Ng x Lo — @ is a diffeomorphism and P - z = () - z by Proposition 3.1, assertion (ii)
follows from (i). L]

We move on to give a description of the adapted points in Z. We begin with a lemma
parameterizing the points that satisfy (ii) in Definition 3.3 and the infinitesimal version
of (i) in Proposition 3.6.

Lemma 3.9. Fix an adapted point z € Z. Let 2’ € P - z. Then
lg.ne S qNb =1gN b (3.4)

if and only if there exist m € M, a € Aandn € Zy,(lg ND.) so that 2’ = man - z. In
that case

loNbh = Ad(m)(lo NH.), (3.5)
and hence in particular

anby =anh.,. (3.6)
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Proof. Letn € Zy,(lg Nb.). Since [g e C lg N b, the element n centralizes g ., and
hence
[gne = Ad(n)lgne € Ad(n)(qNb.) = gNAd(n)h. = qNb,...
Moreover, as
loNb. € Ad(n)b: = bn..
and g N h, = [g N b, by Proposition 3.6 (ii), we have

oMb CloNbn. CaNby. =Ad(n)(aNh.) = Ad(n)(lg Nb.) = loNb..

It follows that q N b,.. = [g N h,... We have now proven (3.4) for 2’ = n - z. The
subalgebras [ .., q and [ are M A-stable. Therefore,

[o.nc = Ad(ma)lgne € Ad(ma)(q N bhrz) = 40 Bran-

and
Ad(ma)<q N bnz) = Ad<ma)([Q N hnz) - [Q N bman-z-
This proves that (3.4) holds as well for 2’ = man - z.
For the converse implication, let 2’ € Z and assume that (3.4) holds. By Remark 3.7
(b) there exist m € M, a € Aand n € Ng so that 2’ = man - z. Since qN h, = [p N b,
by Proposition 3.6 (ii), we have

Ad(n) ([Q N hz) = Ad(n) (q N [’Jz) = Ad(ma)™* (q N bman.z) = Ad(ma)™* ([Q N hman.z).

The space on the right-hand side is contained in Ig. It follows that Ad(n)(lo Nh.) C lo.
Now forevery Y € [ N b,

Ad(n)Y - (Y“f’ﬂQ) ﬂ[Q =Y + (nQﬂ[Q) = Y‘I—{O}

We thus conclude that n centralizes [ N b..
We continue to prove the identities (3.5) and (3.6). Letm € M, a € Aand n €
Zn,(lg Nb;). Then

[0 M Bimanz = 4N Biman = N Ad(man)h, = Ad(man)(qNb.) = Ad(man)(lgNh.).

Now a normalizes and n centralizes [y N b.. This proves (3.5). Equation (3.6) follows
from (3.5) by intersecting both sides with a. O

For an adapted point z € Z we define

a:=an(anh,)*

z

and

0 e =X €0a): Zy(X) = o} ={X €a]:a(X)#O0foralla € 3(Q)}.

z,reg *

If z, 2/ € Z are both adapted and P - z = P - 2/, then in view of Proposition 3.6 we may
apply Lemma 3.9 to z and 2’ and conclude that a N, = a N h,.. It follows that aN b,
a; and a? ., only depend on the open P-orbit O = P - 2, not on the adapted point in O.
Later we will prove that a N b, a; and a7, are in fact the same for all adapted points
z € Z. See Corollary 3.17.

For the next lemma we adapt the analysis in [7, Section 12.2].
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III.  On the little Weyl group of a real spherical space

Lemma 3.10. Let z € Z be adapted. There exists a unique linear map
T a2 = Zu,(IlgNh.)
with the property that for every X € a
X + TH(X) € by

Proof. Since g = b, + p, we have

hr Nnp=bhNpt = (h. +p)" =g" ={0}.
Therefore, h; + ng = by @ ng. As [ = fig & ng, we further have

b @ng C by + g = (loNb.)™
Moreover,
dim ((Ig N'h.)") = 2dim(ng) + dim(lg) — dim(lg N h.)
and, in view of Proposition 3.6 (ii) and the fact that g = b, + q,
dim(hy) = dim(q) — dim(q N h,) = dim(ng) + dim(lg) — dim(lg N h.).

It follows that dim ((lg N h.)*) = dim (h; @ ng), and hence

(loNb.)" = by Gng. (3.7)

In particular, for every X € a2 there exists a unique element Y € ng so that X +Y € b,
and thus there exists a unique linear map 7" : aJ — ng whose graph is contained in b . It
remains to be shown that 7" actually maps to Zy, (lo N b.).

Let X € ajand Y € ng satisfy X +Y € h. We will show that Y € Z,, (o N bh.).
Note that a2 = aN(lgNh.)*. As [loNh., (loNh.)L] C (loNh.)+ and [IgNb., a] C IoNb.
we have [lg N h,,al] = {0}. From [lo N, Y] C [lg N, ng] C ng and

(loNb.,Y]=[lgNh, X +Y]C[lgNh.,h] C b,

it follows that
[[Q N bz»Y] - hzL an - {0}7
and thus Y € Z,,(Ig N h.). O

Given an adapted point z, the following lemma gives a characterization of the adapted
points in the open P-orbit P - z.

Lemma 3.11. Let 2 € Z be adapted and n € Ng. Then n - z is adapted if and only if
there exists an X € aZ ., so that

Ad(n™HX = X + TH(X).
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Proof. Assume that n - z is adapted. By definition there exists an element X € a ., =
a Now

o
z,reg*

Ad(n™HX € Ad(n )b, = bt

Moreover, in view of Proposition 3.6 and Lemma 3.9 we have n € Zn,, ([gNb.). The Lie
algebra [g N b, is normalized by a and the roots of [ N b in a vanish on a?. Therefore,
X centralizes [ N b. It follows that

Ad(n ™)X € Ad(Ng)X NAd (Za(lg Nh.)) X C (X +1ng) N Z(lgNh.)
=X + Zn,(IgNh).

Since also X + T3;-(X) € b N (X + Zy,(Ig N'D.)), it follows from (3.7) that
Ad(n X = X + TH(X).

We move on to prove the other implication. Assume that there exists an X € a
that

(o)

o
z,reg S

Ad(n ™)X = X + THX).

First note that
Pn-z=P-z

is an open P-orbit in Z. Further, Ad(n~1)X € ht and thus
X = Ad(n) Ad(n )X € Ad(n)b: = b
Finally, we claim thatn € Zy, (g N'b,). From the claim and Lemma 3.9 it follows that

[Q,nc g hn-z;

and hence that n - 2 is adapted.
It thus remains to prove the claim. Since a(.X) # 0 for all roots a € 3(Q), the map

E:Ng—ng, ur— Ad(u)X —X

is a diffeomorphism. The image of Z, ([oNb.) under = is a submanifold of Z,, (IoNb.)
that contains 0. Moreover, its dimension coincides with the dimension of ZnQ (o Nh,),
and hence it is an open neighborhood of 0 in Z,, (lg N b.). As lg N b. is normalized by
A, also Zy,, (Ig N'h.) is normalized by A. Therefore, Z(Zy, (Io N h.)) is A-stable. The
only A-stable open neighborhood of 0 in Z,,(lg N'h.) is Zy,(lo N b.) itself. We thus
conclude that

E(Zng(IgND.)) = Zay (Ig N h).
The claim now follows as

n' =27 (AdnHX - X) =T (X)) € 2 (Zu,(IoNh.)) = Zn,(Ig N D).
O

We can now describe the adapted points in a given open P-orbit in Z.
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III.  On the little Weyl group of a real spherical space

Proposition 3.12. Let z € Z be adapted. There exists a unique smooth rational map

P, :a — ng

a, reg

so that the following hold.

(i) A point 2’ € P -z is adapted if and only if there existm € M, a € Aand X € a
so that

z,reg
7' =maexp (©.(X)) - 2 (3.8)
we have RX C bL

(ii) Forevery X € a; reg exp(®2(X))-z

The map ., is determined by the identity

Ad (exp(—=®.(X)X = X +T(X) € by (X € al,). (3.9)
Finally, if 2" € P - z is adapted and X € aZ ,,, N b, then
2 € MAexp (9.(X)) - 2
Proof. Define the map
Ual,, Xng = al,., xng; (X,Y) = (X,Ad (exp(—Y))X — X).
Visa d1ffeomorph1sm and its inverse defines a smooth rational map from a3 .., X ng to
itself. Define @, : a? ., — ng to be the map determined by
(X, 2.(X)) =¥ (X, T, (X)) (X €a2,)- (3.10)

By construction (3.9) holds. It follows from Lemma 3.11 that a point 2’ € Pz is adapted
if and only if (3.8) holds. Moreover, (3.9) implies that for every X € a?

X eAd (exp(@Z(X)))[jj = b@z(X)~z'

This shows that @, has all the desired properties.
We move on to show uniqueness. Let ® : a?
properties (i) and (ii). If X € a? ___, then

z,reg

— ng be a second map satisfying the

z,reg’

XGaﬂh mhequ)/ X))z

exp(P
In view of Lemma 3.8
exp (CDZ(X)) exp ( — @;(X)) € No N Lg = {e},

and hence ¢ (X ) = @/ (X). This shows that ¢, is unique.
Finally, let 2’ € P - z be adapted and X € a2, N h2. Then

z,reg
Xean b N hexp 2(X))-z

By Lemma 3.8
2 € Lgexp (®.(X)) - 2

Since exp ((IDz(X)) - z is adapted we have Lg nc € Hexp(,(x)).z» and thus
Loexp (9.(X)) -z = MAexp (9.(X)) - 2.

This proves the final assertion. O]
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We complete the description of the adapted points in Z with a proposition, which
provides a set of adapted points that intersects with all open P-orbits in Z.

Proposition 3.13. Let z € Z be adapted. Every open P-orbit in Z contains a point f - z
with f € G Nexp(ia)H,c. Forevery f € G Nexp(ia)H, ¢ the point f - z is adapted.
Moreover,

[thf-z: [Qﬂhza
aNbr,=anh,
anby, =anb;.

To prove the proposition we make use of the following complex version of Lemma
3.8. The proof for this lemma is the same as the proof for Lemma 3.8.

Lemma 3.14. Let 2 € Z be adapted and let ¢ € Qc. Then q € Lq ¢ if and only if there
exists an element

so that lg c = Zy.(X) (and thus o(X) # 0 for all o« € ¥(Q)). In that case

ac N by = ac NAd(q)bre.

Proof of Proposition 3.13. We adapt the arguments from [16, Sections 2.4 & 2.5].
Let O be an open P-orbitin Z. By [16, Lemma 2.1] the set

GNPFPcH, ¢

is the union of all open P x H,-double cosets in G. Therefore, there exist p € FPr and
h € H.c sothat ph € G and O = Pph - z. Let X € aJ ., N bz . It follows from
Proposition 3.12 that we may choose p so that X € b,,.,. In view of Lemma 3.14 we
have

p e Pen LQ7(C = M(CA(C(NP,C N LQ@).

As NpcNLgc C H, ¢, Mc = M exp(im) and Ac = Aexp(ia), we may further choose
p so that p € exp(im) exp(ia). We claim that now ph € exp(ia)H., c.

To prove the claim, define g — ¢ to be the conjugation on G¢ with respect to GG. Note
that Mc exp(ia) is a group that is stable under this conjugation. Since ph € G, we have
ph = Ph. Moreover, since p € exp(im) exp(ia) we have p = p~', and hence

pP=p 'p=hh"".

The group Mc exp(ia) N H., ¢ is algebraic and hence it has finitely many connected com-
ponents. Therefore, exp(im) N H, ¢ is connected, and thus equal to exp(im N b,). It
follows that p € exp(ia)H, ¢. This proves the claim. We have now proven that the set

(G N exp(ia)szc) -z

intersects with every open P-orbit in Z. We move on to show that all points in this set
are adapted.
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Let a € exp(ia) and h € H, ¢ be so that ah € G. Then

pc + Banoc = pc + Ad(ah)h.c = Ad(a)(pc + bac).

Since P - z is open, the right-hand side is equal to gc. Intersection both sides with g now
yields
p+ hah-z =9

and therefore Pah - z is open in Z. Furthermore, since [ 5. c is stable under the action
of Ac and [g . C b,, we have

[Q,nc,(C - Ad<a) [Q,nc,(C g Ad(&)bz,c = Ad(ah)hz,(C = hah~z,(C~

Intersecting both sides with g yields

[Q,nc g hah-z .

Finally,

ah-z

and hence intersecting with g yields

anbh . =anpt.

ah-z,

Since z is adapted, a N b contains an element X so that Z;(X) = . This concludes
the proof that ah - z is adapted.

It remains to prove that [p N hep.. = [ N b, and a N bgp.. = aNb,. These identities
follow by intersecting with g and a, respectively, from

lg.c N Banzc = loc NAd(ah)h.c = Ad(a)(loc Nb.c) = locNb.c.
]

We end this section with three corollaries of the previous results in this section. We
begin with a description of the normalizer of b,.

Corollary 3.15. Let z € Z be adapted. Then
Na(h.) € MA(G Nexp(ia)H..c ).

In particular,
Ng(h.) = b. + Na(h2) + Nu(bh2).

Remark 3.16. The second assertion in the corollary was proven in [16, (5.10)] and a
slightly weaker version in [17, Lemma 4.2]. In these articles the requirement (iii) in
Definition 3.3 is not mentioned, but in general it cannot be omitted. If for example H =
Npand z = man- N p, then Ny(h,) = Ad(man)p. This is only contained in m@adnp if
n = e. In Example 3.5 we showed that the latter condition is equivalent to the existence of
regular elements in a N L. The additional requirement (iii) in Definition 3.3 is therefore
necessary in this case.

82



3. Adapted points

Proof of Corollary 3.15. Let g € Ng(h,). Then by, = Ad(g)h. = b.. It follows that the
properties (i) — (ii1) in Definition 3.3 hold for the point g - 2z and thus ¢ - z is adapted. By
Proposition 3.13 there exists an f € G'Nexp(ia)H, ¢ so that Pg-z = Pf - z. Moreover,
f - z is adapted and

aﬂbfz =anb = aﬂb;Z.

Since = is adapted, these spaces contain elements X so that [y = Z;(.X). It follows from
Lemma 3.8 that g - = € Lo f - z. Since Lgne € Hy.. and Lg = M ALqnc, there exist
m € M and a € Asothatg-z = maf - z. This proves the first assertion in the Corollary.

We move on to the second assertion. Consider the set A consisting of all A € a* for
which there exists a regular function ¢, € R[G] so that ¢(e) = 1 and

dr(manzh) = a*p(x) (mEM,aEA,nENp,hGHZ,xEG).

It follows from [17, Lemma 3.4 & Remark 3.5] that A spans (a/ay)*. For each A € A the
function ¢, extends to regular function on G¢ which satisfies

¢x(ah) = a (a € exp(ia),h € (H.c).),

where (H, ¢ ). is the connected open subgroup of H, ¢. Note that a* with a € exp(ia) is
real if and only if @* = +1. From this it follows that (G N exp(ia)H.c)/H. is discrete.
Since it is algebraic, it is in fact a finite set, and hence H, is a relatively open subset of
G Nexp(ia) H, c. Therefore, there exists a subspace s of m @ a so that

Ng(hz) = bz +s.

We may assume that Ny, (h.)® N,4(h,) C s. To prove the second assertion, it now suffices
to show that s = (s "m) @ (s N a). The latter follows from (3.3) with H, replaced by the
real spherical subgroup Ng(h,). O

The spaces a N b, and a; play an important role in this article. By the following
corollary these spaces do not depend on the adapted point z.

Corollary 3.17. If z, 2’ € Z are adapted, then aNh, = aNb,.

Proof. By Proposition 3.13 there exits an f € G Nexp(ia)H,c and ap € P so that
2 =pf - z. Moreover, f - zis adapted and a N b, = anb,. It follows from Proposition
3.6 that we may apply Lemma 3.9 to the points f -z and pf - z. It follows that aN b,s.., =
anNbr.=anh.. O]

In view of Corollary 3.17 we may make the following definition.

Definition 3.18. We define
ap == a N [j 25

where z € Z is any adapted point. We further define
o .__ 1
a’:=ana
and

@ = {X ea:a(X)#£0foralla € B(Q)} = {X € a°: Z,(X) = Io}.

reg *
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The subalgebras m N b, and m N h., may not be equal for all adapted points z and z’.
However, there exists an m € M so that

mNbh, =Ad(m)(mnNbp.).

We note that a] = a° and a? ., = a;,, for all adapted points z € Z.

z,reg reg

Finally, we give the alternative characterization of adapted points which we announced
in Remark 3.4 (b).

Proposition 3.19. Let z € Z. Then z is adapted if and only if the following hold.
(i) P-zisopenin Z,i.e,p+bh, =g,
(ii) There exists an X € a N by so that Zy(X) = lo, i.e., ag, N by # 0.

Proof. By definition adapted points satisfy (i) and (ii). For the converse implication,
assume that z satisfies (i) and (ii). Let X € a’_N hj. It follows from Proposition 3.12

reg

that there exists an adapted point 2’ € P - z so that X € a2, N h5. By Lemma 3.8 there

reg

exists al € Lg so that z = [ - /. Since the set of adapted points is L)-stable, it follows
that z is adapted. [

4 Description of Iy, in terms of a graph

As in [4, Proposition 2.5] we may describe of the stabilizer subalgebra b, of an adapted
point z in terms of a graph. It follows from Proposition 3.6 that for every adapted point
z € Z there exists a unique linear map

T, : Mg — (mN(mNh.)") & a® &ng,

so that
h. = (loNh.) ©G(T2).
Here G(T,) denotes the graph of T’,.

Lemma 4.1. Let z € Z be adapted. The subspace (m N(mnN f)z)L) D a’Dngofgis
(Lo N H,)-stable. Moreover, the map T, is (Lg N H.)-equivariant.

Proof. Note that
(mNmNp.))@a’dng=qgn(lgNh.)"

As LN H, stabilizes both q and [y N, and the adjoint representation preserves Killing-
orthocomplements, the first assertion follows.
It follows from the first assertion that the decomposition

g:ﬁQ@([Qﬂf)z)@ ((mﬂ(mﬂhz)L)Géao@nQ)

is stable under the adjoint action of Lg N H. The second assertion now follows from the
uniqueness of 7. O]
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4. Description of h, in terms of a graph

For a € ¥(Q) let p,, be the projection g — g, with respect to the root space decom-
position

g:m@aﬁé@ga.

acy

Likewise, we write p,, and p, for the projections g — m and g — a with respect to this
decomposition. For an adapted point z € Z and Y € ng we define the z-support of Y to
be

supp, (V) := {8 € X(Q) U {m,a} : ps(T:(Y)) # 0}.
For every o € 3(()) we have
—a(X)Y + (ad(X) o L) (V) = [X,Y +T.(Y)] Ch. (X €ay,Y €9-4)
The uniqueness of the map 7" implies that
ad(X)oTL| =—a(X)T.|

In particular,

Oé| — _ﬁ|0[) lfﬁ G E(Q) Wlth 5 E Suppz(g—a)7 (4 1)
" 0 if m € supp,(g—a) or a € supp.(g-a)- '

The map 7, possesses several symmetries, some of which are described in the follow-
ing lemma.

Lemma 4.2. Let z € Z be adapted. If X € aN bt, then
B(IX,Vi], T.(¥2)) = B(IX, V;, .(v1)) (Y, Y3 € g).

Remark 4.3. If o, f € £(Q) and Y_, € g_, and Y_3 € g_p, then the identity in the
lemma specializes to

B(Y_a, paTo(Yop))a(X) = B(Y-p, psT.(Y-0)) B(X). (4.2)

This identity was proved by Brion in [4, Proposition 2.5] in case G and H are complex
algebraic groups and for one specific choice of X.

Proof of Lemma 4.2. Since [X, Y]], Ys € ng we have
B(X, Vi), Y2) =0,
and since [X, T, (Y})] € ng and T,(Y>3) € q, we have
B([X, T.(\1)], T:(Y2)) = 0.
Therefore,

B([X,Y1], T.(Y2)) — B(T.(Y1), [X, Ya]) = B([X, Y], T.(Y2)) + B([X, T.(Y1)], Y2)
= B([X, Y1 + T.(Y1)], Ya + T.(Y2)).

The right-hand side equals 0 as [X,Y; + T.(Y;)] € bt and Y5 + T,(Y3) € b.. O
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III.  On the little Weyl group of a real spherical space

5 Limits of subspaces

For £k € N let Gr(g, k) be the Grassmannian of k-dimensional subspaces of the Lie
algebra g. For our approach to the little Weyl group we will need to consider certain
limits of the stabilizer subalgebras b, in Gr (g, dim(hz)). In this section we introduce the
relevant limits and discuss their properties.

Definition 5.1. We say that an element X € a is order-regular if
a(X) # B(X)
for all a, 5 € ¥ with a # £.

If X € ais order-regular, then in particular o(X) # —a(X) and therefore a(X) # 0
for every a € Y. This implies that order-regular elements in a are regular. Every order-
regular element X € a determines a linear order > on X by setting

a>f ifandonlyif «o(X) > f(X)
for a, 5 € 3.
Proposition 5.2. Let E € Gr(g, k) and let X € a. The limit

Ex = tli)rglo Ad (exp(tX))E,

exists in the Grassmannian Gr(g, k). If \i < Ay < --- < A\, are the eigenvalues and
D1, - - -, Pn the corresponding projections onto the eigenspaces V; of ad(X), then Ex is
given by

Ex =@ n(EnPV;). (5.1
i=1 j=1

The following hold.
(i) If £ is a Lie subalgebra of g, then Ex is a Lie subalgebra of g.
(ii) If X € ais order-regular, then Ex is a-stable.

(iti) Let R C a be a connected component of the set of order-regular elements in a. If
X eRandY € R, then (EX)Y = FEy. Inparticular, if X, Y € R, then Ex = Ey.

(iv) If 9,9’ € G and
tlirn exp(tX)gexp(—tX) = ¢,
—00

then
(Ad(9)E) , = Ad(g) Ex

(v) Let Ec x be the limit of Ad (exp(tX))E(c for t — oo in the Grassmannian of
k-dimensional complex subspaces in the complexification gc of g. Then

Ecx = (Ex)c.
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6. The compression cone

Proof. The proofs for all assertions with the exception of (iv) and (v) are given in [19,
Lemma 4.1]. Although order-regular elements are in [19] assumed to have the additional
property that they are contained in a~, this is not used anywhere in the proof of Lemma
4.1 loc. cit.

We move on to prove (iv). If A, — 1 fort — coin End(E), then A, Ad (exp(tX))E
tends to F'x as t — oo. The identity now follow straightforwardly from the fact that
(¢') ' exp(tX)gexp(—tX) converges to e in G.

Finally we prove (v). The space E¢ x is a complex subspace of g ®r C. Since
E is contained in £ ®p C as a real subspace, the limit Ex is contained in E¢ x as a
real subspace. Therefore, Ex ®r C C E¢ x. A dimension count shows that equality
holds. [

Remark 5.3. If X is not order-regular, then £’y need not to be stable under the action
of a, even if X is regular. An example of this can be constructed as follows. Let o, 8 €
Y(a) be such that & # § and a(X) = B(X). Let Y, € g, and Y3 € gz and define
E =R(Y, + Yjs). Now E consists of eigenvectors for ad(X'), hence Ex = E. However
L' 1s not a-stable.

6 The compression cone

In this section we introduce the compression cone of a point z € Z. It consists of all
X € a for which the limit b, x is equal to a given limit subalgebra. The main result
in this section is that the compression cones are the same for all adapted points. (See
Proposition 6.5.) The compression cone for an adapted point is therefore an invariant
of the space Z, which we call the compression cone of Z. For a non-adapted point the
compression cone may be strictly smaller than the compression cone of Z. The closure of
the compression cone of Z will serve as a fundamental domain of the little Weyl group.

We fix an adapted point 2y € Z and define the subalgebra

by == (Ig N h,) + Tig. 6.1)

This subalgebra was defined in the introduction as a limit subalgebra. From Lemma 6.4
it will follow that the two definitions indeed agree.

Clearly hy depends on the choice of the adapted point 2z, € Z. However in view of
the following lemma, another choice of 2z, would yield an M -conjugate of b.

Lemma 6.1. Let z € Z be adapted. There exists an m € M so that
(lo Nh2) @1 = Ad(m)bhy.

Proof. The assertion follows directly from Proposition 3.13 and Lemma 3.9. The latter
lemma we may apply in view of Proposition 3.6. [

Definition 6.2. For z € Z and X € a we define
hz,X = (bZ)X = tlinoloAd (exp(tX))hz
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III.  On the little Weyl group of a real spherical space

Here the limit is taken in the Grassmannian of dim(f,)-dimensional subspaces of g. We
further define for z € Z the cone in a

C.:={X €a:bh,x =Ad(m)hy for some m € M}.
Lemma 6.3. Let z € Z be adapted. We define the set

S, ={a+p:ae€X(Q),B €supp,(g-o) N X(Q)} (6.2)
U{a € 3(Q) : a € supp,(ga) or m € supp,(ga) }-

The cone C, is given by
C.={X e€ea:vyX)<0forally € S.,}. (6.3)
In particular C, is an open cone in a, a” is contained in C,, and
C.+ay=C.. (6.4)

The dual cone
Cl:={ ea*: \NX)>0forall X € C.,}

is equal to the finitely generated cone

C;/ = Z RS()’}/.

YES:

Finally, C, is equal to the interior of the double dual cone (C))" and thus it is equal to
the smallest convex open cone containing the order-regular elements in C..

Proof. Let X € a. Since h, = (Ip N'h,) & G(T) we have b, x = Ad(m)by for some
m € M if and only if

lim Ad (exp(tX))G(T.) = nig.

t—o0

In view of (5.1) the latter is equivalent to the conditions

—a(X) > p(X) ifa,f € X(Q)and 5 € supp,(g-a),
—a(X) >0 if o € ¥(Q), and m € supp,(g_o) or a € supp,(g_a)-

This proves (6.3). The identity (6.4) follows from (4.1). All other assertions are trivial
consequences of (6.3). O

Lemma 6.4. Let z € Z. The following hold.
(i) Foreverym € M and a € A we have C,,,.. = C..
(ii) C. # 0 if and only if P - z is open. In that case a~ C C..
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6. The compression cone

Proof. Let X € a. It follows from Proposition 5.2 (iv) that b,,... x = Ad(ma)b, x.
Since by is A-stable it follows that X € C,,,., if and only if X € C,. This proves (i).

We move on to prove (ii). Assume that C, # () and let X € C.. Thennp C b.x,and
hence b, y + p = g. This implies that g = Ad (exp(tX))h. + p for large ¢ > 0. Since
g and p are both stable under the adjoint action of A, it follows that g = b, + p and thus
P - z is open.

Assume now that O := P - z is open. We will show that a= C C,. To do so, let
z/ € O be adapted and let m € M, a € Aand n € Np so that z = man - 2. It
follows from Lemma 6.3 that a™ is contained in C,.. In view of Proposition 5.2 (iv) we
have b,..» x = b x for every X € a~. Therefore, a= C C,.... It follows from (i) that
C. = C,..-, and hence we have a— C C,. This proves (ii). O

Proposition 6.5. Let z € Z be adapted. For every z' € Z such that P - Z' is open, we
have
a C CZ/ - CZ.

Moreover, if 2’ is adapted, then
C.. =C..

If P -2 is open, but 2’ is not adapted, then the inclusion C., C C, may be strict.
Before we prove the proposition, we first consider the example of Z = GG/ N p where this
phenomenon is readily seen.

Example 6.6. Let Z = G/Np and let z = ¢ - Np. We recall from Example 3.5 that the
only open P-orbit in Z is P - z and the set of adapted points is equal to M A - z.
Since np is a-stable, we have
C,=a.

LetY e npand write Y = ) .. Y, with Y, € g,. We claim that
Coxp(v)> ={X €a:a(X) <0forall a € " with Y, # 0}.

In view of Proposition 5.2 (iv) the set on the right-hand side is contained in Ceyp(y)... For
the other inclusion it suffices to show that no order-regular element in the complement of
the set on the right-hand side is contained in Cexp(y)... Let X € a be order-regular, and
assume that there exists a root & € X7 so that Y, # 0 and o(X) > 0. Let g € X1 be so
that ap(X) is minimal among the numbers «(X) with « € X1, Y, # 0 and o(X) > 0.
Now

Ad(Y)0Y,, € 0Ya, + [Ya,, 0Ya,] + np,

and hence

Ad (exp(tX)) Ad(Y)0Y,, € e "0V, + (Yo, 0Ya,] + np

The limit of Ad (exp(tX))R ( Ad(Y)QYaO> in P(g) is a line contained in p as —ap(X) <
0 and [Yy,, 0Yo,] € a\ {0}. It follows that X ¢ Cexp(v).--
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III.  On the little Weyl group of a real spherical space

The proof of Proposition 6.5 relies on the following lemma, which will also be of use
later on.

Lemma 6.7. Let z € Z and f € G Nexp(ia)H,c. For every order-regular element
X€a

bz,X = bf-z,X-

Proof. Let a € exp(ia) and h € H, ¢ be so that f = ah. In view of Proposition 5.2
(v) limits and complexifications can be interchanges. Therefore, for every order-regular
element X € a

(hfex)c = Jlim Ad (exp(tX))ban-s,c
= tlgg Ad (exp(tX)ah) h.c
= Ad(a)(hz,X)C.

By Proposition 5.2 (ii) the space b, x is a-stable and therefore (f, x )¢ is normalized by a.
It follows that (hy.. x)c = (h.,x)c. Intersecting both sides with g now yields the desired
identity. ]

Proof of Proposition 6.5. By Proposition 3.13 there exists an f € G Nexp(ia)H, ¢ so
that f - z is adapted and 2’ € Pf - z. By Lemma 6.7 we have h, x = h., x for every
order-regular element X € a, and hence C;., = C,. By replacing z by f - z we may thus
without loss of generality assume that 2’ € P - z.

It follows from Lemma 6.4 (ii) that a~ is contained in C,,. We move on to show that
C. is contained in C,. Let m € M, a € Aand n € Ny be so that 2/ = man - z. Such
elements exist by Proposition 3.6; see Remark 3.7 (b). In view of Lemma 6.4 (i) we have
C., =Cyp.,.

Let X € C,., be order-regular. We may write n = n_n_ with

ogini)e @ ..
a€X(Q)
+a(X)>0
In view of Proposition 5.2 (iv) we have b,,.. x = b, .. x. We claim that n, = e. Assum-
ing the claim is true, we have b,,.. x = b, x and thus X € C,.
To prove the claim we assume that n, # e and work towards a contradiction. Let
X, €ag, Nht. For € X(Q) let Us € g be so that

reg
Ad(n )X, =X+ Y Us
BeX(Q)

Note that there exists an § € X((Q)) so that Ug # 0, and that Ug # 0 only if 5(X) > 0.
Let a € (@) be the maximal root for the order defined by X for which U, # 0. Set
Y_, := 0U,. There exists an m’ € M so that b,, . x = bhp.x = Ad(m Hhy x =
Ad(m’)by. It follows that

RY., C fig = Ad(m')ftg € Ad(m')hy = b, ...x-
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6. The compression cone

We will exploit this fact.

LetY € b, .. be so that (RY)x = RY_,. The existence of such an element Y is
guaranteed by equation (5.1) in Proposition 5.2. The projection of ¥ onto g_, along
the root space decomposition is up to scaling equal to Y_,. After rescaling Y, we may
therefore assume that Y decomposes as

=Y.+ Y VY,

Bexu{0}
Ba

withY 3 € g gif § € Yand Yy € m @ a. Since (RY) x = RY_,,, the element Y_3 can
only be non-zero if 5(X) > «(X) > 0 (and since X is order-regular, equality holds if
and only if 5 = «). Therefore, B(X,,Y_3) = B(Us,Y_3) = 0 forall g € ¥ U {0} for
which Y_3 # 0 and all 5’ € ¥(Q) for which Ug # 0. It follows that

B(Ua,Y_o) = B(Ad(ny)X,Y) = B(X,,Ad(n;")Y) = 0.

For the last equality we used that Ad(n;')Y" € b,. Since —B(-,0) is positive definite
on the semisimple part of g, we conclude that U, = 0. This is a contradiction.

We have now proven that C., C C,. For the second assertion in the proposition we
may reverse the role of z’ and z and further obtain the other inclusion C, C C... [l

Proposition 6.5 allows us to make the following definition.

Definition 6.8. We define C C a to be the cone given by C := C,, where z is any adapted
point in Z. The cone C is called the compression cone of Z.

Let ay be the edge of C, i.e.,
ag :=CnN(=C). (6.5)

We note that ag is a subspace of a. We end this section with a description of the relation
between ag and the normalizer of f..
Recall the set S, from (6.2).

Proposition 6.9. Let 2 € Z be adapted.

(i) The space ag is equal to the joint kernel of S, i.e.,

ag={X €a:0(X)=0forallocecS,}.

(”) g = Na(hz)'

Proof. Assertion (i) follows from Lemma 6.3. We move on to (ii). It follows from (i) that
ap normalizes the graph G(7,). Moreover, a normalizes [ Nb., and hence az normalizes
h.. This shows that ag C N,(b.).

Let X € Ny(h,). Forevery Y € awehave by, x4y = b, y. Inparticular Ny(h,)+C =
C. Tt follows that N,(h.) C C and thus N,(h.) CC N (—C) = ag. O
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III.  On the little Weyl group of a real spherical space

7 Limit subalgebras and open P-orbits

In this section we describe a relation between limits of ), and open P-orbits in PNg(a)-z
for an adapted point z.

We define the group
N = Ng(a) N Ne(lgne + ap). (7.1)
The group N is relevant because of the following lemma.

Lemma 7.1. Letv € Ng(a), z € Z, and X € a. If z is adapted and b, x = Ad(v)by,
thenv € N.

Proof. Since z is adapted, the a-stable subalgebra g .. +ay is contained in fy,. Therefore,
[o.nc + @y is also contained in h, x = Ad(v)hy. From (6.1) it is easily seen that the
maximal §-stable subspace of Ad(v)hgis Ad(v)(lgNh). Since [ . is H-stable, it follows
that [, € Ad(v)(lg N h). From the fact that [g ,,. is the sum of all non-compact simple

ideals in g N b, it follows that in fact [ ,c = Ad(v)lg ne. Thus we find that v normalizes
[Q nc. Moreover,

ay Canb.x =anAd(v)hy = Ad(v)(anhy) = Ad(v)ay.
Therefore, v € N. O
The main result of this section is the following proposition.
Proposition 7.2. Let z € Z be adapted and let w € N. The following are equivalent.
(i) There exists a X € a so that b, x = Ad(wm)by for some m € M,
(ii) Pw=!- zis openin Z,
(iii) X € Ad(w)C if and only if b, x = Ad(wm)by for some m € M.
Before we prove the proposition, we first prove a lemma.

Lemma 7.3. Let z € Z and v € N. If z is adapted and Pv=" - z is open, then v="' - z is
adapted.

Proof. Assume that 2 is adapted and Pv~" - z is open. As v normalizes a and g .. + ay,
it also normalizes m and hence a + m+ [g .. = lg. If X € an b is so that [y = Z;(X),
then

[Q = Ad(’l)_l)[Q = Zg(Ad(v_l)X).

Moreover, Ad(v")X € Ad(v")(anhs) = anb, . The assertion now follows from
Proposition 3.19. U
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Proof of Proposition 7.2. (i)=(ii): Let X € a. If h, x = Ad(wm)by for some m € M,
then

bw*Lz,Ad(w*l)X = Ad(w_l)bz,X = Ad(m)b@7

and hence Ad(w™1)X € Cy-1.,. Now Pw™! - z is open in view of Lemma 6.4 (ii).
(ii)=>(iii): By Lemma 7.3 the point w~" - z is adapted. It follows from Proposition 6.5
that C,,—1., = C. Therefore X € Ad(w)C if and only if

hw—l-z,Ad(w—l)X = Ad(m> b@

for some m € M. The implication now follows from the identity

Ad(w_l)hz,X - hw*l-z,Ad(w*I)X‘

(iii)=(i): This implication is trivial.

8 Limitsofh,

In this section we describe the closure of Ad(G)b, in the Grassmannian. We will show
that this closure is a finite union of G-orbits, each of the form Ad(G)b. x, where z is an
adapted point in Z and X € C. The crucial tool for this is the polar decomposition ([16])
for Z.
Recall the set S, defined in (6.2). For an adapted point z € Z let M be the monoid
generated by 5., i.e.,
M, :=NS,. (8.1)

We note that the negative dual cone
—CV:=—{¢ea":&{X)>0forall X € C}

of C is equal to the cone generated by M. A priori M, may depend on the adapted
point z € Z, but the cone spanned by M., is independent of z. We write S, for the set of
indecomposable elements in M. Note that S, C 9.,.

The closure of the compression cone C is finitely generated and hence polyhedral as
—CV is finitely generated. We call a subset F C C a face of C if 7 = C or there exists a
closed half-space H so that

F=CNH and CNIH =0.

There exist finitely many faces of C and each face is polyhedral cone. A face F of C is
said to be a wall of C or C if span(F) has codimension 1.
Let z € Z be adapted. Each subset S of S, corresponds to a face F of C, namely

F=Cn () ker(a). (8.2)

a€eS
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The map from the power set of S, to the set of faces of C is surjective. If C¥ is generated
by a set of linearly independent elements, then this map is also injective. If F is a wall of
C, then there exists an element o« € S, so that

F =CNker(a). (8.3)
For an adapted point z € Z and a face F of C we define
M, r={oceM,: 0"]__ = 0}. (8.4)

Note that M, r is a submonoid of M. We further note that the annihilator of M, r is
equal to

ar := span(F),
1.e.,
(] ker(o) =ar. (8.5)
UEMZ’]:

Lemma 8.1. Let 2 € Z be adapted and let F be a face of C. Let M. 5 be as in (8.4).
For every X in the (relative) interior of F

h.x=(onb)e P 6( S poTl ) (8.6)
a€X(Q)  oE—atM.
In particular, for all X and X' in the (relative) interior of F
h.x = b2 x.
Proof. Let X be an element from the interior of /. Then
M.r={oceM,:0(X)=0}

For o € ¥ U {0}, let p, : g — g, be the projection onto g, along the Bruhat decomposi-
tion, where go denotes m @ a. If « € ¥£(Q) and Y € g_,,, then

Ad (exp(tX)) (Y + T.(Y))
— o te(X) <Y + Z p(,TZ(Y)) + Z etU(X)paTz(Y)-
oce—a+M, F o€(—a+M)\(—a+M; F)

Ifo € —a+M,buto ¢ —a+ M, 7, then 0(X) < —a(X). Therefore,
R _
(R +7.01)) =R(¥+ Y L),
O'G—CH-MZ,}‘

and hence

P o X poml )cOm),

aeX(Q) oE—a+M; F

In fact, equality holds since the dimensions of both spaces are equal. As

bz,X = ([Q N hz) S (g(Tz))X7

this proves (8.6). It follows from (8.6) that b, x does not depend on the choice of X in
the interior of F. O
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Lemma 8.1 allows us to make the following definition.

Definition 8.2. For an adapted point z € Z and a face F of C, define

bz,]—' = hz,X
with X contained in the interior of F.

We note that for every adapted point z € Z there exists an m € M so that
h.z = Ad(m)by.

Lemma 8.3. Let z € Z be adapted and let F be a face of C. The Lie algebra b, r is a
real spherical subalgebra of g. Moreover,

Ny(b.7) =b.r+ar+ Nu(h. r).

Finally,
f)z,]: Na= ap.

Proof. By Proposition 5.2 (iii) there exists an m € M so that for all X € C

(bz,]—')X = hz,X = Ad(m)h@.

Since Tip C by, it follows that (h. )y + p = g and hence Ad (exp(tX))b.r+p =g
for sufficiently large ¢t > (. Since p and g are both stable under the action of A, we find

hz,F+p =4g.

In particular b, 7 is a real spherical subalgebra of g.
By Corollary 3.15

Ng(b.,7) = b7+ Na(b..7) + Nu(bh. r).

To prove the second assertion in the lemma, it suffices to show that N,(h, ) = ar. It
follows from equation (8.6) that b, » is normalized by az, and hence ar C Ny(h, 7). To
prove the other inclusion, let X € N,(h, #). It follows from (8.6) that o(X) = 0 for all
o € M, rsothat —a + o € supp,(g—,) for some o € ¥(Q). The submonoid M, r is
generated by the indecomposable elements from M, that vanish on F. Therefore, there
exists a set of generators o of M, r with —a + o € supp,(g_,) for some a € X(Q). It
follows that X is in the joint kernel of a set of generators of M, r, and hence o(X) = 0
for all 0 € M, r. By (8.5) the annihilator of M r is equal to ar. Therefore, X € ar.
This proves the second assertion.
Finally, for every X € C

ap Canb.r=(aNbh.r)x Can(h.r)x =anbhy C ay.

Here we used Proposition 5.2 (ii1) for the second equality. It follows that a N b, r =
Q. O
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The following proposition describes the dependence of the Lie algebras b, » on the
adapted point z.

Proposition 8.4. Let z, 2’ € Z be adapted and let F be a face of C. If P-z = P - 2, then

Ad(G)b, 7 = Ad(G)b, 7.

The proof for the proposition relies on the following two lemmas. Recall the map
T :a° — Zy,(lg N'h.) from Lemma 3.10.

Lemma 8.5. Let z € Z be adapted. Then

m(THCS P g
a€X(Q)
a€supp, (g—a)

Proof. Let p, be the projection g — a along the decomposition g = m @ a © P ¢, ga-
We claim that
Im (T) C (ker(pe o T2)) " Nng (8.7)

To prove the claim, let X € a° and Y € ker(p, o T%,). Now 7, (Y') E m @ nQ Using
that Y € Tig, it follows that Y +7.(Y') € fig@®méng. Therefore, B(X,Y Y)) =0.
Moreover, as T:-(X) € ng and T.(Y) € m @ ng, we have B(T:-(X), Z( )) 0. It
follows that

B(T(X),Y) = B(T/(X),Y) + B(T;/(X), T.(Y)) + B(X,Y + T.(Y))
=B(X + T (X),Y + T.(Y)).
The right-hand side vanishes as X + T:-(X) € bt and Y + T.(Y) € b.. It follows that

B(Im (T5), ker(ps o T.)) = {0}, and hence the claimed identity (8.7) follows.
We have

€L

1
(ker(pa o T.)) Nng C ( D g_a> Nng= P o
aex(Q) a€X(Q)
agsupp,, (9—a) a€supp,, (g—a)
and hence
m(THC P oa
aex(Q)
acsupp, (9—a)

in view of (8.7). L]

Recall the map . : a;,, — ng from (3.10).

Lemma 8.6. Let z € Z be adapted. Then

@ga

aeX(Q
a|c<0
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Proof. If X € a?,,, then X does not vanish on any root in 3((), and hence the map

reg?
U:ing —>ng, Y Ad(exp(Y))X — X

is a diffeomorphism. As

n= P ga

aeX(Q)
alz<0
is an a-stable Lie subalgebra of n, the restriction of ¥ to ny maps n, onto itself. There-
fore, it suffices to prove that Ad (exp (CDZ(X)))X — X €nyg.
It follows from (3.9) that Ad (exp (©.(X)))X — X € Im (T}") for every X € Oreg-
By Lemma 8.5 the image of 7" is contained in the direct sum of all root spaces for roots
a € X(Q) with a € supp,(g_,). By Lemma 6.3 we have a|5 < 0 for any such root. This

proves the lemma. O

Proof of Proposition 8.4. Assume that P-z = Pz’ and let X be contained in the interior
of F. By Proposition 3.12 there exist m € M, a € Aand n € exp (Im(®.)) so that
Zz' = man - z. By Lemma 8.6

neexp( @ ga>.

a€X(Q)
(X)<0

It follows that the limit for ¢ — oo of exp(t X )man exp(tX) ™' = maexp(tX)nexp(tX) ™!
exists in GG. We write g for the limit. By Proposition 5.2 (iv) we now have

hz’,]-' = hz’,X = (Ad(man)hz)X = Ad(g)h%x S Ad(G)hz,X = Ad(G)hz,f-
O

We continue with a description of the closure of Ad(G)b. in the Grassmannian. For
this we need the so-called polar decomposition. The following proposition, describing
the polar decomposition for Z, is an adaptation from [16, Theorem 5.13].

Proposition 8.7. Let = C Z be a finite set of adapted points so that P - = is the union of
all open P-orbits in Z. Then there exists a compact subset {2 C G so that

Z =Qexp(C) - . (8.8)

Proof. By [16, Theorem 5.13] there exists an adapted point zy € Z, a finite set F' C
G Nexp(ia)Ng. (b, c) and a compact set 2y C G so that

7 = Qoexp(C)F - z. (8.9)

Moreover, for every open P-orbit O in Z there exists an f € F'sothat f -2y € O. A
priori it is possible that there exists f, f' € F with f # f',but Pf - zg = Pf’ - 2.

We claim that for every f € F’ the point f - z; is adapted and a N h]%ZO =an bZLO. The
proof for the claim is the same as the proof for the analogous statements in Proposition
3.13.
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III.  On the little Weyl group of a real spherical space

Let O be an open P-orbit in Z and let f € F be so that f - 2y € O. By Proposition
3.13 we may choose a fo € G Nexp(ia)H, ¢ so that Pfo - zg = O. Then

anby, ., =anb, =anby,,
In view of Lemma 3.8 and the decomposition (3.1) of Lg with 2 = 2, there exist for
every f € Fp elements m; € M and ay € A so that
f 20 =myarfo - 2.
It follows from (8.9) that _
Z = exp(C)Fy - 2, (8.10)

where
O :=Qo{mysas: f € F} and F;:={fo: O isanopen P-orbit}.

Note that §2; is compact.

Let O be an open P-orbit and let z € =N O. By Proposition 3.12 there exist m, € M,
a, € Aand n, € Im (expo®y, .., ) so that fo - 2o = m,a,n, - z. It follows from (8.10)
that (8.8) holds with

Q.= Qg( U {m,a,an,a=1 :a € exp(f’)}).

zZ€E

In view of Lemma 8.6 the elements log(n,) are sums of root vectors for roots that are
non-positive on C. Therefore, the sets {m.a.an.a™' : a € exp(C)} are bounded, and
thus we conclude that € is compact. [

Proposition 8.8. Let 2y € Z and let = C Z be a finite set of adapted points so that
P - = is the union of all open P-orbits in Z. Then the following equality of subsets of the
Grassmannian of dim(h.,, )-dimensional subspaces of g holds,

Ad<G)hz0 - U Ad(G)bz,]:
2€E,F face of C

Proof. Let ) be a compact subset of G so that (8.8) holds. Let s € Ad(G)b., and let
(Wn)ners (@n)nen and (2,)nen be sequences in 2, exp(C) and Z, respectively, so that
Ad(wpan)h,, converges to s for n — oo. By taking suitable subsequences we may
assume that w,, converges to an element w € €2 for n — oo and z,, = z is constant.

Let I be the subset of S, consisting of all @ € &, so that o is bounded away from
0. By taking a suitable subsequence we assume that there exists a convergent sequence
b, € A so that (b, a,)® is equal to 1 for all « € I and converges to 0 as n — oo for all
a € S.\I. Letb € Abe the limit of the sequence (b, ),en. Let F be the face of C defined
by I via the formula (8.2). Now

lim Ad(b,'a,)bh. = b..r

n—oo

and thus
s = lim Ad(wpa,)h. = Ad(wb)h. r € Ad(G)b. 7.

n—oo
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9. Walls of the compression cone

9 Walls of the compression cone

For every wall F of C there exists an @ € 3 + (X U {0}) so that (8.3) holds. The main
result in this section is the following proposition, which puts restriction on the elements
a which can occur. The result will be needed for the proof of Lemma 12.4.

Proposition 9.1. Let F be a wall of C. Then either there exists a root o € 3(Q)) so that
ar = ker(a), or there exist B,y € %(Q) so that ar = ker( + ) and the following hold,

(i) B is a simple root,
(ii) B and vy are orthogonal

(iii) span(B8”,~7") Nay # {0}.

Remark 9.2. Brion proved a stronger version of this lemma under the additional assump-
tion that G and H are complex groups. See [4, Theorem 2.6]. The proof of Proposition
9.1 1s heavily inspired by the proof of Brion.

Before we prove the proposition, we first prove a lemma. Recall the set S, of inde-
composable elements in the monoid M., where z € Z is an adapted point.

Lemma 9.3. Let 2 € Z be adapted. The set S, consists of o + 3 € S,, with o a simple
root in 3(Q), and 5 € supp,(g-.) N E(Q) or B = 0.

Proof. We first choose a suitable linear order on X.. For this let X° € ap,, and Xj € ay
be so that X = X° + Xj is order-regular and a(X) > 0 for all & € 3(Q). By rescaling
X°, we may assume that (X)) < §(X) whenever «, 5 € ¥ and a(X°) < 5(X°). Let >
be the linear order on (@) given by a > (3 if and only if a(X) > S(X).

For v € ¥(Q) U {m, a} we define ¥ € 3(Q) U {0} to be equal to v if v € ¥(Q) and
0 otherwise. Further, for a root o € ¥(()) we define M, ,, to be the monoid generated by
the set

{B+7:8€%(Q),8 < a,vesupp,(g-5)}-

Note that for the longest root a € ¥(()) we have M, , = M.

To prove the lemma, we will show that a stronger assertion holds true, namely that
for every v € ¥((Q) each indecomposable element of M., ., is of the form « +  with v a
simple root in ¥((@), and § € supp,(g_o) NE(Q) or 8 = 0. This we will do by induction
with respect to the length of the roots ~.

For simple roots v € 3(Q) the assertion is trivial. Now let & € ¥ be simple and
f € 3(Q) sothat a + § € 3(Q). Assume that the assertion hold for all roots v € ¥(Q)
with vy < a + .

We have to consider two cases: the case that o« € ¥\ X(Q) and the case that o € £(Q).

First we assume that v € 3 \ 3((Q)) and that « 4 [ is a root. We claim that

M aip =M. p

Since the assertion is assumed to hold for j, it follows from the claim that the assertion
also holds for o + . To prove the claim, we note that our choice of the linear order on
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III.  On the little Weyl group of a real spherical space

¥ guarantees that if 6 € 3X(Q) with § < 6 < a+ f,thend — 8 € ¥\ X(Q), and hence
gs—s € lgNh, . Since T, is (Lg N H)-equivariant by Lemma 4.1, we have

T([Ysos. Y]) = Vs T(Y)] (Yoo € g, Y € W)
It follows that

{¥:y€supp,(g-5)} S{B—-0+7:7csupp,(g-5)},
and hence

{6+7:~v esupp.(g-5)} S{B+7:7 €supp.(g-5)}-
Therefore,

Mieaig={(6+75:6€3(Q),0 < a+B,7 € supp,(g-s))
—(MepU{6+7:6€2(Q),B << a+h,y€swp.(as)})

C <Mz,6 U{B+7:7e€ Suppz(G—ﬁ)}> = M.z

The inclusion M, g C M., 3 is a consequence of the fact that 5 < a + 3. This proves
the claim.
We now move on to the case that v € (). Let d be the largest root so that § < a+f.
We claim that
Mz,a—l-ﬁ g <Mz,a U Mz,§>-

It follows from the claim that the indecomposable elements of M s are contained in

the union of the sets of indecomposable elements of M, 5 and M, ,. Since the assertion

holds for « and is assumed to hold for 4, it follows that the assertion also holds for o + 3.
It remains to prove the claim. We first note that

M. aip = <Mz,5 U{a+B8+7:7¢€ SUPPZ(Q—a—B)}>
It thus suffices to prove that

{a+B+75:7€supp,(g-ap)} S (M.oUM.p).

LetY_, € g_oand Y_3 € g_g. Let p_ be the projection onto ng, respectively, along
the decomposition g = ng @ [g @ ng. From the uniqueness of the map 7', it follows that

Yoo+ To(Yoy),Yog + To(Y_p)]
= Yoo, Yog] + [You, To(Yop)] + [To(Yoa), Yog] + [T.(Yoa), To(Y_p)]
= Voo, Yop] + To([You, Yog)) + Y + TL(Y),
where
V=p ([Va T(Vp)] + [100), Vo)),
Therefore,
T.([Y-a, Y_4]) 9.1
= Voo, TOV0)] + [T(Yoa), Yog, ] + [T (Yoo), To(Yop)] = To(Y) — Y

Now lety € S,15. Theny—a—p3 € £(Q)U{0} is a weight occurring in 7%, (g_o—g) =
T, ([g_a, g_ﬁ]). In view of (9.1) one of the following holds.
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I. v—a—(1isaweight of a occurring in [g_,, 7> (g—3)]. In this case v — [ is a weight
occurring in 7,(g_g), and hence v € M, 5.

II. v—a—fisaweight of a occurring in [T (g_n), g—]. In this case v — « is a weight
occurring in 7,(g_, ), and hence vy € M. ,.

. v —a— Bisaweight of a occurring in [7%.(g_o), T>(9-p)|. In this case y —a — 3 =
0 + € for some 0 € supp,(g_.) and € € supp,(g-5). Asa +4J € M., and
f+€e M.,pg,itfollows thaty = a+d+F+E€ M, o+ M, 3 C (M, UM, g).

IV. v — a — (s a weight of a occurring in 7%, o p_ ([g_a, T%(g—p)] ). Since « is simple
and T.(g_g) C m® a P ng, the space p_ ([g_a, 7> (g-g)]) is non-trivial only if the
weight 0 occurs in 7% (g_g). In this case § € Mg and p_([g-a,T2(g-5)]) € g-a-

Now v —a — 3 = 4 for some & € supp,(g—o). Asa + 9 € M,,, it follows that
y=a++0€ My+ Mz C (M, UMsp).

V. v — a — (s a weight of a occurring in 7%, o p_ ([T.(g_a), g—s] ). In this case there
occurs a weight 0 in 7%,(g_,, ) so that 6 — 5 € —3(()) and the weight v — «a— /3 occurs
inT,(gs—g). Nowy—a—0=(f—0)+(y—a—p) e M,s_sanda+J € M,,.
Therefore, v € M, 3_5+M., . The fact that  — 3 is a negative root implies that § <
3. It follows that M, g5_s C M, gand thusy € M, 5+ M, , C (M, ,UM,p).

In each of the cases I-V we have v € (M, , U M, 3). This proves the lemma. O

Proof of Proposition 9.1. Let z € Z be adapted. In the course of the proof we will need
the existence of an element X € ag,, Nh; so that (X) # —y(X) for every pair of roots
B, € X(Q). By Proposition 3.12 we may choose z so that such an element X exists.

Let « € M, be an indecomposable element so that (8.3) holds. Note that o €
Q)+ (2(Q)u{0}). If a € 3(Q) U 2%(Q), then there is nothing left to prove.
Therefore, assume that o ¢ ¥(Q) U 2X(Q). In view of Lemma 9.3 there exists a simple
root § € ¥(Q) so that v := o — [ is a root in ¥(Q) and v € supp,(g_p). Since
a ¢ X U2Y, v # B and § + v is not a root. We will first show that § and v are
orthogonal. To do this, we will work towards a contradiction and we thus assume that
(B,7) > 0. Note that v — 3 is a root and is positive.

Let 6 € ¥(Q) U {m, a}. We define 5 € ¥(Q) U {0} to be equal to § if § € ¥(Q) and

0 otherwise. We claim that

0—B¢—X(Q) or 4¢supp,(gs_) or [ ¢supp,(g;_p)- (9.2)

Indeed, otherwise y—3+0 € M, and 28—8 € M., and hence o = (y—f+06)+(28—9)
would be decomposable. Likewise,

0+B—7¢-X(Q) or d¢supp,(g_s) or [ ¢supp,(gs 4_,) 9.3)

since otherwise  +06 € M, andy — § € M, and thus oo = (3 + ) + (7 — &) would be
decomposable.
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LetYs ., € gg—y and Y_g € g_g. Then
Yo, Yoo + T2 [V, Va5
€ [Yop+ Tu(Yop), Yooy + To(Ys-s)| + (Ig N b2)

£ > el )+ X ez, )

S€supp;(g-5) desupp (95—+)
o+B—v€-3(Q) S SN(0))

In view of (9.2) and (9.3) we have
psT ([Y—ﬁ’ Yﬁ—ﬂ) = Ds ( [Yop + To(Yog), Yoy + Tz(Yﬁ—v)D
= [Yo5.p25To(Ys-)] + [ T2 (Yog), Yoy
+ [PoT(Y-5), 05T (Ya-)] + [psT:(Y-5), poT:(Y5-)]

For the second equality we used that (3 is simple, so that the only pairs of non-negative
a-weights that add up to 3 are (5,0) and (0, ). We claim that the last two terms
on the right-hand side are equal to 0. Indeed, if [poT.(Y_g), psT:(Ys_,)] # 0, then
a € supp,(Y_g) or m € supp,(Y_g), and moreover 5 € supp,(Ys_,). In particular
g € M, and v € M, and thus o = [ + v would be decomposable. Likewise, if
[psT.(Y_5), poT.(Ys-~)] # O, then it would follow that 23 € M, and v — 3 € M., and
hence o = 26 + (v — /3) would be decomposable. Therefore,

psT- (-5, Yon]) = Vo5 pas e (V)] + [T (Y-5), Vo] 0.4)

for all Y:g €g 5 and Ylg,,y € 95—-
LetY_ 5 € g_gs. Let further X € h* N a be so that 5(X) # —v(X). In view of (4.2)
and (9.4)

B([Y_g,Ys— ), pyT-(Y_3))v(X) = B (f/—ﬁmﬁTz (Y-, Yﬂ—v])>5(X)

=B <5~/—/3> [Y—,&pzﬁTz(Y,@—w)Dﬁ(X) +B <3~/—5, [Py To(Yop), Y5 > B(X).
Rearranging the terms we obtain

@B([Y@ Vo), 0 To(Yop)) — @B(Y/ﬁ, [T (Y 5), yﬁﬂ})

- —@B([Y_ﬁ,Yﬁ_y],pyTz(Y/_g)) + @B@_g, [pyTz(Y—ﬁ%Yﬂ—vD

+ BV, [V pas (Vs )] ) BOX).
We now apply the identities B(U, [V, W]) = B([U,V],W) and B(U,V) = B(V,U) for
U,V,W € g to each of the terms on both sides of this identity. We thus find
AX) +7(X) v v
SR B ([, TV ), Vo] + [T ), Vo], Vs )

2
= PO =0 B (1, (7). Y] — [, T V-0). T )

+ BX)B([V, Y s, p2s T2 (V) ).
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The left-hand side is unchanged when swapping 17_5 and Y_ g, while the right-hand side
changes sign. Therefore, both sides equal O forall Y_g,Y_ 5 € g_, and Y3_, € gg—. In
particular

P To(Yop), Yog] + [Py To(Yop), Y_p =0 (Yog,Y_5€g.a),

and hence
P T.(Y_3),Y_5] =0  (Y_5€9-a). 9.5)

Taking commutators on both sides of (9.4) with Y_ 3 and using the Jacobi-identity and
(9.5) we obtain

[Y—mpﬁTz([Y—mYB—v])] = [P T2(Y=p), [Yop, Yooy ] + [Yog, [Yog, p2s T2 (Vs )]
(9.6)
forall Y_g € g_3, Y3, € gs—,. Note that the second term on the right-hand side is
contained in m. We now pair both sides of (9.6) with X via the Killing form and obtain

. 5(X)B(Y,ﬁ,pﬁTz([Y,B,Yﬁﬂ])> _ B(X, [Y,B,pﬁTzQY,B,YM])D 9.7)

= B(X, [ LV, 5, Y]] ) = 1) B (T 0V-0), Vo, Vi)

We claim that [Y_g,g3_,] = g_, for every non-zero Y_5 € g_s. To see this, let
Y_,€g_, Then [0Y_ 5, Y_,] € gs_, and

(Y5, [0Y_5, Y-, )] = = [0V, [Y=o, Yop]] — [Yos, [Yg, 0Y_5]].

The first term on the right-hand side vanishes because —3 — v is not a root, while the
second term is equal to 7([9Y_5, Y_g])Y_ﬁ,, which is a non-zero multiple of Y_, due to
the assumption that (3,~) > 0. This proves the claim.

Because of the claim and (9.7) we have

=B B(Yop, ppT=(Y=5)) = 1(X)B(Yors py T2 (Yop))
forevery Y_5 € g_gand Y_, € g_,. However, in view of (4.2) we also have
B(X)B(Y—,Bv p,BTz(Y—W)) = V(X)B(Y—% prz(Y—ﬁ))'

It follows that p,7,(Y_3) = O for all Y_3 € g_g. This is in contradiction with the
assumption that vy € supp,(g-5). We have thus proven that 3 and +y are orthogonal.
We move on to show that span(3¥,v")Nbh. # {0}. Let o € X(Q)U{m, a}. We have

{m,a} Nsupp,(g—,) =0 or {m,a}Nsupp,(g_5) =0. 9.8)

Indeed, otherwise v € M, and § € M., and hence o = 3 + v would be decomposable.
Likewise,

0—7¢—-2(Q) or ¢supp,(g-5) or {m.a}Nsupp(g;,)=0 (9.9
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since otherwise 3 +0 € M, andy — § € M, and thus e = (8 + ) + (7 — &) would be
decomposable.
LetY_, €g_,and Y_g € g_g. Then
Vo, Vo] + T [V, V)
€ Yo+ T.(Yop), Yoo + T.(Y_,)] + (Ig M)

+ > odnl)+ X Q(Tz\gg_w)

desupp, (g—)N{m,a} desupp, (8-5)
d—ve-3(Q)

In view of (9.8) and (9.9) we have

paT’ ([Y—Bv Y—v]) € pa([y—ﬁ +T2(Y-p), Yo+ Tz<Y—7)D +ay
= [Yog, s T(Y-0)] + [y To(Yog), Yo | + ay

HﬂH2 H”YH2

= B(Y_p,psT.(Y_)) B + ==B(p,T2(Y_p5), Y-, )" + a.

Since a = f + 7y is not a root, the left-hand side is equal to 0 and thus

I 1
2

[l
B(Y3,psT-(Y1)) B + 5= B(pyTo(Y5), Yo )77 € @,
Moreover, since ( and v are linearly independent, the left-hand side is not equal to O if
Y_ 5 € g_p satisfies p,T,(Y_g) # 0and Y_, = 0p,T.(Y_p). Such a Y_; exists because

v € supp,(g-p). O

10 Adapted points in boundary degenerations

The real spherical homogeneous spaces with stabilizer subgroup equal to the connected
subgroup with Lie algebra b, », where z € Z is adapted and F is a face of C are called
boundary degenerations. In this section we establish a correspondence between adapted
points in Z and adapted points in the boundary degenerations, and secondly, we give a
comparison between the compression cones for Z and the boundary degenerations.

In view of Proposition 8.4 we may make the following definition.

Definition 10.1. Let O be an open P-orbit in Z and let F be a face of C. We define the
homogeneous space
Zoy =G/H,F,

where z is any adapted point in O and H, r is the connected subgroup of G with Lie
algebra b, r. The spaces Zo 7 are called the boundary degenerations of Z. If z € Zp r,
then we write h9+” for the stabilizer subalgebra of z.

We note that the spaces Zp r are quasi-affine real spherical spaces. We will now first
explore the relation between adapted points in Z and in Zp 7.
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Lemma 10.2. Let O be an open P-orbit in Z and let F be a face of C. Lety € Zo 7. If
there exists an adapted point z € O so that hff = b, 7, then y is adapted and

anht Can(h9)h (10.1)

Proof. Assume that z € O is adapted and b9 = b ». We will prove that y is adapted
by verifying the conditions in Proposition 3.19. Let X be in the interior of 7 and Y € C.
By Proposition 5.2 (iii) we have

(657 )y = (b..7)y = (h2x)y = by = Ad(m)hy

for some m € M. In view of Lemma 6.4 (ii) the P-orbit through ¥ is open in Zo 7.
Furthermore,

anby =(anbhr)y Can(bl)x =anbiy =an(hy’)"

This proves (10.1). Since z is adapted, we have a3, Nb; # 0, and hence ag,, N (hS7 )+ #

reg reg

(). In view of Proposition 3.19 the point y is adapted. [

It follows from Lemma 8.3 and Lemma 10.2 that there exists an adapted point y €
Zo F so that a N bf 7 = a,. By Corollary 3.17 the same holds for all adapted points
Yy € Zo,r, and hence a° defined in Definition 3.18 equals a N (a N b )+

For an adapted point y € Zp r we write @S’F for the unique smooth rational map

<I>§)’]E ca® —ng
satisfying (1) and (ii1) in Proposition 3.12 with Z replaced by Zp r.

Lemma 10.3. Let O be an open P-orbit in Z and let F be a face of C. Let z € O be
adapted and let y € Zo r satisfy hff =b. 5. Then

Y

lim Ad (exp(tX)) o ®, = &7
t—o0
for every X in the interior of F, where the convergence is pointwise.
Proof. Let X be an element from the interior of /. By Lemma 8.6

Im (®.) € P ga.

aen(Q)

Since X € C, it follows that Ad (exp(tX)) o ®, converges pointwise. The limit is equal

to
U= ( Z pa) od,

aeX(Q)
a(X)=0

where p, denotes the projection g — g, along the Bruhat decomposition. It remains to
prove that ¥ = &9
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Let Y € ag,,. By Proposition 3.12 the point exp (®.(Y)) - z is adapted. By Lemma

10.2 a point in Zp, 7 with stabilizer subalgebra heyp (e, (v)).2, 7 1s adapted. It follows from
Proposition 5.2 (iv) that

Dexp(@. ()2, F = (Ad (eXp (‘Dz(Y))> hz)X = Ad (exp (\If(Y))) b..r

= Ad (exp (¥ (Y))> 0 = Donwir)y
)
1

We thus conclude that the point exp (V(Y')) - y is adapted.
By Proposition 3.12 we have RY C bexp(CDZ(Y))-z’ and hence applying (10.1) to the
point exp(®,(Y)) - z yields

0, 1
RY g (bexgz\l’(y))'y) '

It follows from the final assertion in Proposition 3.12 that there exist m € M anda € A
so that
exp (¥(Y)) -y = maexp (CDZ?’I(Y)) Y.

By Proposition 3.6 the stabilizer of y is contained in Lg. As ¥ and @f’f both map to
Ny, it follows that U(Y) = &0 (V). O

Proposition 10.4. Let O be an open P-orbit in Z and let F be a face of C. Let further
29 € O be adapted and let yy € Zo 5 be so that f)z(?o’f = b7 In view of Lemma 10.2
the point vy is adapted. Then a point y € P - vy is adapted if and only if there exists an
adapted point z € O so that [);9’]: = b. 7. Moreover, if YY" € a},, and z € O and
y € P - yy and satisfy

z€ MAexp (0,,(Y)) 20 and y € MAexp (257 (Y")) - yo (10.2)
(and hence are adapted), then hf’f = 0. 7 if and only if@fo’f(Y) = @;90’;(5/’).

Proof. Assume that y € P -y, 1s adapted. By Proposition 3.12 there exists m € M,
a€AandY € a°so thaty = maexp (P57 (Y)) - yo. Set z = exp (P, (Y)) - 2z and let
X be in the interior of F. Then by Proposition 5.2 (iv) and Lemma 10.3

h.r= (Ad (ma exp ((IDZO(Y))> bzo)x = Ad <ma exp (CIDSOF(Y))) B20.x = hf’F.

If z € Oisadapted and y € P -y, satisfies b?’f = b. r, then y is adapted by Lemma
10.2. This proves the first assertion. We move on to the second.

Assume that (10.2) holds. If " = b, 7, then Y € b and hence Y € b 5. This
implies that Y € (h$)*. By Proposition 3.12

y € MAexp (q)??o’f(Y)) Yo,

and hence ®7(Y') = ®07(Y”) in view of Proposition 3.6 (ii). The other implication is
trivial. =

We end this section with a description of the compression cone of Zp r.
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Proposition 10.5. Let O be an open P-orbit in Z and let F be a face of C. The compres-
sion cone of Zo r is equal to C + ar.

Proof. The assertion follows directly from (8.6) and (8.4). [l

In view of Proposition 10.5 the compression cone of Zp r does not depend on the
open P-orbit O. We therefore write Cx for the compression cone of Zp £, i.e.,

C]: ::C—l—a;.

11 Admissible points

Recall the group NV from (7.1). Proposition 7.2 is most useful for points z € Z for which
the limits b, x for order-regular elements X € a are conjugates of hy by some element in
N. The purpose of the next definition is to single out those adapted points for which all
such limits have this property.

Definition 11.1. We say that an adapted point z € Z is admissible if for every order-
regular element X € a, there exists an element w € A so that

hz,X = Ad(w)b@
In the remainder of this section we will prove the existence of admissible points. In
the next section we will use the set of elements w € A so that Ad(w)hy occurs as a limit

b..x of b, for an admissible point 2 to construct the little Weyl group.
We begin with a few remarks.

Remark 11.2.
(a) The set of admissible points is L¢-stable.

(b) If z is admissible and v € A is such that Pv~' - 2 is open, then v ™! - z is adapted by
Lemma 7.3. Moreover, if X € a, then

bo-12x = Ad(v )b, adg)x-
From this it follows that v~ - z is also admissible.
We define the subgroup Ay of N by
Ny = {w € N : Ad(w)bhy = Ad(m)bhy for some m € M}.

Lemma 11.3. We have Ny = N, (a). Moreover, Ny is a normal subgroup of N. Finally,
the group N/ Ny is finite.
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Proof. Since the elements in A normalize a, they also normalize m + a. Note that
bp+m+a=q
is M -stable. Therefore, the elements in A normalize g, and hence
Ni € No(@) NQ = Ny (a).

To prove the other inclusion we first note that Lg normalizes [, + ay. Therefore, it
follows directly from the definition (7.1) that Ny, (a) € N. Now choose an adapted
point z € Z so that hy = b, x for some X € C. Then

bp = (Ip N'b.) ©1g.

We recall that Lo = M AL ., see (3.1). The group L, . is contained in @, and hence
normalizes ng. As Lg . € Lo N H, also o N b, is normalized by L .. It follows that
L nc normalizes by. Further, by is A-stable. It thus follows that

Ad(Lq)by = Ad(M)by.

In particular, Nz, (a) € N N Ly € Np. This proves the first assertion.

We move on to the second assertion. By definition A normalizes A and Lg .. Ev-
ery element normalizing A also normalizes M. As Lg = M ALg ., it follows that N/
normalizes Nj. This proves the second assertion.

For the final assertion we note that A/ and Ny both contain the group M A. As N'/M A
is a subgroup of the Weyl group of 3, it is finite. This implies that A/ /Nj is finite. O]

We note that the quotient N/ N is a group in view of Lemma 11.3. The main result
in this section is the following proposition.

Proposition 11.4.

(i) The set of admissible points is dense and has non-empty interior in the set of adapted
points in Z (all with respect to the subspace topology). In particular, every open P-
orbit in Z contains an admissible point.

(ii) For z € Z define
W, = {wNy € N/Njy : w € N and there exist X € a so that b, x = Ad(w)hy}.

Let z € Z be admissible and let 2’ € Z. If 2’ is adapted, then W,» C W,. Moreover,
if 2" is admissible, then W, = W..

The remainder of this section is devoted to the proof of the proposition. We break the
proof up into a sequence of lemmas.

Lemma 11.5. Let z € Z be adapted. There exists an open neighborhood U of z in P - z
so that W, C W., for all adapted points z' € U.
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Proof. Let w € W, and let v € N be so that Ay = w. By Proposition 7.2 the P-
orbit Pv~! - z is open. Therefore, there exists an open neighborhood U, of e in G so that
v U, -z C Pv~!.z. It follows from the same proposition that v € W, for every adapted
pointin 2z’ € U, - z. The assertion now follows with U equal to the intersection of the sets
U, - z, where v runs over a set of representatives in N for W.,. O]

We now use Lemma 11.5 to prove a much stronger statement.

Lemma 11.6. Let z € Z be adapted. There exists an open and dense subset U of the set
of adapted points in Z (with respect to the subspace topology) so that W, C W, for all
2 eU.

Proof. Let w € W,. We will prove that there exists an open and dense subset U,, of the
set of adapted points so that w € W, for all 2’ € U,,. Since N'/Nj is finite, the assertion
in the lemma follows from this with U equal to the finite intersection U = [,,c)y. Uw.

Let k = dim(h,) with z € Z, and let . : Gr(g,k) — P(A"g) be the Pliicker
embedding, i.e., ¢ is the map given by

t(span(vy, ..., vp)) =R(vg A Aoy).

The map ¢ is a diffeomorphism onto a compact submanifold of P( /\k g). The image is in
fact an algebraic subvariety of P( /\k g), as it is the intersection of a number of quadrics
defined by the Pliicker relations. See [9, p. 209-211].

Let v € N be a representative of w and let X € Ad(v)C. Let ey,...,e, be a
basis of A" g consisting of eigenvectors of ad(X). We write fi1, ..., m € R for the
corresponding eigenvalues. We may order the eigenvectors so that piy > o > -+ > iy,
Let € /\kg be the element so that ¢(h,) = R and let ¢q,..., ¢y, : ng — R be the
functions determined by

Ad (exp(Y))¢ = Zcz-(Y)ei.

Since np is a nilpotent Lie algebra, the function
k
np — /\g; Y — Ad (exp(Y))§

is polynomial, and hence also the functions ¢; are polynomial. Since ®, is a rational
function, the functions ¢; o ®, : a° — R are rational. Let j, be the smallest number so
that c;, o ®, is not identically zero, and let j; be the largest number so that j;, = p;,.
Define the rational map a° — R

Ji

pi= Z(Cz o®,)2

1=Jjo
Then for every Y in the open and dense subset V := p~}(R \ {0}) of a°
Ji
Ad D.(V)¢) =R ciod.(V)e.
(Ad (expoe.(v))) > cxo (M)
=Jo
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By Lemma 11.5 there exists an open neighborhood U’ of z so that w € W.,. for all
adapted points 2’ € U’. Since X € Ad(v)C we have in view of Proposition 7.2 that for
every adapted point 2’ € U’ there exists a m € M so that b, x = Ad(vm)by. It follows
that

J1
R cio®.(Y)e; € Ad(vM)e(by) (11.1)
i=Jo
forall Y € a° so that exp (®.(Y)) - = € U’. The set of elements Y for which this holds

is open. Since the functions ¢; o @, are rational, we conclude that (11.1) holds for all
Y eV,ie,foreveryY € V

exp (@z(Y))~z,X - Ad(vm)h@

for some m € M. In particular

w e W

exp (<I>Z(Y))-z (Y < V)

Since hya.r x = Ad(ma)bh. x forevery m € M, a € Aand 2’ € Z, it follows that
w e W, (2 € MAexp (9.(V)) - 2).

In view of Proposition 3.12 the set M A exp (@Z(V)) - z 1s open and dense in the set of
adapted points in P - z.

Finally it follows from Proposition 3.13 and Lemma 6.7 that for each open P-orbit O
there exists a 2z’ € O so that w € W.,,. The argument above then shows that w € W.,, for
an open and dense subset of the set of adapted points in O. [

By Lemma 11.3 we have Ny = Np,(a) = Ng, . (a) x MA. Every coroot o of
aroot o € X(a,lgy) lies in ay, and hence Ad(w)X — X € a; for every w € N and
X € a. Therefore, N'/Nj acts naturally on a/a;. Note that the compression cone C is
stable under translation by elements in a,. We write py, for the projection a — a/aj.

For an adapted point z € Z we define

A, ={X +ay€a/ay:bh,x =Ad(w)hy for some w € N'}.
Lemma 11.7. Let z € Z be adapted. The following hold.
(i) The point z is admissible if and only if A, is dense in a/ay.
(ii) Az = Upew, w - py(C).

(iii) Let w € W, and let v € N be so that w = vNy. By Proposition 7.2 and Lemma 7.3
the point v=' - z is adapted. Then

Ay-1., = wt- A.,.

(iv) There exists an open and dense subset U of the set of adapted points in Z (with
respect to the subspace topology) so that A, C A,/ forall 2’ € U.
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Proof. The identity in (ii) follows from Proposition 7.2. The identity shows that A, is
open. It follows from Proposition 5.2 (iii) that \A, is dense if and only if p;’ (A,) contains
all order-regular elements. The latter is true if and only if z is admissible. This proves (i).

We move on to prove (iii). Since h,-1., x = Ad(v™")h, aqw)x for every X € a, we
have

Wy, = {w'N'/Nj : there exist X € asothath, x = Ad(ww')hy} = w ' W.,.

The identity in (iii) now follows from (ii).
The assertion in (iv) follows from (ii) and Lemma 11.6. O

In view of the Lemmas 11.6 and 11.7 it suffices to prove the existence of one admis-
sible point in Z. For this we need an alternative characterization of admissible points.

Lemma 11.8. Let z € Z and let X € a be order regular. Then dim(a,) = dim(h, x Na)
if and only if there exists a w € Ng(a) so that b, x = Ad(w)by.

Remark 11.9. It follows from Lemma 7.1 and Lemma 11.8 that an adapted point z € Z
is admissible if and only if dim(h. x N a) = dim(a,) for every order regular element
X €a.

Proof of Lemma 11.8. For every w € N¢(a) we have Ad(w)hg N a = Ad(w)ay. There-
fore, it trivially follows that b, xNa = Ad(w)ay if b, x = Ad(w)by for some w € Ng(a),
and hence dim(h, x N a) = dim(ay). It remains to prove the other implication.

Assume that dim(h, x Na) = dim(ay). By Lemma 8.8 there exist an adapted point
y € Z, an element g € G and a face F of C so that b, x = Ad(g)h, #. It follows from
Lemma 8.3 that

Ng(bz,X) = hz,X + Ad(g)a]: + Ad(g)Nm(hy,}—)
Let H, x be the connected subgroup of GG with Lie algebra b, x and let I" be the open con-

nected subgroup of N¢(h. x)/H. x. The open connected subgroup of Ny(h, x) is equal

to exp (Ad(g)ar) MoH. x, where Mj is the open connected subgroup of Ny (b, 7)g ™"

Like in (3.3) we have

exp (Ad(g)a;)Mo NH, x =exp (Ad(g)af N f)z,X) (MO N HZ7X)
=gexp (arNhy,r)g ' (MoN H. x).

In view of Lemma 8.3 we have ar N b, r = ay, and hence

exp (Ad(g)a;) MyNH,x =gexp (ah)g’1 (MO N HZ,X).
It follows that

[~ (exp (Ad(g)a;)M())/(eXp (Ad(g)ar) Mo HZ7X>

>~ gexp (a]:ﬂ aé)g_l x M?,
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where M? is compact. In view of Proposition 5.2 (ii) the subalgebra b x is a-stable, and
hence a C Ny(h. x). Since dim(h, x Na) = dim(ay ), the group I" contains a split abelian
subgroup of dimension dim(a/ay) and hence

dim (Cl]: N Clé') = dim (a/ah).

This implies that F = C, and hence b, x = Ad(g)hj.

Note that by contains the subalgebra np. By the Bruhat decomposition of G we may
write ¢ = nwn with n € Np, w € Ng(a) and @ € N p. Then 7 normalizes by and thus
h.x = Ad(nw)by. Since both h, y and Ad(w)hy are normalized by A, we even have
b.x = Ad(w)hy. m

Lemma 11.10. Let o € X.. The following hold.
(i) IfU € go \ {0} and V € g_, \ {0}, then ad*(U)V # 0.
(i) IfU € go \ {0} and V € g_s4 \ {0}, then ad*(U)V # 0.
(iii) IfU € goo \ {0} and V € g_, \ {0}, then ad(U)V # 0.

Proof. Assume that U € g,. Let f be the Lie subalgebra of g generated by U and U and
let

Vi=0g20.®gad®mdRa’ @ go D gon.

Note that § is isomorphic to s[(2, R) and that V is a representation of f. Now ) decom-
poses as
V:VO@Va@VQQa

where V) is a finite sum of copies of the trivial representation, V, is a finite sum of copies
of the highest weight representation with highest weight « (i.e., f), and Vs, is a finite sum
of copies of the highest weight-representation of § with highest weight 2.

The kernel of ad(U) in V,, is equal to the space of highest weight vectors and hence is
contained in g,. This implies that the kernel of ad®(U) in V, is contained in m®Ra" @ g,.
In a similar fashion we deduce that the kernel of ad*(U) in Vy, is contained in g, @® goq.
The assertion in (i) now follows as g_, C V, @ V.

For (i1) we continue the analysis and conclude in the same manner as before that the
kernel of ad4(U ) in Vs, is contained in g_,, ® m & Ra” @ g, P g2, The assertion now
follows as g_s, C Vag,.

To prove (iii), assume that U € go,. Let ¢ be the subalgebra of g generated by U and
O(U) and let

V'i=g_0®ga.

Now ¢ is isomorphic to s[(2,R) and V' is a representation of ¢. It is a sum of copies
of the highest weight representation of ¢ with highest weight %a. The kernel of ad(U)
consists of highest weight-vectors and hence is contained in g,. This proves the final
assertion. [

We now prove the existence of admissible points under a very restrictive assumption
on Z.

112



11. Admissible points

Lemma 11.11. Assume that the compression cone C of Z contains an open half-space.
Then every open P-orbit in Z contains an admissible point.

Proof. 1If C = a, then every adapted point is admissible. Therefore, we assume that C is
equal to a half-space. Let z € Z be adapted. If z is admissible, then we are done. Assume
therefore that 2 is not admissible. In view of Lemma 11.8 there exists an order-regular
element X € aso that ay C b, x M a. This implies that there exists a Y € ng so that the
limit R(Y 4 7.(Y')) , is a line in a°. Now a € supp,(Y’), and hence there exists a root
a € 3(Q) so that a € supp,(g_,). It follows that & € M.. Since C is a half-space, the
negative dual cone —CV is a half-line. As —C" is generated by M, it follows that

M., C Roga. (11.2)

Note that « vanishes on a;. The root o may not be reduced. Without loss of generality we
may however assume that « is the shortest element in RaeN¥(Q) so that a € supp,(g_a)-

The fact that a occurs in the support of some element Y implies that there exist X' € a°
so that X ¢ hr. It follows from Proposition 3.12 that the function @, defined in that
proposition is non-trivial. The only roots in ¥:(QQ) that are non-positive on C are multiplies
of o, and hence by Lemma 8.6

Im (q)z) - @ 95

BeX(Q)MRa

We claim that in fact
Im ((I)z) g Ja + @9201-

To prove the claim we use Lemma 8.5, from which it follows that
Im (T}") C ga @ g2a-
The claim now follows from (3.9). We define the maps
Pk Ojog = Bka (k=1,2)

to be determined by ®, = ¢; + ¢,. By assumption ¢, is not identically equal to 0. We
can derive explicit expressions for ¢; and ¢, from (3.9). Using that

Ad(exp(Y))X =) —ad"(V)X (X €a,Y eng),

we obtain for X € a°

z

TH(X) = Ad ((exp (= 61(X) = 6a(X)) ) X — X
= [ (X) + 6(X), X] 4 S[01(X) + 62(X), [62(X) + 62(X), X]

— a(X)[91(X) + ¢2(X), 1(X) + 2¢5(X)]
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It follows that

1
ka(X)

or(X) = praTo(X) (ke {1,2}, X €0 a(X) #0), (11.3)

where prq © § — gra 1S the projection along the Bruhat decomposition.

We claim that there exists an element X € ker(cr) N a® so that po (73-(X)) # 0. To
prove the claim we aim at a contradiction and assume that ker(a) N a® C ker(p, o ).
Since ¢; is not identically equal to 0 it follows from Lemma 8.5 that a € supp,(g_a)-

) ) ) 1 ) )
Therefore, not all of a® is contained in (g <TZ’9_ )) . Moreover, if X € a° is not con-

tained in (Q (Tz|g_ ))L then there existsa Y_, € g_,, so that

B(X,Y_ o +T.(Y_,)) #0.

However,
B(X +T(X),Y_o + T.(Y_,)) = 0.

It follows that
B(TH(X),Y ) = BTA(X),Y o + T.(Y-)
=B(X +TH(X), Yo+ T.(Y_o)) — B(X, Yoo + T.(Y_0)) #0
For the first equality we used that 7-(X) € ng and T.(Y_,,) € g, so that
BT (X), (V) = 0.

It follows that p, (73-(X)) # 0 and thus the map p, o T;- is not identically equal to 0. As
ker(a) M a° has codimension 1 in a°, it follows that ker(a) N a® = ker(p, o T+). Now

a° N hT = ker(T) C ker(p, o TF) = ker(a) N a®.

o

This implies that « vanishes on a° N h1 and hence Oreg D L = (). This is in contradiction
with the assumption that 2 is adapted, and hence the claim is proven.

We now fix an element X € ker(a) N a® so that p, (75-(X)) # 0. Let Us, Cy € ga
and Uy, Cy, € go, be so that

TH(X) =2U, +4Uy, and TH(a¥) =20, + 4Cs,.

If ¢ > 0 is sufficiently large, then X + %av € Upeg-

By (11.3) we then have for ¢ > 1
1 V
¢k(X+¥OZ ) :tUka—l—Cka.

For ¢t € R define
N ‘= eXp (Ca + CQa + tUa + tUQO{)‘ (114)

Note that for sufficiently large ¢ > 0
ng = exp (<I> (X + —1 ozv))
z t Y
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and hence n, - z is adapted. We claim that n, - z is admissible for sufficiently large ¢ > 0.
Let X € a be order-regular. We will show that b,,,.. x N a = ay for sufficiently large
t > 0. The claim then follows from Lemma 11.8 and Lemma 7.1.

Define

=mébah @ gg and 52: @ g—ﬂ@gﬁ~

BERANE BEX(Q)\Ra
It follows from (11.2) that
T.(9-5) C @ 8y (8 €2(Q)),
ve(p+ra)n((@ui0})

where go = m @ a. In particular, G (Tz‘g,@) is contained in f if and only if 5 € Ry pa. It
follows that fj, decomposes as

h.=(lgNh.)@G(T.) = (lonh.) & (FNG(T.)) & (ENG(TL)).

Now f is a Lie subalgebra of g, which normalizes £ and centralizes [ N b.. Therefore, as
ny € exp(f), we have

bo: = Ad(n)b. = (I Nh.) @ (FNAd(n)G(T2)) & (€ N Ad(ne)G(T2)).

Since [, f and £ are a-stable

b N = ay @ (a0 (N Ad)G(TL)) ).
It remains to prove that
an (N Ad(n)G(T2)) , = {0} (11.5)

For the proof of (11.5) we distinguish between two cases: the case that %a is not a
root, and the case that %a 1s a root.
We first assume that %a isnotaroot. ForY =Y ,+Y 5, € g_,andt € R we set

Pi(Y, 1) = pa<Ad(nt)(Y + TZ(Y))> - gad(Ua)?’KQQ € G,
PQ(Y, t) = p2a<Ad(nt) (Y + Tz(Y))> — ;—Zad(Ua)4Y_ga € goa-

Both P, and P, depend linearly on the first variable and are vector valued polynomial
functions in the second. The degrees of P, (Y, - ) and P»(Y, -) are at most 2 and 3 respec-
tively. By Lemma 11.10 we have ad(U, )Y 5, # 0if Y_5, # 0 and ad(U,)?Y_, # 0 if
Y. Therefore, for every Y # 0 the polynomial function

3 4

t t
Py it 5 ad(U,)*Y_9a + Py (Y, 1) + 5 ad(Uy)*Y_ga + Po(Y, 1)
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is non-constant. Moreover, if we restrict to Y in the sphere
S:={Y €g.a®g2.:—BY,0Y) =1},

then the vector-valued coefficients of Py are uniformly bounded. Therefore, there exists
anr > 0 so that Py (t) # 0 forevery Y € S and ¢t > r. We claim that (11.5) holds for
t>r.

To prove the claim, we note for every non-zero Y € g_,, & g_o, we have

(e + paa) (Ad(m) (Y + T2(Y)) ) = P (t) #0.
Therefore, if a(X) > 0, then the limit

(R Ad(ng) (Y + Tz(Y))> (11.6)
X
is contained in g, & gan. If a(X) < 0, then (11.6) is equal to RY_,, if Y_5, # 0 and
RY_, otherwise. In particular, the limit (11.6) is not contained in a. It is easily seen
from (5.1) that a limit of a subspace is spanned by the limits of all lines in the subspace.
Therefore,

(Ad(nt) (N g(n)))x

is spanned by the lines (11.6) with Y € S. It follows that (11.5) holds, and thus we have
proven that n; - z is admissible for ¢ > 1 in case %a is not a root.

We move on to the second case and assume that %a is a root. Now 2« is not a root
and therefore (11.4) simplifies to

ng = exp (C’a + tUa).

Forevery Y =Y_ . +Y_, € 9 1, PgandteR

P (Y,t) =P

2

%Q<Ad(nt)(Y + TZ(Y))> —tad(Ua)Y-a/2 € g1,

Py(Y,t) = pa<Ad(nt) (Y + TZ(Y))) - %ad(Ua)QY_a

define functions that are linear in the first and polynomial in the second variable. In fact
P1(Y, ) is constant and the degree of Py (Y, -) is at most 1. By Lemma 11.10 we have

that ad(Up)Y_q /2 # 0if Y_ 0 # 0, and ad(U,)?Y_, # 0if Y_, # 0. It follows that the
polynomial function

Pyt r—>(p%a +pa)<Ad(nt) (Y + TZ(Y))>
= tad(Ua)Y-aj2 + Py(Y:1) + g ad(U,)2Y o + Pi(Y,1)

is non-constant. The same reasoning as in the previous case now shows that (11.5) holds
if %a is a root as well. U

116



12. The little Weyl group

Proof of Proposition 11.4. In view of the Lemmas 11.6 and 11.7 it suffices to prove the
existence of one admissible point in Z.

Let z € Z be adapted. If 2 is admissible, then there is nothing left to prove. Thus we
assume that 2 is not admissible and use it to construct an admissible point.

Recall that py is the projection a — a/a;. Now A, is not dense in a/a; by Lemma
11.7 (i). It follows from Lemma 11.7 (ii) that there exist a w € W, and a wall F of C so
that w - py(F) is contained in the boundary of A. Let v € A be so that vAjy = w. By
Lemma 11.7 (iii) the wall py(F) is contained in the boundary of .A,-1.,. By replacing z
by v™! - 2, we may therefore assume that p(F) is contained in the boundary of A..

Let O = P - z. The compression cone of Zp r contains the half-space a= + ar. (In
fact the compression cone is equal to this half-space.) Therefore we may apply Lemma
11.11 to the space Zo 7. Let y € Zo 5 satisfy b, » = 7. The point y is adapted by
Proposition 10.4, and hence P - y is open. By Lemma 11.11 there exists an admissible
pointy’ € P -y. In view of Proposition 3.12 there exist m € M, a € Aand Y € a7, s0
that ' = maexp (957 (Y)) - y.

Since the set of order-regular elements is dense in a, the complement of ph_l(Az) is
equal to the closure of the set of order-regular elements in the complement of ph_l(.Az).
The boundary of ph_l(AZ) consists of elements X € a that are not order-regular. There-
fore, the set of order-order regular elements in the complement of ph’l(Az) is a union
of connected components of the set of order-regular elements. Note that there are only
finitely many such connected components. It follows that there exists a connected compo-
nent R of the set of order-regular elements, so that p,(R) is contained in the complement
of A, and R intersects with the interior of F.

Let 2’ := maexp (©.(Y)) - z. We claim that py(R) C A... By Proposition 10.4 we
have hf,’f = b, 7. Then, in view of Proposition 5.2 (iii),

b x = (b F)x = (bff’f)x

for every X € R. Since ¢/ is an admissible point in Zp_z, there exists an element v’ € N
so that (f);o,”T )x = Ad(v")hy. It follows that py(R) C A,,. This proves the claim.

In view of Lemma 11.7 (iv) there exists a dense and open subset U of the set of
adapted points so that

A, Upy(R) C Ay (" e ).
Let 2”7 € U. If 2 is admissible, then we are done. If not, we replace z by z” and
repeat the above procedure to find another adapted point 2’ with A, C A,.. It follows

from Lemma 11.7 (ii) that after finitely many iterations this process ends, and thus we
find an admissible point in Z. [

12 The little Weyl group

In this section we construct the little Weyl group of Z.
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We define

Wi=W, (12.1)
= {wNy € N/Np : w € N and there exist X € aso thath, x = Ad(w)hy},

where z € Z is any admissible point. This set does not depend on the choice of z by
Proposition 11.4. We recall that py is the projection a — a/aj.

Theorem 12.1. The set W is a subgroup of N'/JNy. Moreover, W acts faithfully on a/ay,
as a reflection group and is as such generated by the simple reflections in the walls of

Py (C). Moreover, py(C) is a fundamental domain for the action of W on a/ay. Finally,
W is equal to the little Weyl group of Z as defined in [15, Section 9].

We will prove the theorem in a number of steps. We begin with the first assertion in
the theorem.

Proposition 12.2. W is a subgroup of N/ Nj.

Proof. Let z € Z be admissible. Let w € W and let v € N be so that w = vNj. By
Proposition 7.2 the P-orbit Pv~! - 2 is open, and hence v - z is admissible; see Remark
11.2 (b). Let w’ € W and let v' € N be so that w’ = v’ Nj. In view of Proposition 7.2
there exists a m € M so that for every X € Ad(vv')C

Ad(vilﬂlz,X = hv_l-z,Ad(v_l)X = Ad(vlm)hﬂv

and hence b, x = Ad(vv'm)bhy. Therefore, ww' = vv' Ny € W. It follows that wWW C
W, and hence, since WV is finite,

wW = W.

We thus see that W is closed under multiplication. As WV is finite, it is a subgroup of

N /Np. O

It follows from Proposition 7.2, Proposition 11.4 and Lemma 11.7 that

a/ay = | J w-py(C) (12.2)
wew
and
w-py(C) Nw' - py(C) =0 (w,w" € W,w #w'). (12.3)

For an open P-orbit O in Z and a face F of C we write Wo.r for the subgroup (12.1)
of N/ for the spherical space Zo r.

Lemma 12.3. Let O be an open P-orbit in Z and let F be a wall of C. Then Wo  is
a subgroup of W of order 2. Moreover, Wo r stabilizes py(F). Finally, Wo r does not
depend on the open P-orbit Q.
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Proof. Let R be a connected component of the set of order-regular elements in a so that
R intersects with the relative interior of 7 and R NC = (). Let w € W be the element so
that py(R) C w - py(C) and let v € N be a representative of w.

Let z € Z be admissible and let y € Zo # be so that b9 = b, . By Proposition
10.4 the point y is adapted. It follows from Proposition 5.2 (iii) and Proposition 7.2 that
there exists an m € M so that forall X € R

(657)x = (h7)x = bo.x = Ad(vm)by,

and hence w = vNy € Wo .

The compression cone of Zp r is given by Cx = C + a, see Proposition 10.5. Since
F is a wall, the space py(ar) has codimension 1 in a/ay, and hence p,(Cx) is an open
half-space. Therefore, also w - py(Cr) is an open half-space. Moreover, p,(Cr) and
w - py(Cr) are disjoint, and thus

a/ay = py(Cr) Uw - py(Cr) and  py(Cr) Nw - py(Cr) = 0.

It follows that the group Wp  is of order 2. Since w is non-trivial, we have Wop 5 =
(1w}

If R’ is another connected component of the set of order-regular elements in a so that
R’ intersects with the relative interior of F and R/ N C = (), then there exists a w’ € W
so that py(R') C w’ - py(C). The arguments above show that Wp » = {1,w'} and it
follows that w = w’. Therefore, all connected components R’ of the set of order-regular
elements in a so that R’/ intersects with the relative interior of F and R’ N C = () have
the property that py(R') C w - py(C). This shows that the relative interior of py(F) is

contained in w - py(C) and hence py(F) is a wall of w - py(C). The element w stabilizes

ps(C) Nw - py(C). The latter set is equal to the common wall py (F).
Finally, if O’ is another open P-orbit in Z, then the arguments above yield an element

w' € W so that w’ - py(C) N py(C) = py(F). Now both w - C and w’ - C share the wall 7
with C. It follows that w - C = w’ - C, and hence v’ = w. O

In view of Lemma 12.3 we may for a wall F of C define
Wr .= Wo r,

where O is any open P-orbit in Z. In the following lemma we identify the non-trivial
element in VWx. The lemma heavily relies on Proposition 9.1.

Lemma 12.4. For every wall F of C there exists a sy € N that acts on a/ay as the
reflection in the hyperplane ax/ay. Moreover,

W]: = {6./\[@, 8}‘./\[@}.

Proof. Let z € Z be an admissible point and let o be an indecomposable element in M,
so that (8.3) holds.

If « € Y U 2%, then the simple reflection s in « is contained in the Weyl group W of
> and normalizes ay as « w = 0. Note that s acts on a/ay by reflecting in ar/ay.
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If o ¢ ¥ U 2%, then by Proposition 9.1 there exist 5,7 € X(Q) so that &« = 5+ 7,
/3 and ~ are orthogonal and span(5¥,v") Nay, # {0}. Let o € W and 0, € W be the
simple reflections in 3 and + respectively. Then s := og0., acts on a/ay by reflecting in
kera/ab = Cl]:/Clb.

Let s € N be a representative of s. It remains to prove that szfNy € Wx. Let
v € N be a representative of the non-trivial element in Wx. Let O = P - z and let y be
an admissible point in Zy . The compression cone Cr is an open half-space. Therefore,
for every X € Cr we have

(hy7)x = Ad(m)by and  (h,")_x = Ad(m'v)by

for some elements m,m’ € M. Both hy and Ad(v)hy are a-stable. Let ¢ be the Pliicker
embedding. If vy,...,v, € gis a basis of hy, then ¢(hy) = R(vy A--- Av,). Since by
is a-stable, we may assume that every v; is a joint eigenvector for ad(a). Now L([’J@) is
a joint eigenspace for ad(a) with weight equal to the sum of the weights of vy, ..., v,.
From (6.1) it follows that this weight is equal to —2p¢, where p is the half-sum of the
roots in X(()) counted with multiplicity. Likewise, ad(a) acts on the line «( Ad(v)hy)
with weight —2 Ad"(v) pg.
Let M7 be the monoid (8.1) for the space Zo r and the adapted point y. Then

Therefore, if X € Crand Y € b7 \ {0}, then (RY')_x is a line with eigenweight
differing by a non-zero multiple of « from an eigenweight of a line (RY”)x with Y’ €
b9\ {0}. Hence, every a-weight that occurs in Ad(v)by differs by a multiple of o from
an a-weight in by. It follows that Ad*(v)pg = pg + ra for some r € R\ {0}. Since the
lengths of Ad*(v)pg and pg are equal, it follows that

pall* = llpoll® + 2r{pg, a) + r*||o||>. (12.4)

Because « is either a root in () or a sum of roots in X((Q)), we have (pg,a) > 0.
Therefore, the equation (12.4) has precisely one non-zero solution 7. As Ad*(sz)pg €
po + Ra and Ad*(sz)pg # pg, it follows that

Ad*(v)pq = Ad*(s7)pq.

Therefore, srv~t € N. Lo(a). By Lemma 11.3 the latter group is equal to N, and hence
srNy = vNp. O

Proof of Theorem 12.1. In view of Lemmas 12.3 and 12.4 the group W,.s generated by
the simple reflections in the walls of py (E) is a subgroup of W. It follows from (12.2) and
(12.3) that in fact W,q = W. In particular, py (C) is a fundamental domain for the action
of W on a/a,. Comparison to [15, Section 9] shows that WV is equal to the little Weyl
group. Indeed, in view of [15, Theorem 9.5, Corollary 9.6 & Corollary 12.5] the little
Weyl group is a reflection group acting on a/ay and is generated by the simple reflections

in the walls of the cone pj (C ) O]
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13 Spherical root system

In this section we attach a root system > to Z of which W is the Weyl group.
We recall the edge ap of the compression from (6.5).

Lemma 13.1. W acts trivially on the subspace ag/ay in a/ag.

Proof. The little Weyl group )V is generated by simple reflections in the walls of py(C).
Since ag/ay is contained in each of these walls, the simple reflections act trivially on
ag/ay. It follows that W acts trivially on ag/ag. [

It follows from Lemma 13.1 that W acts on a/ag in a natural manner. We write pg
for the projection a — a/ag. If w € W, then the action of w commutes with pg. It
follows from (12.3) that w - pr(C) = pg(C) if and only if w = e. Therefore, w acts
trivially on a/ag if and only if w = e.

We now come to the main result in this section.

Theorem 13.2. The group W is a crystallographic group, i.e., it is the Weyl group of a
root system Yz in (a/ag)*.

Proof. We will verify the criterion in Section VI. 2. 5 of [3]. For this we define
A= (a/ag)" NZX(a).

Let z € Z be adapted. We recall the monoid M., from (8.1) and note that M, C A. It
follows from Proposition 6.9 (i) and (8.1) that A has full rank in (a/ag)*.

It follows from Theorem 12.1 and Lemma 13.1 that WV acts faithfully as a finite re-
flection group on a/ag. Moreover, since WV is a subquotient of N¢(a), it preserves the
lattice A. Thus by [3, Proposition 9 in Section VI.2.5] there exist a root system > in
(a/ag)* for which W is the Weyl group. O

The proof of Proposition 9 in Section VI. 2. 5 of [3] provides a construction of Y. ,.
Each reflection s in VV determines a root as follows. Let D, be the —1-eigenspace of s in
(a/ag)*. Then the primitive elements v, —«v in D; N A belong to X ;. All roots in X are
obtained in this manner. This root system is called the spherical root system of the real
spherical homogeneous space Z.

Remark 13.3.

(1) In the complex case, the root system constructed here is identical to the one in [14,
Section 6]. If Z is symmetric, then Theorem 6.7 in loc. cit. makes a comparison
between Xz and the restricted roots system »7, of the complex symmetric space Z.
Namely, X7 is the reduced root system associated to 2X7.

(i1) Similarly to each real reductive symmetric space Z, a restricted root system X7, is
attached in [22, Theorem 5]. This root system is in general not reduced. The root
system 7 is the reduced root system associated to 2X.7,.
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14 Reduction to quasi-affine spaces

Many results for quasi-affine real spherical homogeneous spaces hold true also for real
spherical spaces that are not quasi-affine. These results can be proven by a simple reduc-
tion to the quasi-affine case. In this section we drop the standing assumption that 7 is
quasi-affine.

By Chevalley’s theorem there exists a real rational representation (7, V') of G and a
vector vy € V so that H is equal to the stabilizer of Rvy. Let y be the character with
which H acts on Rug. Set

G':=GxR* and H :={(h,x(h)™')€G :heH}

Then
Z'.=G'/H
is a quasi-affine real spherical homogeneous space. We denote the natural projection
7' — Z by .
The results in the previous sections apply to the space Z’. Many of them imply the
analogous assertions for Z. We will list here the most relevant.
We define P’ to be the minimal parabolic subgroup P x R* of G’. Define

M :=Mx {1}, A =AxR* and Njp:= Np x {1}.

Then P’ = M'A’N}, is a Langlands decomposition of P’'.
A point z € Z is called adapted (with respect to P = M ANp) if there exists an
adapted point 2’ € Z’ (with respect to P’ = M'A’N},) so that (z') = z. Since

e} x RX C A’

and the sets of adapted points in Z’ are stable under multiplication by elements in A’, the
set 77 1(2) consists of adapted points if and only if z is adapted.
For an adapted point 2’ € Z' let Ly, = Ze/ (o' Nh7) and let Q' = Ly, P'. Define

Q:=7(Q) and Lq:=m(Lg).

Then () is a parabolic subgroup containing the minimal parabolic subgroup P, and (i)
and (ii) in Proposition 3.6 hold true for all adapted points z € Z.
We set

ho := (lg N b2y) + g
for some adapted point 2y € Z. We further define the compression cone of Z to be
C:={X €a:bh,x =Ad(m)hy for some m € M}
where z € Z is an adapted point. The compression cone C’ for Z' is related to C by the

identit
’ C=CxRCaxR.
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It follows from Proposition 6.5 that C does not depend on the adapted point z € Z chosen
to define it.

We call an adapted point 2 € Z admissible if for every order-regular element X € a
there exists a w € Ng(a) so that h, x = Ad(w)bhg. Then z is admissible if and only if
771(2) consists of admissible points in Z’. It follows from Proposition 11.4 (i) that the
set of admissible points is open and dense in the set of adapted points in Z with respect
to the subspace topology. Define

Ny = {w € Ng(a) : Ad(w)hy = Ad(m)hy for some m € M},
and
W = {wNy € Ng(a)/Ny : w € N and there exist X € aso that b, y = Ad(w)bhy},

where 2 is an admissible point in Z. Then 7 induces a bijection between VV and the little
Weyl group W’ of Z'. In particular W is a finite group and acts on a/ay as a reflection
group. Let py be the projection a — a/ay. Then WV is generated by the simple reflections
in the walls of p;(C) and py(C) is a fundamental domain for the action of W on a/ay,.

If az denotes the edge of C, then the edge of C’ is given by a), = az x R. Therefore,
there is a canonical identification ¢ : a/ag — (a x R)/a%;. The map ¢ intertwines the

action of W and W' Finally, if X is the spherical root system of Z’, then
Yy ={aocp:aecXy}

is a root system, which is called the spherical root system of Z.
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Chapter IV

The most continuous part of the
Plancherel decomposition for a real
spherical space

Joint with Eitan Sayag.

Abstract

In this article we give a precise description of the Plancherel decomposi-
tion of the most continuous part of L?(Z) for a real spherical homogeneous
space Z. Our starting point is the recent construction of Bernstein morphisms
by Delorme, Knop, Krotz and Schlichtkrull. The most continuous part de-
composes into a direct integral of unitary principal series representations. We
give an explicit construction of the /{-invariant functionals on these principal
series. We show that for generic induction data the multiplicity space equals
the full space of H-invariant functionals. Finally, we determine the inner
products on the multiplicity spaces by refining the MaaB3-Selberg relations.
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1. Introduction

1 Introduction

In this paper we provide a complete description of the most continuous part of the Plancherel
decomposition for a unimodular real spherical homogeneous space.

Let Z := G/H, where G = G(R) is the group of real points of a connected reductive
algebraic group G defined over R and H = H(R) the set of real points of an algebraic
subgroup H of G. We assume that Z is unimodular and hence admits a positive G-
invariant Radon measure pz. The basic problem in harmonic analysis on Z is to obtain
an explicit description of the Plancherel decomposition of the regular representation of G
on L*(Z, juz) into a direct integral of irreducible unitary representations of G.

In the case that the group G is considered as a homogeneous space of G x G such an
explicit description of the Plancherel decomposition is found in the celebrated work of
Harish-Chandra [21], [22], [23]. For real reductive symmetric spaces it was obtained by
Delorme in [16] and independently by Van den Ban and Schlichtkrull in [8], [9].

Recall that the space Z = G/ H is called symmetric in case H is an open subgroup of
the fixed point subgroup GG° for an involutive automorphism o : G — G. The represen-
tations of GG occurring in the Plancherel decomposition of a reductive symmetric space
Z split into finitely many series according to the (class of) parabolic subgroup P C G
from which they are induced. The relevant parabolic subgroups of GG are the so-called
o-parabolics, namely those parabolic subgroups P for which P and o(P) are opposite
to each other. With a Langlands decomposition P = MpApNp, with 0(Ap) = Ap, the
part attached to P has the form of a direct integral of generalized principal series repre-
sentations. More specifically, these are induced representations Ind% (¢ ® A ® 1), where
¢ is in the discrete series of representations for the symmetric space Mp/Mp N H and A
is a unitary character of ap = Lie(Ap) that vanishes on ap N h. The part corresponding
to the minimal o-parabolic subgroup @ is called the most continuous part of L?(Z). The
Plancherel decomposition of the most continuous part was determined for real reductive
symmetric spaces in the work of Van den Ban and Schlichtkrull in [7]. This was based
on the earlier works of Van den Ban on invariant linear functionals [1], [2]. The most
continuous part of L?(Z) decomposes as

— @

L2.(2)~ P / VH(¢) @ IndG(6 @ A @ 1) dA,
ety i(ag/agnh)%

where d) is the Lebesgue measure on i(ag/ag Nb)* and i(ag/ag Nbh)7 is a fundamental

domain for the stabilizer of (ag/ag N h)* in the Weyl group. The multiplicity spaces

V*(§) are independent of A. Moreover, V*(£) is non-zero only for finite dimensional

unitary representations £ of M.

A homogeneous space Z is called real spherical if a minimal parabolic subgroup P
of G admits an open orbit in Z. All real reductive symmetric spaces are real spherical.
A remarkable property of the class of real spherical spaces is the fact that all irreducible
smooth representations of G' admit a finite dimensional space of H-invariant functionals
by [33, Theorem C] and [37]. This property makes harmonic analysis on real spherical
spaces suitable for developing Plancherel theory.
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IV. The most continuous part of the Plancherel decomposition

In this paper we provide an explicit Plancherel decomposition for the most continuous
part of L?(Z) for a real spherical space 7, thus generalizing the main result of [7].

Our starting point is the recent work of Delorme, Knop, Krotz and Schlichtkrull [17].
Their construction of Bernstein morphisms allows to decompose L?(Z) into finitely many
blocks of representations, each attached to a so-called boundary degeneration of Z. The
block for the most degenerate of these boundary degenerations we call the most contin-
uous part of L?(Z). We show that, as in the symmetric case, the most continuous part
decomposes into a direct integral of principal series representations. To determine the
Plancherel decomposition of the most continuous part we construct linear functionals on
these principal series. For generic parameters our construction provides a basis for the
space of H-invariant linear functionals. We then show the key result that all H-invariant
functionals are tempered and the wave packets constructed using these functionals are
square integrable. Finally, by refining the Maal3-Selberg relations of [17], we obtain a
complete description of the inner product on the multiplicity spaces. This yields the full
description of the most continuous part of L*(7).

Assuming that the twisted discrete series conjecture from [35, (1.3)] holds, the most
continuous part of L?(Z) exhausts L?(Z) in case Z is a complex spherical space, i.e.,
in case G and H are both complex. Thus, our construction is expected to yield the full
Plancherel formula for complex spherical spaces.

1.1 The most continuous part via Bernstein morphisms

To describe the most continuous part L?(Z ). of L?(Z) and the results in this article
we recall some important invariants of the real spherical homogeneous space Z, bound-
ary degenerations of Z, twisted discrete series representations and finally the Bernstein
morphism, relating L?(7) to twisted discrete series representations for boundary degen-
erations of Z.

We fix a minimal parabolic subgroup P and a well chosen (with respect to H) Lang-
lands decomposition P = M AN. Inside the Lie algebra a of A one finds the compression
cone, which is an open cone C whose closure is finitely generated and contains a, := anb.
The cone C/a;, C a/ay serves as a fundamental domain for a finite reflection group Wy,
called the little Weyl group of Z. Attached to the little Weyl group is a root system >,
called the spherical root system. The faces of the cone C are parameterized by subsets of
a simple system Il of >4, i.e., the sets

are precisely the faces of C. R
In [28] a smooth G-equivariant compactification Z(R) of Z(R) was constructed. For
every I C Il and X contained in the relative interior of F; the limit

zr = tliglo exp(tX)H € Z(R)

exists and does not depend on the choice of X. The stabilizer of z; is a real algebraic
subgroup of (G, and hence equals the set of real points of an algebraic subgroup H; of
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G defined over R. We note that A; := exp(spanF;) is a subgroup of H,(R). We set
Z; = G/H,;. Now Z(R) admits a stratification in G-manifolds of the form Z,;(R)
where I C II. In the case where Z admits a wonderful compactification Z, one has

Z®R)=z®)u |J Z,®).

ICI,

In the general case there is a need to use multiple copies of GG-manifolds of the form
Z,(R). )

We use these spaces to define the boundary degenerations. The group H;(R) acts
on the normal space of Z ;(R) at the point z;. The kernel of this representation on the
normal space is a normal real algebraic subgroup of H 1(R), i.e., there exists a normal
algebraic subgroup H; of ﬁ ; so that the kernel of the isotropy action of i 1(R) on the
normal space of Z,(R) at z; is equal to H,(R). The quotient H,(R)/H,(R) is abelian.
Its identity component is equal to A;/(A; N H).

We define the algebraic varieties

Z; =Gz (I C1I,).

These varieties are called boundary degenerations of Z. The manifold Z,(R) is a finite
union of homogeneous spaces for (G, each of which is real spherical and is unimodular.
The group A; acts from the right on Z;(R). The kernel of this action is Ay := exp(ay).

The right-action of A; on Z,(RR) induces a right-action on L?(Z,(R)), which com-
mutes with the left-regular representation of G. The decomposition of L? (Z I(R)) with
respect to the right-action of A; yields a disintegration in unitary G-modules

pzm)= [ zm)

+i(ar/ap)*

Here p € (a/ay)* is an element so that the sections of the line bundle
Z(R) x4, Cy = Z,(R)/Ar.

with x € p+i(a;/ay)* are half-densities, L?(Z,(R), x) is the space of square integrable
sections of this line bundle and dy is the Lebesgue measure on pg + i(a;/ay)*.

The irreducible subrepresentations of L2, (Z,(R), x) for any x € pg + i(ar/ay)* are
called twisted discrete series representations. Let L2, (Z 1 (R), X) be the closure of the
span of all irreducible subrepresentations of L?(Z;(R), x). The spaces L%, (Z;(R), x)
depend measurably on the character y. We define

@
L‘?ds (Z1<R)) = / L%ds (ZI(R)v X) dx.
pqti(ar/ay)*
The main result of [17] is the construction of a map

B: P L} (Z,(R) — L*(Z(R)) (1.1)

ICI,
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IV. The most continuous part of the Plancherel decomposition

with the following properties: B is G-equivariant, surjective, isospectral, and for every
I C II the restriction

Br = (1.2)

Blis, (zw)
is a sum of partial isometries. The existence of such a map goes back to ideas of Bern-
stein and hence B is called the Bernstein morphism. The Bernstein morphism was first
constructed by Sakellaridis and Venkatesh for p-adic spherical spaces in [46].

In the case that G is split and under the assumption of a conjecture on the nature of
twisted discrete series representations, Delorme determined the kernel of the Bernstein
morphism in [15]. The kernel is described by so-called scattering operators. Even with
this description of the kernel of the Bernstein morphism, the decomposition of L?(Z)
remains very abstract. In fact, for general / C II, very little is known about the nature
of the twisted discrete series of representations for Z;(R). However, for I = () the repre-
sentation belonging to the twisted discrete series for Z;(R) can be determined explicitly.
This allows for an explicit Plancherel decomposition of the subspace

L} (Z) :=1m (By) N L*(Z).

The space L2 _(Z) decomposes in the largest continuous families of representations.
Therefore, L2 (Z) is called the most continuous part of L?(Z).

The boundary degeneration Z;(IR) equals a finite union of copies of one real spherical
homogeneous space for G which we denote by Zy = G/Hy. To be more precise, the
copies of Zj in Z,(R) are parameterized by the open P-orbits in Z(R).

The local structure theorem of [31] applied to the spherical space Z, provides an
adapted parabolic subgroup () C G and Langlands decomposition () = MgAgN¢g with
Ag C A. LetQ = MgAgN be the opposite parabolic. For a reductive symmetric space
( is the minimal o-parabolic subgroup. Now the space Zj can be explicitly described as

Zy = G/ Hy, Hy = (MoN H)(AN H)Ng.
In this case Ay = A. The fact that the subgroup Hj satisfies
NoCHyCQ

makes decomposing L?(Zy) into a direct integral of irreducible unitary representation of
G easy. Indeed employing induction by stages we obtain

L*(Zp) = Ind§ (1) = Indg <Indg®(1)).
Moreover, B
Indf, (1) ~ L* (Mg /Mo N H)&L*(A/AN H).

The space L? (MQ /MonN H ) decomposes discretely as

L*(Mg/MgN H) ~ @(v;)MQ“H ®¢&

EEJ\A/[Q
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Moreover, the multiplicity space (‘Q*)MQ”H can only be non-zero for finite dimensional
unitary representations ¢ of M. The space L? (A JANH ) decomposes as

&
L*(A/JANH) :/ CydA,
i(a/ay)*

where C, is the 1-dimensional representation of A corresponding to A € i(a/ay)* and
dX is the Lebesgue measure on i(a/ay)*. It follows that L?*(Zy) decomposes as a direct
integral of principal series representations Indg(ﬁ ® A ® 1) with ¢ an irreducible finite
dimensional unitary representation of Mg and A € i(a/ay)*. Two such representations
Ind%(é’ ® A ® 1) and Ind%(f’ ® A ® 1) are isomorphic if and only if there exists an
element w of the Weyl group so that \' = w - X and ¢’ = w - £. We thus arrive at the
decomposition

—  ®
L(Zy)~ @ | Mpe ® IndS(E @ A® 1) dA,
SEﬁQ,fu Z(Cl/ah)+

where MQiu denotes the set of equivalence classes of irreducible finite dimensional uni-
tary representations of My and i(a/ay)% is a fundamental domain for the stabilizer of
i(a/ay)* in the Weyl group. The space M ¢ is the so-called multiplicity space attached
to the representation Ind%(& ® A ® 1). It turns out to be independent of \. It follows
from this description of the Plancherel decomposition that all irreducible unitary repre-
sentations occurring in L*(Zy) belong to the twisted discrete series of representation for
Zy. Furthermore, the twisted discrete series for Zj consists of the principal series repre-
sentations of the form Ind%(f ®@A®1) with A € i(a/ay)* and (£, V) a finite dimensional
unitary representation of M.

Invoking the formal properties of the Bernstein maps described above, we obtain a
decomposition of L2 (Z) as

— @
L2.(2)~ P Mgy @ IndG(E @A © 1) d. (1.3)

—~ i(a/ag)™
echomn (a/ap)}

In this article we give a precise description of the Plancherel decomposition of L2 _(Z),
which amounts to the explicit determination of the multiplicity spaces Mg ) with their
inner product structure and the Fourier transform that realizes the unitary equivalence
(1.3).

The elements of the multiplicity spaces can be interpreted as H-invariant continu-
ous linear functionals on the space of smooth vectors for principal series representations
Ind%(§ ® A ® 1). As such, they can be studied as V;*-valued distributions on Z.

1.2 Main results

To formulate our results concerning the multiplicity spaces for the induced representation
Ind%({’ ®A®1) and the Plancherel decomposition of L2 (Z), we need some preparation.
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IV. The most continuous part of the Plancherel decomposition

For the proofs in the text it is more convenient to work with V;*-valued distributions rather
than functionals. However, for clarity of exposition we state our results here in terms of
continuous linear functionals.

More is known about P-orbits in Z than about @) or (Q-orbits. Therefore, instead of
representations induced from @, we rather first consider representations induced from the
minimal parabolic subgroup P. To describe the connection between the relevant represen-
tations induced from @ and representations induced from P, we fix a finite dimensional
unitary representation (£, V¢) of Mg. Such a representation is necessarily trivial on the
connected subgroup of M with Lie algebra equal to the sum of all non-compact simple
ideals in the Lie algebra of M. Therefore, for A € ay, - the representation Indg(é‘ ®AR1)
is a subrepresentation of Ind% (& ‘ y @A+ ppg ® 1), where ppg is the half sum of all
roots of a that occur in P N Mg. Moreover, for generic A € ag, - the representations
Ind%(£ ®A®1)and Indg(é' ® A ® 1) are equivalent.

We write Hg ¢\, Hoen and Hpg  for the spaces of smooth vectors for the represen-
tations Ind%(£ ®A® 1), Indg( ® A ® 1) and Ind3(£],, ® A + ppg ® 1), respectively.
Now for generic A € a7, ¢

Haen = MHoer S Hpen

Our concern is with H-invariant continuous linear functionals on Hg . \ >~ Hge . Itis
a remarkable fact that every such functional on Hg ¢ 5 is obtained by restricting an H-
fixed continuous linear functional on Hp¢ . The geometry of the orbits makes it more
convenient to first determine the H-fixed continuous functionals on Hp¢ » and with that
those on the Hg ; ,, rather than considering functionals on Hg . , directly.

The analysis of H-fixed continuous linear functionals on H p ¢ 5 requires a closer study
of the P-orbits in Z. We now discuss some aspects of this. For z € Z we denote by H,
the stabilizer of z in G and by h, = Lie(H.) its Lie algebra. For every element X € a
the limit

b..x = lim Ad (exp(tX))b. (1.1)

exists in the Grassmannian manifold. Let O be a P-orbit in Z. The subspace ap =
anb,x with z € O and X € a is an invariant of O as it is independent of the choices
of z and X. This allows us to define the rank of O by

rank(Q) = dim(a/ap).

For every open P-orbit O we have ap = a,. The rank of each open orbit is therefore the
same; this is an invariant of Z called the rank of Z. The rank of any P-orbit is bounded
by rank(Z) and an orbit is called of maximal rank if rank(Q) = rank(Z). The set of
maximal rank orbits is in general strictly larger than the set of open orbits. For example,
in the group case every P-orbit is of maximal rank. See Example 3.3. For our purposes
the set of maximal rank orbits O with ap = a; is of great importance. We denote this
set by (P\Z)a,. For many real spherical spaces the set of open P-orbits does not exhaust
(P\Z)a,. This is for example the case for Z = G/Np and Z = SO(5,C)/GL(2,C).
For any H-fixed continuous linear functional ¢ on Hp y one can naturally attach a
Vi -valued distribution j, on Z that is left- P equivariant. For such distributions on Z we
denote by (P\Z), the set of P-orbits in supp(u,) that are open in the relative topology
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of supp(jse). Our first result is a strong restriction on the support of the distributions 1,
when the induction parameter A is generic. Furthermore, we show that these distributions
do not admit transversal derivatives. More precisely, we prove the following:

Theorem A (Theorems 5.4, 5.2 & 6.4). There exists a finite union S of hyperplanes in
(a/ay)* so that for A € (a/ay)s withIm X\ ¢ S the H-fixed continuous linear functionals
€ on Hpg » satisfy the following.

(i) Only maximal rank orbits with ap = ay, contribute to (P\Z),, i.e.,

(P\Z)¢ € (P\Z)aq,

(ii) For each orbit O € (P\Z), there exists a representative to € G and an no €
(Vg*)MQmOH%l so that for every f € Hpg x with

supp(f) N U 00 =1
O€e(P\Z),
we have the formula

= ) /m (no, f(zoh))dh,

OG P\Z o Px@ﬂH

where dh denotes an H-invariant Radon measure on (v,,' Pro N H)\H. In partic-
ular, the distribution i, attached to the functional ¢ does not admit any transversal
derivatives.

(iii) Every non-zero H-fixed continuous linear functional { on Hpg 5 restricts to a non-
zero H-fixed continuous linear functional on Hq ¢ ». In fact, the restriction map

HOInH (Hp@)\, (C) — HomH (HQ,&)\, C)
is an isomorphism.

The next result concerns the actual construction of H -invariant continuous functionals
attached to maximal rank orbits. First, for each O € (P\Z),, we carefully choose a
representative zo € G, see Section 6.4. Given an orbit O € (P\Z),, there exists a
shifted open cone I'o C (a/ay)* so that for all A € (a/ay)s with Re A + ppg € T'o the
integrals

Cean(f) = / (n, f(woh))dh (1.2)
(2" PronH)\H

are absolutely convergent for all € (Vg)MQ”mH%l and f € Hpge . Moreover, when
viewed as V;"-valued distributions on Z, each family A — ¢ ) ,, extends to a meromorphic
family w1th parameter A € (a/ay). We set

Vi©) = D (V)Menmetive,

OE(P\Z)ay
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IV. The most continuous part of the Plancherel decomposition

Note that V*(¢) is finite dimensional. We thus obtain a map
V*(€) = Hompy (Hpea, C); 1> Leay

with meromorphic dependence on A € (a/ay)f. After suitably normalizing these func-
tionals using amongst other things the long intertwining operator, see (6.1), we arrive at
a map

fg)\ . V*(g) — HOHIH (H@j&)\, (C),

which is an isomorphism for generic A\. More precisely, the following hold.
Theorem B (Theorem 6.1 & Corollary 8.1).

(i) For every n € V*(§) the map X\ — (2 \(n), considered as a family of V-valued
distributions on Z, is meromorphic on (a/ay)¢.

(ii) Fo;i everyn € V*(§) the map \ — (¢ \(n) is holomorphic on an open neighborhood
of i(a/ay)*.

(iii) There exists a finite union S of proper subspaces of (a/ay)* so that [ , is an iso-
morphism for \ € (a/ay)s withIm A ¢ S.

We now come to the determination of the multiplicity spaces. Each multiplicity space
M » is naturally identified with a subspace of Homp (Hg , ,, C). However, an H-fixed
continuous linear functional £ on Hg , , can only be contained in M , if the generalized
matrix coefficients with ¢ are almost contained in L? (Z). To be more precise, a functional
¢ can only contribute if it is tempered, i.e., if all generalized matrix coefficients with ¢
define tempered functions on 2.

Theorem C (Theorem 7.2 & Theorem 7.1 and its Corollary 8.2). For A € i(a/ay)*
outside of a finite union of proper subspaces of i(a/ay)* every H-fixed continuous linear
Junctional on Hg ¢  is tempered. In fact, for almost every \ € i(a/ay)" we have

ng)\ = HOHIH (HQ&)\, (C)

To state the main result of the article, Theorem 8.1, we define the Fourier transform
for a smooth function ¢ with compact support on 2

F(8)(& ) € V'(§) ® H e ~ Home (V*(€Y), Hye)
by
FOEN = [ o)l o ) dg (e V).
On V*(&) there is a natural inner product induced by the inner product on V. We nor-
malize this inner product by a factor of dim(V;).

Theorem D (Theorem 8.1). Let i(a/ay)* be a fundamental domain for the stabilizer of
i(a/ay)* in the Weyl group. Then the Fourier transform f — 7 f extends to a unitary
isomorphism

— O
L:(2) = P V*(€) © IndS(€ ® A @ 1) dA.
et Jia/an)
Q,fu
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As mentioned before, the representations Indg(g ® A ® 1) are irreducible for generic

A € i(a/ay)*. Moreover, if £,&' € ]\/Znyu and A\, X € i(a/ay)? are generic the represen-
tations Indg(g ® A®1) and Ind%(f’ ® N ® 1) are not equivalent if (§,\) # (&', \).
Therefore, the above decomposition of L2 (Z) is the Plancherel decomposition.

1.3 Methods of Proof and structure of the article

After setting up our notation in Section 2, we begin in Section 3 with the study of P-
orbits in Z. There are two main results. The first is Theorem 3.2, which is a structure
theorem for maximal rank orbits. It is a generalization of a structure theorem of Brion,
[11, Proposition 6 & Theorem 3], for complex spherical spaces. Theorem 3.2 is of cru-
cial importance for our construction of f/-fixed distributions. The second main result in
Section 3 is Theorem 3.3. We define an equivalence relation on the P-orbits of maximal
rank. We then show that the Weyl group W of the root system of a in g naturally acts on
the set of equivalence classes. This action is transitive. The set of open orbits forms one
equivalence class; its stabilizer is the little Weyl group W . This result was first obtained
by Knop in [27] for complex spaces and by Knop and Zhgoon in [32] for spherical spaces
defined over a field of characteristic 0. Their results are more general than ours, but our
description of the action of W is tailor made for the way we apply it. The W -action is
applied at several places, most notably for the precise choice of the representatives xp
for the P-orbits in (P\Z),,. Our approach to P-orbits on Z differs substantially from
the techniques used by Brion, Knop and Zhgoon. The main tool for our considerations
is the limit subalgebra b, x from (1.1). Previously we used an analysis of these limit
subalgebras to give a construction of the little Weyl group in [39]. We heavily rely on the
results from that article for the two main results in Section 3.

In Section 4 we set up a dictionary between invariant functionals on the smooth vec-
tors of a principal series representation Indg(f ®A®1) induced from a parabolic subgroup
S and a space D'(S : £ : ) of S-equivariant V"-valued distributions. Even though the
exposition of the results is easier in the language of functionals, as in Section 1.2, we
find it easier to work with distributions and that is what we chose to do throughout the
article. In Section 4.3 we describe the action of the intertwining operators on those distri-
butions as we were not able to locate such a description in the literature. The proofs for
these results are relegated to Appendix B. As was explained in Section 1.2, it is easier to
work with the minimal parabolic subgroup P, rather than directly with Q or Q. To facili-
tate this, we make a comparison between inductions from different parabolic subgroups,
when the induction data allows, in Sections 4.4 — 4.6.

In Section 5 we prove the first two assertions in Theorem A. For reductive symmetric
spaces the restrictions on the support and transversal derivatives of H-fixed distributions
in D'(P : £ : \) are obtained using Bruhat’s theory which he developed in his thesis.
See [1, Theorem 5.1] and [14, Théoreme 1 in Section 3.3]. This approach relies heavily
on precise knowledge of all P-orbits in Z. For reductive symmetric spaces the P-orbits
are very well understood; a complete description of the P-orbits has been given by Mat-
suki in [40] and [41]. Unfortunately, for real spherical spaces such a description is not
available. We therefore resort to a different method, namely principal asymptotics, which
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IV. The most continuous part of the Plancherel decomposition

is a technical tool from [35, Theorem 5.1]. The method of principal asymptotics can
be considered as the analogue of the limit subalgebras (1.1) for /-fixed distributions in
D'(P : € : \). Given such a distribution 1, an orbit O € (P\Z),, apoint z € O and a
sufficiently regular X € a~, the principal asymptotics of y is a distribution y, x defined
on a left- P invariant open neighborhood of e in G that is left P-equivariant and right in-
variant under the limit subalgebra b, x. These last distributions are easier to analyse. An
immediate corollary is that the imaginary part of A must vanish on a», which implies the
first assertion in Theorem A, see Theorem 5.4. Moreover, i has transversal derivatives
on O if and only if 11, x has transversal derivatives. The proof for the second assertion is
now essentially reduced to the case of N p-invariant distributions in D'(P : £ : \). For
the latter distributions the absence of transversal derivatives for generic A is proved by an
analysis of the action of the center of ¢/(g) in Theorem 5.2.

In Section 6 we construct the H-invariant distributions in D’(P : £ : \). By consider-
ing powers of matrix coefficients of finite dimensional /{-spherical representations, one
easily sees that the integrals (1.2) are absolutely convergent if Re A is in a certain shifted
cone. We thus find holomorphic families of H-fixed distributions with family parameter
A. We then use the technique of Bernstein and Sato to extend these families to meromor-
phic families. This method is well known; it was for example used before by Olafsson in
[42, Theorem 5.1], Brylinski and Delorme [13, Proposition 4] and Frahm [20, Theorem
3.3].

For symmetric spaces there are other ways to obtain the meromorphic extension. We
mention here two methods of Van den Ban: [1, Theorem 5.10] using intertwining oper-
ators and [2, Theorem 9.1] using translation functors. The second method of Van den
Ban is arguably the best since it provides a rather explicit functional equation. See also
[14, Théoreme 2] where this method was used by Carmona and Delorme. In our setting
neither the method based on intertwining operators, nor the method based on translation
functors is straightforwardly applicable since both require that the only orbits contribut-
ing in Theorem A (i) are the open orbits. For real spherical spaces with the wavefront
property, e.g. reductive symmetric spaces, only the open orbits contribute. We give a
short proof of this in Appendix A.

To construct the H-invariant distributions in D’'(P : £ : \) on non-open P-orbits of
maximal rank we use an idea from [4, Theorem 7.1]. We mention here that a similar
construction for p-adic spherical spaces was done by Sakellaridis in [45, Section 4]. The
applicability of the idea heavily relies on the structure of maximal rank orbits. For reduc-
tive symmetric spaces this is readily obtained from the rich structure theory that exists
for these spaces. For real spherical spaces the necessary assertions were proven using
our methods concerning limits subalgebras in Theorem 3.2. Every maximal rank orbit O
is contained in an open P’-orbit (O’ for a certain minimal parabolic subgroup P’. More-
over, O’ decomposes as a family of orbits of a unipotent subgroup of P’ parameterized
by the points in (J. This geometric decomposition translates on the level of distribu-
tions to a decomposition of the distributions we constructed before on open orbits into
the application of a standard intertwining operator on a distribution supported on O. The
outcome of this analysis is a construction of H-invariant distributions p in D/'(P : £ : \)
with (P\Z), = {O} by applying the inverse of a standard intertwining operator to a
H-invariant distribution in D’(P’ : € : ) constructed on an open orbit. As a corollary
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we find that the H-invariant distributions in D'(P : £ : \) fit into meromorphic families
with family parameter A. All this is described in Proposition 6.2. With the rather ex-
plicit formulas for the distributions we obtain from Proposition 6.2 it is then shown that
the distributions constructed on P-orbits in (P\Z),, actually are Q-equivariant, which
establishes assertion (iii) in Theorem A. See Theorem 6.4.

By combining Theorem 5.4, Theorem 5.2 and Theorem 6.4 we obtain in Theorem 6.3
a full description of D'(Q : £ : A\)¥ for generic A € (a/ay)i. The remainder of Section 6
is devoted to a description of the action of the normalizer of H in A on D'(Q : £ : \) and
a proper normalization of the families of distributions we constructed. The latter results
in the assertions (i) and (iii) in Theorem B.

In section 7 we prove Theorem C. There are two main results. The first is Theorem
7.2, which asserts that for generic A € i(a/ay)* all H-fixed distributions in D’(Q : £ : \)
are tempered. The proof begins with an a priori estimate, which is then improved in a
recursive process. For reductive symmetric spaces this was done by Van den Ban in [2,
Section 18] using a technique of Wallach from [49, Theorem 4.3.5]. For real spherical
spaces this method is not easily applicable. This is due to the lack of a good polar de-
composition. Instead we adapt the techniques developed in [18] for the construction of
the constant term map. In [18] only tempered eigenfunctions are considered. However
the techniques can be applied to non-tempered eigenfunctions as well and then used to
improve estimates and prove temperedness.

Once we have established the temperedness of the distributions, we move on to the
second main result in section 7: the square integrability of wave packets in Theorem 7.1.
The proof is similar to the analogous result for reductive symmetric spaces by Van den
Ban, Carmona and Delorme in [3]. Also this result relies heavily on the constant term
map. An important consequence, Corollary 8.2, is that for almost every A € i(a/ay)* the
multiplicity space M , is identical to D'(Q : £ : ), and hence can be identified with
V*(€) in view of Theorem B (iii).

In Section 8 we prove the Plancherel decomposition of L2 (7). The abstract Plancherel
decomposition provides V*(&) for almost every A € i(a/ay)* with an inner product. To
prove Theorem D it remains to show that this inner product is independent of A and up to
a factor of dim(V) equal to the inner product induced from the one on V. This we do in
Section 8. We first prove the required identity for the space Z = Zj by a direct compu-
tation in Theorem 8.1. The result for Zj can in view of the MaaB3-Selberg relations [17,
Theorem 9.6] be used to determine the inner products for Z itself. In order to apply the
MaaB-Selberg relations we have to determine the constant terms of all distributions. We
give explicit formulas in Proposition 8.1 and 8.2. If Z has the wavefront property, then
the Maal3-Selberg relations from [17, Theorem 9.6] suffice to determine the inner prod-
uct on V*(§). For the group case, and more generally for reductive symmetric spaces,
this was done in [17, Sections 14 & 15]. For general real spherical spaces a refinement
of the Maal3-Selberg relations is needed. This refinement is obtained in Corollaries 8.2
and 8.1. For the proof we construct suitable G-invariant differential operators on Z using
Knop’s Harish-Chandra homomorphism from [26]. We then determine the Plancherel
decomposition of L2 .(Z) in Theorem 8.1.

Assertion (i1) in Theorem A is an easy corollary to Theorem 8.1. For reductive sym-
metric spaces this was proven in [6, Theorem 1]. Finally, we provide in Corollary 8.4 an
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IV. The most continuous part of the Plancherel decomposition

explicit form for the so-called scattering operators introduced by [15] in the case G is a
split real reductive group. Our formulas are written in terms of the standard intertwining
operators acting on /-fixed linear functionals.
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2 Setup and notation

Groups are indicated by capital roman letters. Their Lie algebras are denoted by the
corresponding lower-case fraktur letter.

Let G be a connected reductive algebraic group defined over R and set G := G(R).
Let H be an algebraic subgroup of G defined over R and set H := H(R). We write
Z = G/H. If z € Z, then the stabilizer subgroup of Z is indicated by H, and its Lie
algebra by b,.

We set G¢ := G(C) and H¢ := H(C). If FE is a real vector space, then we write F¢
for its complexification.

Throughout the article we fix a minimal parabolic subgroup P of GG and a Langlands
decomposition P = M AN. We assume that 7 is real spherical, i.e., there exists an open
P-orbit in Z. We further assume that Z is unimodular. In view of [17, Lemma 12.7] the
space Z is quasi-affine.

Let 6 be a Cartan involution of GG so that A is #-stable. We denote the corresponding
involution on the Lie algebra g by 6 as well and write K for the fixed point subgroup of
6. Note that K is a maximal compact subgroup of G.

If () is a parabolic subgroup of G, then we write N, for the unipotent radical of ()
and N for the unipotent radical § N, of the opposite parabolic subgroup 0Q).

We write 3 for the root system of a in g. If () is a parabolic subgroup containing A,
then we define ¥((Q) to be subset of ¥ of roots « so that the root space g,, is contained in
ng. We define pg to be the element of a* given by

1
po(X) = 3 trad(X)}nQ.
Further, we write a~ for the open negative Weyl chamber with respect to ¥(P).
We fix an Ad(G)-invariant bilinear form B on g so that —B( -, § - ) is positive definite.
For E/ C g, we define
E-={Xe€g:B(X,E)={0}}.

For the notation for function spaces we follow the book of Schwartz [48]. In partic-
ular, spaces of compactly supported smooth, smooth and Schwartz functions are denoted
by D, £ and S respectively. Their strong duals are as usual indicated by a’.
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3. P-Orbits of maximal rank

If N is a connected and simply connected subgroup of GG so that its Lie algebra n is a
nilpotent subalgebra of g, then we equip N with the Haar-measure dn given by the pull-
back of the Lebesgue measure on n along the exponential map. This we do in particular
for the group A and the unipotent radicals N of parabolic subgroups (). Every compact
subgroup we equip with the normalized Haar measure. We do this in particular for the
groups K and M. We normalize the Haar measure dg on G so that

/ng(g) dg:/K/A/NP a*? p(kan) dn da dk (¢ € D(G)).

In view of the Local structure theorem, see Proposition 3.1, there exists a parabolic sub-
group () containing A and a point z € Z, so that P - z is open and

NoxM/(MNH,) xA/(ANH,) = P-z (n,m,a)— nma-=z

is a diffeomorphism. Let ap = an(aNb,)* and Ay = exp(ao). Then the group M Ay N
is unimodular. We normalize the invariant Radon measure on Z by

/Z¢(z) dz = /NQ /M N o(nma - z)dadmdn (¢ € D(2)).

The Haar measure on // we normalize by requiring that

/G b(g) dg = /Z /H olgh)dhdgH (6 € D(G)).

Finally, we normalize the Lebesgue measure i(a/a N bh,)* so that

o= /i(a/ambz)* /A/(AﬁHz) ¢(@)Cl/\ dodd <¢ © D(A/(A : Hz>)>

3 P-Orbits of maximal rank

3.1 The local structure theorem

In this section we give a reformulation of the local structure theorem, which follows from
[31, Theorem 2.3] and its constructive proof.

Proposition 3.1. There exists a parabolic subgroup () with P C (), a Levi decomposition
Q = LoNg with A C Lgq, and for every open P-orbit O in Z a point z € O so that the
following assertions hold.

(i) Q-0=0.
(i) QN H, = Lo N H..

(iii) The map
Ng x Lg/LgNH, — Z; (n,l(LoNH.))—nl-z

is a diffeomorphism onto O.
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IV. The most continuous part of the Plancherel decomposition

(iv) The sum |y of all non-compact simple ideals in (g is contained in by.,.

(v) There exists an X € aN bt so that Lo = Zg(X) and o(X) > 0 for all o € %(Q).

Remark 3.2. The existence of an X € a N b} with Lo = Zg(X) has the following
consequence. Let o € Y. Then g, C g if and only if oY €anb,.

3.2 Adapted points

We now recall the notion of adapted points and some relevant results from [39].
Following [39] we say that a point z € Z is adapted (to the Langlands decomposition
P = M AN) if the following two conditions are satisfied.

(i) P-zisopenin Z,ie.,p+bh. =g,
(ii) There exists an X € aN b so that Z,(X) = Ig.

See Definition 3.3 and Remark 3.4 (b) in [39]. It follows from Proposition 3.1 that every
open P-orbit in Z contains an adapted point. Moreover, the set of adapted points is
M A-stable.

The Lie subalgebra anh, is the same for all adapted points z by [39, Corollary 3.17].
We denote this subalgebra by a, and refer to the dimension of a/ay as the rank of Z.

Adapted points have several of the properties that are listed in the local structure
theorem, Proposition 3.1. The following proposition is a combination of Proposition 3.6
and Remark 3.7 (b) in [39].

Proposition 3.1. Let z € Z be adapted. Then the following hold.
(i) QNH, =LqoNH,,
(ii) lone € b2
(iii) The map
M/(MNH,) xa/ay — Lo/(Lg N H,);
(m(M N H.),X +ay) — mexp(X)(Lo N H.)
is a diffeomorphism.
(iv) The map
Ng x Lg/(LgNH,) = Z; (n,l(LgNH,))—nl-z
is a diffeomorphism onto P - z.

The adapted points in a given open P-orbit are up to M A-translation parameterized
by @-regular elements in a N ahL, i.e., by elements X € an ahl so that Z;(X') = . The
following proposition follows directly from [39, Proposition 3.12].

Proposition 3.2. Let O be an open P-orbitin Z. Let X € aNay. If Zy(X) = lo, then
there exists an adapted point z € O so that X € bt. Moreover, if 2/ € O is another
adapted point so that X € bk, then there exist m € M and a € A so that 2’ = ma - 2.
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3. P-Orbits of maximal rank

3.3 Limits of subspaces

In this section we discuss limits of subspaces of g in the Grassmannian and their proper-
ties.

For k € N let Gr(g, k) be the Grassmannian of k-dimensional subspaces of the Lie
algebra g.
We say that an element X € a is order-regular if

a(X) # B(X)

for all a, § € 3 with a £ £5.

If X € ais order-regular, then in particular a(X) # —a(X) and therefore o(X) # 0
for every a € Y. This implies that order-regular elements in a are regular. The name
order-regular refers to the fact that every order-regular element X € a determines a
linear order > on Y. by setting

a > ifandonlyif «(X) > g(X)

for a, 5 € X.
The following proposition is taken from [35, Lemma 4.1] and [39, Proposition 5.2].

Proposition 3.1. Let £ € Gr(g, k) and let X € a. The limit
Ex = tliglo Ad (exp(tX))E,

exists in the Grassmannian Gr(g, k). If \i < Ay < --- < A\, are the eigenvalues and
D1, - - -, Pn the corresponding projections onto the eigenspaces V; of ad(X), then Ex is
given by

Ex =@ n(EnPV;). (3.1
i=1 j=1
The following hold.
(i) If E is a Lie subalgebra of g, then Ex is a Lie subalgebra of g.
(ii) If X € ais order-regular, then Ex is a-stable.

(iii) Let R C a be a connected component of the set of order-regular elements in a. If
X eRandY € R, then (EX)Y = Ey. Inparticular, if X, Y € R, then Ex = Ey.

(iv) If 9,9 € G and
tlim exp(tX)gexp(—tX) = ¢,
—00

then
(Ad(g)E), = Ad(g) Ex

(v) Let Ec x be the limit of Ad (exp(tX ))E(c for t — oo in the Grassmannian of
k-dimensional complex subspaces in the complexification gc of g. Then

Ecx = (Ex)c.
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IV. The most continuous part of the Plancherel decomposition

We note that if X is not order-regular, then £’y need not be stable under the action of
a, even if X is regular.
For z € Z and X € a we define

hz,X = (hz)X—

3.4 Compression cone

We may and will assume that the point eH € G/H = Z is adapted. We define
by := (lo Nh) & 7g.
For z € Z, we define the cone
C.:={X €a:b,x =Ad(m)hy for some m € M}.

By [39, Proposition 6.5] the cones C, are the same for all adapted points z € Z. We
therefore may define

c:=c.
where z is any adapted point in Z. We call C the compression cone of Z.
In the following proposition we list some of the properties of the compression cone
from [39, Section 6].
Proposition 3.1.
(i) Let z € Z. If P - z is not open, then C, = (). If P - z is open, then a— C C, C C.
(ii)) C = C + ay.
(iii) C is a finitely generated cone.
The edge of C we denote by az, i.e.,

agp :=CnN—C. 3.1)

Note that a; C ag, but that in general ar may be strictly larger. We recall from [29,
Section 6] that 7 is called wavefront if

C=a +a.
For wavefront spaces Z we have agp = a,. All reductive symmetric spaces are wavefront,
i.e., all spaces GG/ H with H an open subgroup of the fixed point subgroup of an involutive

automorphism of G.

144



3. P-Orbits of maximal rank

3.5 Rank of a P-orbit

In this section we define the rank of a P-orbit in Z. We begin with a lemma.
Lemma 3.1. Let z € Z. The set aN b, x is the same forallp € Pand X € a.

Proof. Let X € a~ and p € P. Further, let p, : p — a be the projection along the
decomposition p = m @ a O np. In view of (3.1)

an bp-z,X = pa(hp-z N P) .
Note that p, is invariant under the adjoint action of P on p. As
by NP = Ad(p)h. Np = Ad(p)(h- Np),

it follows that
aNbp.x =pa(h.Np).
The right-hand side is independent of p and X. []

Let O be a P-orbit in Z. Lemma 3.1 allows us to define the set
ap :=a hZ,X

where z is any point O and X is any element in a~. We call the dimension of a/ae the
rank of the orbit O.

Remark 3.2. If O is an open P-orbit, then it follows from Proposition 3.1 (ii) that

ap = Q.

3.6 P-Orbits of maximal rank

The main result in this section is the following proposition, which will be crucial in this
article.

Proposition 3.1. Ler O € P\Z. Then
rank(O) < rank(Z2).

Let X € a~ be order-regular and let z € O. Then rank(O) = rank(Z2) if and only if
there exists a w € Ng(a) so that

h.x = Ad(w)by. (3.1)

If (3.1) holds, then
ap = Ad(w)ah (32)

and there exists an open P-orbit O' in Z so that

wt-0CO.
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We say that a P-orbit O in Z is of maximal rank if rank(O) = rank(Z2).

Remark 3.2.

(a)

(b)

(©
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Fix a P-orbit O of maximal rank, a point z € O and an order-regular element X &
a~. The element w € Ng(a) in (3.1) is not unique. It follows from [39, Lemma
10.3] that the stabilizer of by in Ng(a) is equal to Ni,(a). Therefore, the equality
(3.1) only determines the coset wNy,(a) € Ng(a)/Nr,(a). The element w may be
chosen so that

Ad*(w)E(P) N (= X(P)) = Ad(w)*'=(Q) N (= Z(P)). (3.3)

To see this, consider the group Ly = (Lo N H)A. Ly, is reductive and normalizes
hg. Since P N wL’Qw_1 and w(P N L’Q)w_1 are both minimal parabolic subgroups
of wL’Qw_1 containing A, there exists a v € Nw%wq (a) so that

vw(PN Lg)w™ v = PNwlow™ = PNowLyw v~
Let w’ = vw. Then
w' Npw' ™" = w'((Np N L) Ng)w'™' = (Np Nw' Low'™")w'Now'™".
If now w is replaced by w’, then it follows that both (3.1) and (3.3) hold.

Fix an order-regular element X € a~ and a P-orbit O in Z of maximal rank. The
element w € Ng(a) in (3.1) depends on the choice of the point z € O. Indeed, it
follows from Proposition 3.1 (iv) that

hman-z,X = Ad(m)hzg( (m eM,ae An € Np)
Therefore,
bman-z,X = Ad(mw)h@ (m eEM,ae Ane Np)

if z € O satisfies (3.1). Note that the coset wZg(a) € Ng(a)/Zg(a) = W is
independent of z € O.

Fix a P-orbit O in Z of maximal rank and a point z € O. The element w € Ng(a)
in (3.1) depends on the choice of the order-regular element X € a~, as can be seen
in the following example.

Example 3.3. Assume that G = ‘G x ‘G for an reductive group ‘G, and H =
diag('G). Let ‘P be a minimal parabolic subgroup of ‘G with Langlands decom-
position ‘P = ‘M'A'N and let ‘P = ‘M"'A'N be opposite to ‘P. We write P for the
minimal parabolic subgroup ‘P x ‘P of G. Let R be a set of representatives for the
Weyl group of ‘G in Ni¢(‘a). Then R is in bijection with P\G/H via the map

R — P\G/H; w— O(w):= P(e,w)H.
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Now fix w € R and let z be the point (e, w)H in O(w). Let X;, X5 € ‘a”(‘\P). We
assume that X := (X, —X5) € a” is order-regular. Then for all o, 5 € X('g,‘a)

a(X1) # B(Xz).

The limit subalgebra b, x is equal to

{(V,Ad(w)Y): Y e me’a}o P (gax{Oh)o B ({0} X'Gua) -
aeX(‘g,\a) ac¥(‘g,'a)
a(X1)>—w-a(X2) a(X1)<—w-a(X2)

From this formula it follows that every P-orbit in G/H is of maximal rank.
If w = e, so that O(w) is the open P orbit in G/H, then
b..x = diag('m & 'a) & (W x {0}) & ({0} x 'n) = by

is independent of the choice of X. For other orbits b, x does depend on X. We
illustrate this by considering the most extreme case: the closed P-orbitin G/H. Let
w € R represent the longest Weyl group element, so that O(w) is the closed orbit.
Every choice of X; and X, corresponds to a unique positive system ‘> of 3('g, ‘a)
satisfying.

a(Xy) > —w- a(Xs) (a €'TH). (3.4)

Vice versa, given a positive system ‘YT of (g, 'a), we may choose X; and X5 so
that (3.4) holds. If (3.4) is satisfied, then

2x ={(V,Adw)Y): Y e'ma'a} o P (‘5ax {0}) & @ ({0} x'ga).

ac'yt ac'yt
In this case there exists a v € Nig(‘a) so that
bz,X = Ad(v,wv)b@.

Note that v is a representative for the element of the Weyl group mapping ¥(*P) to
.

For the proof of Proposition 3.1 we need a slight strengthening of [39, Lemma 10.8].

Lemma 3.4. Let z € Z and let X € a be order regular. Then dim(ay) > dim(h, x N a)
if and only if there exists a w € Ng(a) so that b, x = Ad(w)by. In that case

an f)z7X = Ad(w)ah.

The proof for the lemma is essentially the same as the proof of [39, Lemma 10.8]; in
the proof the equality dim(ay) = dim(h, x N a) can straightforwardly be replaced by the
inequality dim(a,) > dim(h, x N a).
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IV. The most continuous part of the Plancherel decomposition

Proof of Proposition 3.1. Let z € O and X € a”. If rank(O) > rank(Z), then
dim(bZ,X N Cl) = dlm(ao) < dlm(ab)

By Lemma 3.4 there exists a w € Ng(a) so that b, x = Ad(w)hy. Moreover, if h, x =
Ad(w)bhy for some w € Ng(a), then

ap = hz,X Nna= Ad(w)h@ Na= Ad(w)ah,

and hence rank(O) = rank(Z2).
It remains to prove the existence of an open P-orbit O in Z so thatw - O C O'. We
first prove that w™?! - z lies in an open P-orbit. As g = p + hg we have

b.x + Ad(w)p = Ad(w)(bo + p) = g.
It follows that for sufficiently large ¢ > 0 we have
Ad (exp(tX))bh. + Ad(w)p = g.
As Ad(w)p and g are both A-stable, it follows that
b + Ad(w)p = g.

Therefore, wPw™! - z is open in Z, and hence Pw™! - z is open in Z.
Now set O' = Pw™! - 2. Letn € Np. In view of Proposition 3.1 (iv) we have

hn~z,X = Ad(w)h@

By the argument above, the P-orbit Pw™'n - z is open. It follows that w™'Np - z is
contained in the union of all open P-orbits in Z. As w™'N - z is connected, intersects
with @’ and the boundary of O’ only contains non-open P-orbits, it follows that w™'N - 2
is contained in OO'. Moreover, since M A is a normal subgroup of N (a) we have

Pw'man-z=Pwn-z2=0

forallm € M, a € Aandn € Np. This proves the last assertion. O]

3.7 Weakly adapted points

Let X € a. If O is a P-orbit of maximal rank, then we say that X is O-regular if
X € anad and a(X) # 0 for all roots o € ¥ that do not vanish on a N a5. We say
that a point z € Z is weakly adapted (to the Langlands decomposition P = M AN) if the
following two conditions are satisfied.

(i) The P-orbit O = P - z is of maximal rank.

(i1) There exists an O-regular element in a N b j
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Note that an adapted point z € Z is also weakly adapted.
The weakly adapted points in a given maximal rank P-orbit admit a similar parametriza-
tion as the adapted points in Proposition 3.2.

Proposition 3.1. Let O € P\Z be of maximal rank. The following hold.

(i) For every O-regular element X € a there exists a weakly adapted point z € O so
that X € ht. Moreover, if 2’ € O is another adapted point so that X € b5, then
there exist m € M and a € A so that 2/ = ma - 2.

(ii) Let z € O be weakly adapted and w € Ng(a). If there exists an X € a~ so that
h.x = Ad(w)bhy, then w™" - z is adapted.

For the proof of the proposition we need the following lemma. We write p, : g — a
for the projection onto a along the root space decomposition.

Lemma 3.2. Let O be a P-orbit of maximal rank and let z € O. Let w € Ng(a) be so
that Yy, x = Ad(w)by for some order-regular element X € a~. Then

pa((p + Ad(w)q) Nh.) = ao.
Proof. 1t follows from (3.1) that

pu(p N hz) =an hz,X = ap,

where X is any element in a~. Therefore,

a0 C pa((p + Ad(w)q) N'h.).

We move on to the other inclusion. Let Y € p + Ad(w)q and assume that Y € b,.
We will prove that p,(Y') € ap. We decompose Y as

Y=Y, + Y+ Y,

where Y}, € p, Y5 € Ad(w)lgn and Y_ € Ad(w)ng Nup.

In view of Proposition 3.1 the P-orbit Pw ™" - z is open. Therefore, there exists a n €
N so that the connected subgroup L . with Lie algebra [ .. is contained in H,,,,-1... It
follows that Ad(wn™")lgn. C b.. Note that Ad(w)lgne € Ad(wn™)lgu + Ad(w)ng.
Therefore, there exists a Y’ € Ad(w)ng so that Yy + Y’ € Ad(wn™H)lgu. C b.. Note
that p,(Yo +Y’) € Ad(w)ay = ap. By subtracting Y; + Y’ from Y we may thus without
loss of generality assume that Yy = 0, i.e.,

Y=Y, +Y..

Let X € a~ be order-regular and satisfy b, x = Ad(w)hy. The line (RY')x is a-stable
and contained in Ad(w)bhgy. Note that Y_ is a linear combination of eigenvectors of ad(.X)
with strictly positive eigenvalues, whereas Y, is a linear combination of eigenvectors with
non-positive eigenvalues. It follows that Y_ = 0 as (RY") x would otherwise be a line in
Ad(w)ng N p, which would be in contradiction with the fact that (RY') x is contained
in Ad(w)hg. Now Y € pnh, and hence p,(Y) € po(p N h,) = ap. O
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IV. The most continuous part of the Plancherel decomposition

Proof of Proposition 3.1. Let zy € O and let X € a be O-regular. Let X’ € a~ be
order-regular. By Proposition 3.1 there exists a w € Ng(a) so that b, x» = Ad(w)hy. It
follows from Lemma 3.2 that

L
X € ((p+Adw)q) Nb.,)" = (npNAd(w)ng) + by
In particular, there exists a Y € np N Ad(w)ng so that X +Y € by.. Since X is O-

regular, it follows from (3.2) that a(X) # 0 for every a € ¥ so that o, Adwyat 7 0. AS

the roots of a in np N Ad(w)ng do not vanish on a N Ad(w)ag, this implies that there
existsan € Np NwNow™ " so that Ad(n)X = X +Y. Setz=n""" 2. Then

X € Ad(n" )bz, = b;.

This proves the first assertion in (i).
We move on to the second assertion in (i). Let 2/ € O be another point so that
X € bZ. By Proposition 3.1 the points w™' - z and w™! - 2’ lie in the same open P-orbit.
Moreover,
~1 1 I
Ad(w™ )X € by, Nhy-1.

_1-2
By Proposition 3.2
w e MAw™ - 2.

As M A is a normal subgroup of Ng(a), it follows that
7 ewMAw™ -z = MA - 2.

This concludes the proof of (i).

It remains to prove (ii). Assume that z is weakly adapted and there exists an X €
a” so that h, x = Ad(w)bg. By Proposition 3.1 the P-orbit through w™! - 2 is open.
Moreover, as a N f)j contains O-regular elements, the set

an hi = Ad(w‘l)(a N [)ZL)

_1'Z

contains elements X so that o(X') # 0 for all X(Q). It follows that w2 is adapted. [

3.8 Structure of orbits of maximal rank

In this section we show that the P-orbits of maximal rank admit a structure theorem that
is similar to the local structure theorem for open P-orbits. We begin with a decomposition
of Np.

Proposition 3.1. Ler O € P\Z be of maximal rank and w € Ng(a). Assume that there
exist a point z € O and an order-regular element X € a~ so that

f)z)( = Ad(w)b@
Then for every y € O the multiplication map
(Np NwNow™) x (Np N H,) = Np; (n,nyg) — nny (3.1)

is a diffeomorphism.
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Proof. We prove the assertion first for y = z. It follows from (3.1) in Proposition 3.1 that

(ﬂp N hz)X =npMN bz,X =npN Ad(w)h@

Since

g = Ad(w)ng & (Ad(w)by + m + a),
and this decomposition is compatible with the root space decomposition of g, it follows
that

np = (np N Ad(w)nQ) @D (ﬂp N hz)X-

Hence, for sufficiently large ¢ > 0
np = (np NAd(w)ng) ® Ad (exp(tX))(npNh.)
Asnpand np N Ad(w)nQ are both a-stable, it follows, that
np = (npNAd(w)ng) @ (npNh.)

and thus (3.1) is a local diffeomorphism onto an open neighborhood of e in Np. It remains
to show that (3.1) is a bijection.

The intersection (Np N wNow ™) N (Np N H,) is an algebraic subgroup of Np of
dimension 0. The only such subgroup is the trivial one. Therefore, (3.1) is injective.

By [44, Theorem 2] both Np - z and (Np NwNgw™!) - z are closed submanifolds of
Z. Since the image of (3.1) is open in Np, the set (Np NwNgow ™) - 2 is a relatively open
subset of Np - 2. Hence, (Np NwNgw™) - 2 is open and closed in Np - z. As Np - z is
connected, it follows that

(NpNwNow™)-2z= Np - 2. (3.2)
From this we conclude that (3.1) is surjective and this concludes the proof of the propo-
sition for z = y.

Letnowy € Oandletm € M,a € Aandn € Np be such that y = man - z.

The identity (3.2) shows that we may choose n € Np N wNgw™!. Since the groups

(Np N wNow™") and Np are normalized by M A(Np N wNgw™?), the assertion in the
proposition now follows from the case z = y. [

Theorem 3.2. Let O € P\Z be of maximal rank and = € O weakly adapted. Let
w € Ng(a) be so that

bz,X = Ad(w)hQ)
for some order-regular X € a~. Then ap = Ad(w)ay C b,. Moreover, Pw™" - z is open
and the maps

Ng x M/(M N Hy-1.,) x A/ exp(ag) = Pw™' - 2;  (n,m,a) = nmaw™" - z
(3.3)

(Np NwNow™) x M/(M N H,) x Al exp(ap) = O; (n,m,a) — nma-z (3.4)

(NpNwNouw™') x O = wPw™' -2, (n,z)—>n-x (3.5)

are diffeomorphisms.
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IV. The most continuous part of the Plancherel decomposition

Remark 3.3. The diffeomorphism (3.4) may be viewed as a structure theorem for a P-
orbit of maximal rank. For complex spherical spaces this structure theorem was first
proven by Brion in [11, Proposition 6 & Theorem 3]. For our purposes the diffeomor-
phism (3.5) will be of particular importance for the construction of distributions in Sec-
tion 6.

Proof of Theorem 3.2. In view of Proposition 3.1 (ii) the P-orbit through w~! - z is open
and w™! - z is adapted. The map (3.3) is a diffeomorphism by Proposition 3.1.
It follows from Proposition 3.1 that

wlt-OCPw!z.
In view of Proposition 3.1
O = (NpNwNow ')MA - 2,

and hence
w0 = (w 'Npwn No)MAw™ - 2

Since (3.3) is a diffeomorphism, the map
(w ' NpwN Ng) x M/(MNHy-1.,)x A/ exp(ay) = w'O;  (n,ma) — nmaw™ "z

is a diffeomorphism. As ap = Ad(w)ay, this implies that (3.4) is a diffeomorphism.
Finally, the map (3.5) is a diffeomorphism since (3.3), (3.4) and the product map

(Np NwNow™) x (Np NwNow ™) = wNow™"

are diffeomorphisms. [

3.9 Admissible points and the little Weyl group

Following [39, Definition 10.1] we call a point z € Z admissible if it is adapted and if for
every order-regular element X € a there exists aw € Ng(a) sothath, x = Ad(w)bhy. By
[39, Proposition 10.4] the set of admissible points is open and dense in the set of adapted
points in Z (with respect to the subspace topology). In particular, every open P-orbit in
Z contains an admissible point. We may and will assume that the pointeH € G/H € Z
is admissible.
We define the groups
./\/ = Ng(a) N Ng(ah) (31)

and
Z = {w € Ng(a) : Ad(w)hy = Ad(m)bhy for some m € M} = N, (a) (3.2)
Note that Z is a normal subgroup of A/. For an admissible point z € Z we set

W = {w € Ng(a) : b, x = Ad(wm)hy for some X € aand m € M}. (3.3)
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3. P-Orbits of maximal rank

By [39, Proposition 10.4] the set VW does not depend on the choice of the admissible
point. Furthermore, by [39, Theorem 11.1] it is a subgroup of A/. The quotient group

WZ = W/Z

is equal to the little Weyl group of Z as defined in [28]. The little Weyl group acts on
a/ay as a finite reflection group. The set C /ag is a fundamental domain for this action.
Let ag be the edge of C, i.e.,

A = Eﬂ —8.

The little Weyl group acts trivially on ag/ay. See [39, Lemma 12.1]. Moreover, by [28,
Proposition 10.3] and [39, Theorem 12.2] the little Weyl group is the Weyl group of a
root system in (a/ag)*. This root system is called the spherical root system. We will
indicate it by X 5.

For our purposes the following characterization of V is important.

Proposition 3.1. Let z € Z be admissible and let w € Ng(a). Then Pw™" - z is open if
and only if w € W. In that case w™" - z is admissible.

Proof. The assertion follows from [39, Proposition 7.2] and the equivariance of limits of
subalgebras

I’wal.z’X = Ad<w_1)hz,Ad(w)X (X & Cl).
[l

If Z is wavefront, then the W = N and the little Weyl group is equal to W, = W/ Z.
See Proposition A.1 in Appendix A.

3.10 Weakly admissible points

We call a point z € Z weakly admissible if it is weakly adapted and for every order-
regular element X € a there exists a w € Ng(a) so that h, y = Ad(w)hy. Note that
every admissible point is weakly admissible.

Proposition 3.1. Let 2 € Z. If z is weakly admissible, then w - z is weakly admissible for
every w € Ng(a).

Remark 3.2. As the set of admissible points is (relatively) open and dense in the set
of adapted points, it follows from the proposition and Proposition 3.1 (ii) that the set of
weakly admissible points is open and dense (with respect to the subspace topology) in
the set of weakly adapted points.

Proof of Proposition 3.1. Assume that z is weakly admissible and w € Ng(a). If X € a
is order-regular then Ad(w)X is also order-regular. Therefore, there exists a w’ € Ng(a)
so that b, rqw-1)x = Ad(w’)hg, and hence

hw-z,X = Ad(w)bz,Ad(wfl)X = Ad(ww/)hQ)
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IV. The most continuous part of the Plancherel decomposition

By Proposition 3.1 O := Pw- 2z has maximal rank. It remains to prove that w - z is weakly
adapted.

Let O’ = P - z. Since z is weakly adapted, we have ap, C h, by Theorem 3.2, and
hence Ad(w)aepr C hy... Let X € a~. Then

Ad(w)ao’ Can hw-z,X = ao.

As both apr and ap are conjugate to ay, these two spaces are of equal dimension. There-
fore, Ad(w)ap: = ap. Since z is weakly adapted, there exists O'-regular elements in
an bz It follows that there exist O-regular elements in aN b, = Ad(w)(aNb7). This
proves that w - z is weakly adapted. [

Proposition 3.3. Let = € Z be weakly admissible, let X € a be order-regular and let
w € Ng(a). Then by, x = Ad(wm)by for some m € M if and only if Pw™" - z is open
and X € Ad(w)C.

Proof. We have
Ad(w)_IUZ,X = hw—1~z7Ad(w—1)X-
By Proposition 3.1 the point w™! - z is weakly admissible. In view of Proposition 3.1

the limit subalgebra b,,-1.; Aqw-1)x 18 equal to Ad(m)by for some m € M if and only if
w™! - zis open and Ad(w™!)X € C. O

3.11 An action of the Weyl group

We write (P\Z)max for the subset of P\Z consisting of all P-orbits in Z of maximal
rank and (P\Z)pen for set of all open P-orbits in Z.

Proposition 3.1. Let O1,0y € (P\Z)max, and let z1 € Oy and z, € Oy be weakly
admissible. Let further X1, Xy € a be order-regular, and let m € M. If b, x, =

Ad(m)bzz,)ﬁ’ then b217X2 = Ad(m)hzz,XQ'

Proof. Let w € Ng(a) be so that b, x, = Ad(w)hy. By Proposition 3.1 (ii) the point

w™! - 2 is adapted. In view of Proposition 3.1 it is also weakly admissible, and hence

w™! - 2z, is admissible. Moreover,

hw—l-zl,Ad(w_l)X1 = Ad(wil)bzl,Xl = h®7

and hence Ad(w™1)X; € C. Let v € W be so that Ad(w )X, € Ad(v)C. Then
v~ lw™! - 21 is admissible by Proposition 3.1. As Ad(v'w™1)X, € C, it follows that
there exists an m; € M so that

hZth - Ad(wv)hzﬁlw*l-z,Ad(v*lurl)Xz = Ad(mlwv)h@.

In the same way we find
b2y, x, = Ad(mawv)by

for some mq € M. Now
h21,X2 = Ad(mlmgl)bzz,Xz'
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3. P-Orbits of maximal rank

The latter is equal to Ad(m)b., x, if and only if

mN hz1,X2 = Ad(m) (m N bzz,Xz)' (31)

It thus suffices to prove the latter.
We claim that
mNb.x =mNb, (3.2)

for all weakly adapted points z € Z and all order-regular elements X € a. To prove the
claim we first consider an adapted point z € Z. Then (3.2) follows from Proposition 3.1
if X € a~. Since the limit b, x is the same for all X € C, (3.2) also holds for X € C.
If X € ais any order-regular element, then there exists a u € W so that Ad(u)X € C.
Then

mn hz,X =mn Ad(uil)hu-z,Ad(u)X = Ad(uil) (m N hu-z,Ad(u)X) .
By Proposition 3.1 the point « - z is adapted. Therefore,
Ad(u™) (MmN by adwx) = Ad(u™ ") (mNh,..) =mnNh..

This proves (3.2) in case z € Z is adapted. Let now z € Z be weakly adapted. Then
there exists a u € Ng(a) so that u - z is adapted. In that case

mNb.x =Ad(uw™ ) (MmN by adqwx) = Ad(u™) (mNbh,.) =mnNbh..

This proves the claim (3.2).
The required identity (3.1) follows from (3.2) as b, x, = Ad(m)b., x, and hence

mNb., v, =mNb,, x, =Ad(m)(mNb,x,) =Ad(m)(mNb.,x,).
]

If O € P\Z and X € a~, then up to M-conjugacy the limits b, x do not depend on
the point z € O, see Remark 3.2 (b). In view of Proposition 3.1 we may thus define an
equivalence relation ~ on (P\ Z),.x by requiring that

01 ~ O,

if and only if for a given order-regular element X € a there exists weakly admissible
points z; € Oy and 25 € O, so that

hzl,X - bzg,X-

The equivalence relation does not depend on the choice of the order-regular element
Xea

Remark 3.2.

(a) If O € P\Z, then by Proposition 3.1 the limit subalgebra b, y for a given order-
regular element X € a~ does not depend on z € O up to M-conjugacy. Moreover,
Bim-x = Ad(m)h, x for every m € M. Therefore, two P-orbits Oy, O, of maximal
rank are equivalent if and only if there exists an order-regular elements X € a~,
points z; € Op and 25 € Oy, and anm € M so that b, x = Ad(m)bh,, x.
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IV. The most continuous part of the Plancherel decomposition

(b) Let X € a= be order-regular. If z € Z, then by Proposition 3.1 the limit subalgebra
h..x is an M-conjugate of by if and only if P - z is open. Therefore, if O; € P\Z is
open and Oy € (P\Z)nax, then O; ~ O if and only if O, is open. In particular, the
set (P\Z)open of all open P-orbits in Z forms an equivalence class.

We denote the equivalence classes of ~ by [-] and recall the subgroup W of Ng(a)
from (3.3).

Theorem 3.3. Forany v € Ng(a) and any O € (P\Z)max the equivalence class [Pv - 2]
is independent of the choice of the weakly admissible point z € O. For w € W and
O € (P\Z)max we may thus set

w- O] = [Pv-z],

where v € Ng(a) is any representative of w and z € O is any weakly admissible point.
The map

W X (P\Z)max/~ = (P\Z)max/~
thus obtained defines an action of W on (P\Z)wmax/~. This action has the following
properties.

(i) W acts transitively on (P\Z)max/ ~-
(ii) The stabilizer of the equivalence class (P\Z)open is equal to W /M A.

(iii) Let w € W and let v € Ng(a) be a representative for w. If X € a N ay satisfies
Zy(X) = lg, and 2z, ..., z, is a set of admissible points representing the open
P-orbits in Z with

Xeanbh:  (1<i<n),
then
Pw -z # Pw - z; (1<i<j<n)
and
W (P\Z)open = {Pw -z : 1 < i <n}
In particular, the cardinalities of the equivalence classes are all equal, i.e, for every
O € (P\Z)max the cardinality of (O] is equal to the number of open P-orbits in Z.

(iv) Ifw € Wand O € (P\Z)max then apr = Ad(w)ap for every O € w - [O].

The action of W on (P\Z)ax lifts to an action of N (a). In later sections we will
use interchangeably the actions of W and N¢(a) on (P\Z),pen and use the same notation
without further indication.

Remark 3.4.

(a) Let P C G be a minimal parabolic subgroup defined over R and let Z be an algebraic
G-variety. Assume that Z is real spherical, i.e., that P admits an open orbit in Z. In
[32] Knop and Zhgoon constructed an action of 1/ on the set of P-orbits O in Z with
the property that O(R) # (). If Z is an open G-orbit in Z(R), then each equivalence
class in (P(R)\Z)max corresponds to one P-orbit O of maximal rank in Z with the
property that O(R) # (). The construction of Knop and Zhgoon then coincides with
the W-action on (P\ Z)ax/ ~ from Theorem 3.3.
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3. P-Orbits of maximal rank

(b) If P admits only one open orbit in Z, then each equivalence class of ~ consists of
precisely one P-orbit in Z. The above action then yields a transitive action of 11" on
(P\Z)max- This is in particular the case if G and H are both complex groups; the
latter action then coincides with Knop’s W -action on P\ Z from [27] restricted to the
set of maximal rank orbits.

(c) Assume that in each open P-orbit in Z the set of adapted points is precisely equal
to one M A-orbit, equivalently if there exists a z € Z so that P - z is open and
an ahL C hL. Then every adapted point is admissible. If O is an open orbit in Z,
z € O is adapted, and w = vM A € W, then the orbit

w-0O:=Pv-z (3.3)
does not depend on the choice of 2. In view of Proposition 3.1 the map
W x (P\Z)max = (P\Z)max; (w,0)+—w-0O (34)

defines an action of W on (P\Z)max. This action is a refinement of the action of W
on (P\Z)max/ ~ defined in Theorem 3.3. The condition that in each open P-orbit
in Z the set of adapted points forms one M A-orbit is in particular satisfied in case Z
is symmetric, i.e., in case H is an open subgroup of the fixed point subgroup of an
involutive automorphism of G.

Proof of Theorem 3.3. Recall from Proposition 3.1 that the set of weakly admissible points
is stable under N (a). In particular, if O € (P\Z)n.x and z € O is weakly admissible,
then Pw - z € (P\Z)max for all w € Ng(a).
Let O € (P\Z)max and let 21, 2o € O be weakly admissible. Let further w € N¢(a).
We claim that
Pw-z ~ Pw- 2. 3.5

By Remark 3.2 (b) there exists an m € M so that for all X € a~ we have b, x =
Ad(m)bh,, x. After replacing z» by m - 2, we may assume that b,, x = b, x for all
X € a”. By Proposition 3.1 the limits b., x and b, x are equal for all order-regular
X € a. Fix now an order-regular X € a and let w € Ng(a). Then Ad(w™)X is
order-regular, and hence

hw~21,X = Ad(w)hzl,Ad(w_l)X = Ad(w)hZQ,Ad(w_l)X = b’ll)'ZQ,X'

This proves the claim (3.5).

From the claim it follows that for a given weakly adapted point zo and v € Ng(a) we
have [Pv - z] = [Puv - %] for all weakly adapted point z € P - z,. This proves the first
assertion in the theorem and we thus obtain an action of W on (P\ Z)yax-

We move on to prove the listed properties of this action. It follows from Proposi-
tion 3.1 that the action is transitive, and from Proposition 3.1 that the stabilizer of the
equivalence class of open P-orbits is equal to WW/M A.

We move on to prove (iii). Let w € W, let v € Ng(a) be a representative for w and
let X € an ahL satisfy Z;(X) = lp. Every open P-orbit admits by Proposition 3.2 an
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IV. The most continuous part of the Plancherel decomposition

admissible point z with X € a N hL. This point is unique up to translation by an element
in MA. Let zy, ..., z, be a set of adapted point representing the open P-orbits in Z and
assume that

Xeanb; (1<i<n).

Then Pv - z; € w - (P\Z)open for all 1 < i < n. Moreover, the points v - z1,...,v - 2,
are weakly admissible and

Adw)X €ant,,  (1<i<n).

If Pv -z = Pv-z;forsome 1 <17 < j < n, then it follows from Proposition 3.1 (i) that
z; € M A-z;, which leads to a contradiction. We conclude that the orbits Pv-zy, ... Pv-z,
are pairwise distinct. It now suffices to show that the number of orbits in w - (P\Z)open
does not exceed the number of open orbits.

Let z € Z be any point so that [P - z] = w - (P\Z) and let Y € a~. There exists a
u € Ng(a) sothat b,y = Ad(u)hg. By Proposition 3.1 the assignment

O Put-0 (3.6)

maps w - (P\Z)open t0 (P\Z)open. We claim that this map is injective.
Let O,0" € w - (P\Z)open be so that Pu~! - O = Pu~' - O'. By Proposition 3.1
(i) there exist weakly adapted points z € O and 2’ € O so that Ad(u)X € b and
Ad(u)X € b5 Now u™' - 2z and w™' - 2’ are adapted points in the same open orbit. It
follows from Proposition 3.1 (i) thatu™' -2 € M Au~!-2'. This implies that z € M A - 2/,
and hence
O=P-z=P-2=0.

This proves the injectivity of (3.6) and hence (iii).
Finally, we prove (iv). Let O € (P\Z)max and w € W. If z € O is weakly admissi-
ble, then for every order-regular element X € a we have ap = anb, x. Since

anN by x =Ad(w) (a N hz’Ad(qu)) = Ad(w)ap (X € a order-regular)

it follows that ap,.., = Ad(w)ae. This proves (iv). O

4 Distribution vectors of principal series representations

4.1 Basic Definitions

For a parabolic subgroup S of G' with Langlands decomposition S = MgAgNg and a
representation & of Mg on a Hilbert space V¢ and \ € a§ ¢, we define (S : £ : \) to
be the space smooth vectors in the principal series representation induced from .S with
induction data £ ® A ® 1, i.e., the space of smooth V,-valued functions f on G with the
property that

f(manz) = a™P5¢(m) f(x) (m € Mg,a € Ag,n € Ng,z € G).
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Recall that K is a maximal compact subgroup of GG. The pairing

CX(S1€7 5N X CX(S 6N 2T ()= [ (b, £(1) di
K
is non-degenerate and GG-equivariant. We thus obtain a G-equivariant inclusion
C®(S: €Y =N) = C®(S: £ 0.

For a smooth manifold M and a Hilbert space V' we define £(M, V') to be the vector
space of all smooth functions M — V, and D(M, V) to be the subspace of (M, V)
consisting of all functions with compact support. We write D'(M, V') for the continuous
dual of D(M, V). Note that in case M is an open subset of G, there is a natural injec-
tion E(M,V*) — D'(M,V) (using the Haar measure on G to identify densities with
functions).

Let LV and RY be the contragredients of the left-regular representation L and the
right-regular representation R, respectively. We define D’(S : £ : ) to be the subspace
of D'(G, V) consisting of all distributions 1 such that

LY(man)p = a®75¢Y (m™Y)p (m € Mg,a € Ag,n € Ng). 4.1)

Let V be a Hilbert space. We write D'(G, V) for the subspace of D'(G, V) of
distributions that are invariant under the right-regular representation of H on D'(G,V),
1.e.,

DGV ={pneD(G,V): R'(h)pu=pforallh € H}.
If $ € D(G, V), then in view of the identification Z = G/ H the function

gH»—>/ng5(gh)dh

defines an element of D(Z,V'). The map D(G, V) — D(Z, V') thus obtained is continu-
ous. Moreover, the induced map

D(Z,V) = DGV, e <¢ - ,LL(/HQS(-h) dh)) 4.2)

is a topological isomorphism. We will use this isomorphism to identify D'(Z, V') with
D'(G, V). Finally, we define the space

D(Z,5:&:N)=D'(Z,Ve)ND'(S: £ N).

4.2 Distribution vectors versus functionals

Let S = MgAgNg, (§,Ve) and A € agc be as before. In this section we compare the
spaces C°(S : £ : X) and D'(S : € : \). We follow for this the analysis in [14, Section
2.3].
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IV. The most continuous part of the Plancherel decomposition

Let ¢y € D(G) satisfy

/ / / a**svpo(manx) dn dadm = 1 (x € G).
Mg JAg J Ng

One may for instance take 1)y € D(G) to be right K-invariant and satisfying

/77/} aS (x)de =1,

where ag : G — Ag is the map given by
xr € Ngag(x)MgK (x € G).
For e D'(S: & \), letw?yu € C(S : & : A) be given by
(wear) (f) = p(of) — (F€C™(S:6:N).

The map

Wiy DI(S:E:A) = CF(S: &N (4.1)
we thus obtain is a topological isomorphism; it is easily seen that the map

0, : CF(S:E:N) = DI(S: €1 N,
which for 7 € C’OO(S €:)\) and ¢ € D(G, V) is given by

(95/\77) —77 T /MS /AS /NS s ¢ (m ) g (man) dndadm), 4.2)

is the inverse of wg - In particular it follows that wg ) does not depend on the choice of
the function )y. Note that 6’5 '\ Intertwines the representatlon Tée. - on C®°(S : & N\

with RV on D'(S : £ : \). The restriction of w? Sxto D'(S & N is a G-equivariant
isomorphism to the space of H-fixed functlonals on C®(S:&:N).

4.3 Intertwining operators
Let S = MgAgNg, (£, Ve) and A € a§ ¢ be as before. For u € U(g) we set

Psern: E(G.V) = [0,00]; ¢ / las(z)>+5 R(u)p(x)||c de

and endow the space
Vser = {(b € E(G,Ve) : pserul@) < oo forevery u € Z/l(g)},

with the Fréchet topology induced by the seminorms pgg y,. Note that D(G, V) C
Vs . Further, for two parabolic subgroups S; and Sy of G with Ag, = Ag, = Ag, we
write
A(Sy:S1:6:0):C®(S1:E:0) > C®(5: £ ))
for the standard Knapp-Stein intertwining operators and define
A(ngslzﬁz)\)::ng\oA( SN owg)\

We assume that Ag C A and identify a§ . with the annihilator of mg N a in ag.
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Proposition 4.1. Let Sy, So, £ and )\ be as above. The following diagram commutes.

A(S2:51:€:0)

D'(Sy:&:N) D'(Sy: & N)
wel |62 w023

A(S571:52:£:N)* ,

Oy : & A 2EEEN. oo (g e )

Assume that \ € ay ¢ satisfies
(Re X, ) >0 (@€ X(a:S)N—X(a:5)),

Then for every ¢ € Vg, ¢ » and every x € G the integral

/ _ ¢(nz)dx
Ns,NNs,

is absolutely convergent and the function [, Ne. N o(n - ) dx thus obtained is an element
2 1
of Vs, e x- Moreover, the map

Vspen = Vsien; ¢ ~ ¢(n-)dn
NS2ﬁN51

is continuous. Finally, if p € D'(Sy : £ : \), then u extends to a continuous linear
functional on Vs, ¢ 5, and the distribution A(Sy : Sy : £ : N\ € D'(Sy : € = \) is given
by

Az S 0@ = [ olnydn) (0 Vag). @D

NS2 ﬁﬁsl

For the proof of the proposition we refer to Appendix B.
We define an inner product (-, -)s¢ ) on C°(S : £ : A) by

(0, V)sen = / (@(k), ¥(k))edk (6,0 € C(S:€:N)), (42)

K

where (-, -)¢ is the inner product on V. We consider parabolic subgroup S; and Sy with
As, = Ag, = Ag C A as before. The adjoint of A(S, : S; : £ : \) with respect to (4.2)
is given by

A(Sy: Sy €N =A(S1: Sy : € =))
The composition A(Sy : S : &2 A) o A(Sy : Sy : € : A) is an intertwining operator from
C>®(Sy : € : A) toitself. It is therefore given by multiplication by a scalar. As in [24,
§14.6] we choose a meromorphic function on ag.c

)\>—>7(Slisgifi)\>
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IV. The most continuous part of the Plancherel decomposition

that is real and non-negative on ay and satisfies the identity of meromorphic operators
A(Sy:S1:6E:XN)0A(S1:S2:€: X)) =7(S2 81 : & A)y(S1: Sy € N)d.

We may choose these functions so that for all A € a§ -

V(S 1Sy € N) =(Sy: S € =N,
Y(S1: 8y & A) =(S1:82:& 1 N) (fl’ifﬁeag,cc)
for every &’ equivalent to &, and
Y(Sivh twSsuT v £ AR (0)A) = (51 S5 €1 A)

for every v € Ng(ag). Here v - £ is the representation of Mg with representation space
Ve given by
(v-&)(m) = &(v 'mw) (m € Msg).

If we normalize the intertwining operators with these y-functions as

1

AO(Sl:5225:)\)::’)/<S1:523€:)‘)

A(S1:S2: €N,

then we obtain the identities
A°(S3:81:&:0)=A(S3:5:&:A)0A°(Sy:51:&:N)
for all parabolic subgroups Sy, Sz, S3 with Ag, = Ag, = As, = Asg C A, X € (ag) and
unitary representations & of Mg, = Mg, = Mg, = Mg. In particular,
A%(S) Sy i€ A) = A%(Sy S €N,

and hence the operator A°(S; : S : € : ) is unitary if A € ia,.
For v € N¢(ag) we define the intertwining operator

Z(S:E:0):D(S:&:0) = D(S:v-&: Ad*(v)N)
by
T,(S:&:N) =L () o At Sv: S :€:))
and the corresponding normalized intertwining operator

Z(S:€:N):D(S:€:0) = D(S:v-£:Ad*(v)N)

by
1

(vISv:S: €N

1—5(5:5:)\)::’7 Z,(S : & N).

We note that
Zo(S:w-&:w-N)oZy(S:&:N)=T,,(S: &N (v,w € Ng(as)).

The family of operators A — Z¢(.S : £ : ) is meromorphic. There exists a locally finite
union A of complex affine hyperplanes in a§ . of the form {\ € a5c : A(a") = c} for
some o € X(5) and ¢ € R, so that for all unitary representations ¢ of Mg the poles of the
families A — Z,(S : £ : A)and A — Z2(S : £ : ) lie on H.
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4. Distribution vectors of principal series representations

4.4 Comparison between induction from different parabolic subgroups

Let S and T be parabolic subgroups of GG and assume that S C 7. Let S = MgAgNg
T = My ArNp be Langlands decompositions of .S and 7', respectively, and assume that
Ar € Ag C A. Observe that S N My is a parabolic subgroup of My. Moreover,
a = ar & (my N a). We identify o} as a subspace a* by extending the functionals by 0
on m7 M a. Note that

PSnMr = PS — PT-

Let (£, V¢) be a representation of My on a Hilbert space and assume that
M7 N Ng C ker(§).
Let further A € a7 . There is a natural Mp-equivariant embedding
i: &= Indylg(Elus ® pr— ps @ 1),

see [1, Lemma 4.4]. Concretely, the map 7 from V¢ into C*(Mpr N S : €| a2 pr— ps) of
smooth vectors for the principal series representation on the right-hand side is given by

i(v)(mr) = &(mr)v, (v e Ve, mp e Myp).

Let A € a7 ¢. Using induction by stages, we obtain a G-equivariant embedding

d%(E@A® 1) — Ind§ (€] @ (A + pr — ps) @ 1).
On the level of smooth vectors this results in a G-equivariant embedding

ify 1 C(T 2 & X) = C®(S : Elags : A+ pr — ps),
which is the natural inclusion map. Note that z'é#v7_ ), extends to a continuous inclusion
D(T:&:N) = DS &lms : A= pr +ps).

Using the isomorphisms from Section 4.2, we now arrive at the following result.

Proposition 4.1. Let A\ € a7 and let (&, Ve) be a representation of Mr on a Hilbert
space and assume that M N Ng C ker(&). There exists a G-equivariant injective map

C®(T :€:N) < C®(S : E|pg = A — pr + ps)
so that
D(T:§: N ——=D'(S:&mg : A= pr+ ps)

T T wS oS
We A 9§,A €lpg A—prtps €lpg A—pPrtpg

Co(T : & N ———=C>(S: &|pg = A= pr + ps)

is a commuting diagram.
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IV. The most continuous part of the Plancherel decomposition

4.5 Lg n.-spherical representations of )/

Let Q = MgAgNg be the Langlands decomposition of () with Ag C A. Then Lg =
MgAg. We recall that [, is the sum of the simple ideals of non-compact type in
[g. We write Lg . for the connected subgroup of Lg with Lie algebra [ ,,.. Note that
Lgne € Mg.

We first look at a few properties of Mg and Lg . which will be needed in this and
later sections.

Lemma 4.1.

(i) Lgnc is a closed normal subgroup of Mg.
(ll) MQ = MLQ’HC ~ M XMQLQ,HC LQ,nc'
(iii) The group M, ,,. acts trivially on MQ/ML,nc-

(iv) Let z € Z be a weakly adapted point and w € Ng(A) so that b, x = Ad(w)by for
some order-regular element X € a~. Then wLQ,nCuF1 C MgNnH.,. If wnormalizes
ay, or equivalently if ap., = ay, then Lgn. € Mg N H,.

Proof. Since mg is reductive, there exists an ideal mg . complementary to [g ;.. The
group Lgnc is equal to the connected component of Zy,(mg,.) and therefore Lq . is
closed. As mg = m + [g . the set M Lg . is open. Moreover, since M is compact
and Lq . is closed, M L ;. is also closed. From the fact that M intersects with every
connected component of M assertion (ii) now follows.

The subalgebra [g ;. is an M -stable ideal of mg. Assertion (i) therefore follows from
(i1).

Since L e is normal in Mg, it acts trivially on the quotient M¢/Lg e, and hence
(iii) follows.

Finally we prove (iv). Let O be a P-orbit in Z of maximal rank and let z € O be
weakly admissible. We select a regular element X € a~. Then there exists a w € Ng(a)
so that b, x = Ad(w)hy. By Proposition 3.1 (ii) the point w™' - z is adapted. Therefore,
[one € by-1.. = Ad(w™)bh,, and hence Ad(w)lgne C b.. The assertion now follows as
L@ ne 1s connected. By Remark 3.2 the roots of a in g ,,. are precisely those roots that
vanish on a N a;-. If w normalizes ay, then it follows that w normalizes [g . and hence
Lo ne- ]

Given a continuous representation of M in a Fréchet space V', we denote its space of
smooth vectors by V> and equip it with the structure of a continuous Fréchet Mg-module
in the usual way. The continuous linear dual we denote by V.

Corollary 4.2. Let (¢, Vi) be an irreducible continuous representation of M, in a Fréchet
space V' such that
(‘/SOOI)LQ’HC # O

Then &|L,,.. is trivial and {|y; is irreducible. In particular, § is finite dimensional and
unitarizable. In particular this is the case if

(V)" # {0}.
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4. Distribution vectors of principal series representations

for some weakly adapted point z in a P-orbit O in Z with ap = ay.

Proof. The proof is the same as the one for [4, Corollary 4.4]. For convenience we give it
here. Let ) € (V') @ If ) # 0, then there is a unique injective continuous linear M-
equivariant map j : V> — E(Mg/Lgnc) such that j*§ = 7, with ¢ denoting the Dirac
measure of Mg /Lqnc at eLg ne. It follows from Lemma 4.1 (iii) that L . acts trivially
E(Mq/Lg ) and hence on V>°. We conclude that Lg . C ker(§). By application of
Lemma 4.1 (ii) it follows that £|, is irreducible. The final assertion follows from Lemma
4.1 (iv). [

Let Mg, be the set of equivalence classes of finite dimensional irreducible unitary
representations of M.

Corollary 4.3. Every representation in Mg s, restricts to the trivial representation on
L@ e The restriction map & — &|n, := &|nr induces an injection

]/\Zqu — ]/\4\

The image of this injection equals

{[5] cM: €|M0LQ,HC is trivial}.

Proof. Since the Lg .. 1s connected semisimple of the non-compact type, the restriction

of a representation from Mg ¢, to L@ v 18 trivial. The remaining assertions follow from
Lemma 4.1. U

4.6 Comparison between induction from P and ()

The following proposition follows directly from Corollary 4.2 and the comparison of
induction from different parabolic subgroups in Section 4.4.

Proposition 4.1. Let & be a representation of Mg on a Hilbert space Ve and A € ag, c.
Assume that

(Vb £ {0},

Then & is finite dimensional, £|y is irreducible and
D(Q:€:N) CD(P: &t A pr— pq).
Moreover, there exists a natural inclusion
C(Q:E:N) = C®(P:&lm: A+ pp— pg)
so that

D(Q:E&: N ————=D(P:&m: A+ pp—pq)

Q Q P P
We A 05,)\ w&lM,)\-H?p—PQ 05|M,)\+PP—PQ

C(Q : € : \Y = C®(P |3y - A pp — p)
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IV. The most continuous part of the Plancherel decomposition

is a commuting diagram. In particular this is the case if

(V) # {0}

for some weakly adapted point z contained in a P-orbit O of maximal rank in Z with
ao = ap.

The following describes D'(() : £ : A) as a subspace of D'(P : &[nr 0 A+ pp — pg)-

Lemma 4.2. Let 0 € M be so that 0| ML . S trivial, and let X\ € af, . Let & be the
representation of Mg so that |, . is trivial and §|py = 0. If p € D'(P : 0 : AMpp—pq)
satisfies

LM =pu (n € MgNNp),

then n € D'(Q : & : ).
Proof. Let GG, be the closed subgroup of G consisting of elements g € G so that
LY (g)p = p.

Since Mg = M Lg ., see Lemma 4.1, it suffices to prove that Lo . € G,. The latter
follows from the assumptions as L . is the smallest closed subgroup of G containing
MQﬂNpandMQﬂNp.

O

S Support and transversal degree

Throughout this section we fix ¢ € Mand \ € ag. In this section we study the support
and transversal derivatives of distributions in D'(Z, P : o : \).

5.1 Transversal degree

Let M be a smooth submanifold of G and let U be an open subset of G.
We fix a set of smooth vector fields vy, ..., v, on U so that at every pointy € MNU

T,G =Ruv(y) & --- & Ru,(y) & T,M.
For a multi-index /3 in n-variables, let 9° be the differential operator
CoU: V)= C®U:V)

given by
¢p=v1-- vy vu (@) (pECT(U:V)).
/31 times [n, times

Let u € D'(G,V) and assume that supp p = M N U. It follows from [48, p. 102]
that for every multi-index [ there exists a distribution ps € D'(M N U, V') such that for

all € D(U,V)
p(o) => ps(0”9).
B8
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5. Support and transversal degree

This decomposition of y is unique. Let kyy = max{|/| : ug # 0}. The transversal degree
of 1 at a point y € M, is defined to be the minimum of the numbers k;;, where U runs
over all neighborhoods of y in GG. The transversal degree is independent of the choice of
the vector fields v;.

For a distribution o € D'(Z, P : 0 : \) let (P\Z),, be the set of O € P\Z with the
property that there exists an open neighborhood U of O in G such that

supppuNU = O.
The proof for the following proposition can be found in Remark 5.2 in [35].

Proposition 5.1. Let 1 € D'(Z, P : 0 : \). Then

supp p = U 0.
Oe(P\Z),

Let p € D'(Z,P : o : A) andlet O € (P\Z),. Then the transversal degree of 1
at z € O does not depend on z € O, see [35, Lemma 5.5]. Therefore, we may define
the transversal degree of | at the orbit O to be the transversal degree of ;1 at any point
z € O. We write trdeg o (p) for the transversal degree of y at O.

5.2 Principal asymptotics

In this section we introduce are main tool, principal asymptotics from [35], to analyse the
support and transversal degree of distributions in D’(Z, P : ¢ : \) and use to obtain some
first restrictions on the support and transversal derivatives for given A and o.

Let X € a~ be order-regular and let 2 € Z. We define the a-stable subalgebra

n,x:=bh.xNnp

and write N, x for the connected subgroup of G with Lie algebra equal to 11, x. Let iy
be an a-stable complementary subspace to 1, x in np, so that

= = =z
np =n; x D ny.

We define X (% ; a) to be the set of roots of a in 0% and pp x € a* by setting

pox(Y) = %tr (ad(Y)

ﬁz,x) (Y € a).
Note that form € M, a € A and n € Np we have
ﬁman-z,X = Ad(m)ﬁz,Xa

and thus X(n%; a) and pp x only depend on O, not on the choice for z € O.
Letey,...,e, be abasis of n consisting of joint eigenvectors for the action of ad(a)
on 1%. For a multi-index f3, let k5 € NoX(T%; a) be the a-weight of e]" - - - e2» € U(7p),
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IV. The most continuous part of the Plancherel decomposition

where U(np) denotes the universal enveloping algebra of np. We write d” for the differ-
ential operator on PN that for ¢ € E(PN,V) is given by

aﬁl aﬁn n
- (pexp(Y ] wies)n)
=1

ox ouxbr

(8°¢) (pm) = (pe P,meEN).

x;=0

The following theorem was proven in [35]; see Theorem 5.1 and its proof and Corol-
lary 5.3. We formulate the results here using distributions instead of functionals, for
which we use the identifications in Section 4.

Proposition 5.1. Let p € D'(Z, P : 0 : \) and let O € (P\Z),. We fix a point z € O
and identify . with an H ,-invariant distribution in D'(P : o : \) as in section 4, for
which we, with abuse of notation, also write p. Let X € a~ be order regular and satisfy

kp(X) # Kry(X) (5.1)
for any two multi-indices 3,y with ||, |y| < trdeg o(p) and kg # k.. Then there exist

a left- P-invariant open neighborhood ) of e in G, a k € NoX(n%;a), and a unique
non-zero distribution p, x € D'(2,V,), so that

lim et ()\+pp+2po,x—f-c) (X)Rv(
t—o0

exp(tX))p = pox -

Here the limit is with respect to weak-x topology on D' (2, V). The distribution ji, x is
given by the following. For every multi-index (3 with kg = K there exists a cg € V) such
that for all ¢ € D(2,V;)

pax () = g /M/A/NP /NZ’X a tre (cfv(m)cﬁ,aﬁ(b(manﬁ)) dndn da dm.
K=k

Finally, 11, x has the following properties.
(i) LY(man)u, x = a**Po(m™Y)p, x for everym € M, a € Aandn € Np.
(ii) RY(Y)p.x = ( —A—pp —2po.x + R)(Y)uz,xfOF everyY € a.

(iii) RY(Y ). x = 0foreveryY € b, x.

(iv) The following are equivalent:

(a) trdeg o(j1) # 0

(b) the transversal degree of . x (w.r.t. the submanifold PN% x NQof G) at any
point in Supp fi, x IS non-zero.

(c) kK #0.
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5. Support and transversal degree

Corollary 5.2. Let p € D'(Z,P : 0 : ) and let O € (P\Z),. Let X € a~ satisfy (5.1).
Then

A€ (=pp—2pox +NoE(Wx;a)) \ao. (5.2)

Moreover, trdeg o (1) # 0 if and only if there exists a non-zero element . € NoX (0% ; a)
so that

ao

)\‘a@ = (_pP_QpO’X—i_ﬁ)}ao'

Remark 5.3. If O is of maximal rank, then pp x can be explicitly determined. Let z € O
and X € a~. By Proposition 3.1 there exists a w € Ng(a) so that h, x = Ad(w)hy. In
view of Remark 3.2 (a) we may choose w so that (3.3) is satisfied. The latter guarantees
that
Ad(w)(ﬁp N [Q) Q ﬁp,

and hence

ﬁ27X = Ad(’w)ﬁp N ﬁp, ﬁﬁ( = Ad(w)ﬂp N ﬁp = Ad(UJ)I‘lQ N ﬁp.
It follows that

1 1

Po.x = —Epwpwfl - §PP-

In particular (5.2) can be rewritten as

A, € (Ad*(w)pp + No< - %(P)N Ad*(w)E(Q))>

ao

Proof of Corollary 5.2. The functional pp x only depends on the connected component
of the set of order-regular elements in a in which X is chosen. Every connected compo-
nent of the set of order-regular elements in a contains elements X that satisfy rz(X) #
K~ (X) for any two multi-indices 3,y with |3, |y| < trdeg o(n) and ks # k.. The claim
therefore follows from (ii) and (iii) in Theorem 5.1. O]

For O € P\Z we set
1
Ho :={\eag: N €322 }

and we define

Hnm = U HO'

OeP\Z
rank(O)<rank(Z)

Here nm stands for not maximal. Then H,,, is a locally finite set of complex affine
subspaces in af. of codimension at least 1. Note that if A\ € He, then Im () € (a/ap)*.

Theorem 5.4. Let o € M and \ € agc. The following assertions hold true.
(i) Let p € D'(Z,P:0: \). IfO € (P\Z),, then A\ € Ho.
(ii) If \ & Hum, then forall p € D'(Z, P : 0 : \)
(P\Z)n © (P\Z)max-

Proof. The assertions follow directly from Corollary 5.2. U
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IV. The most continuous part of the Plancherel decomposition

5.3 P-Orbits of maximal rank and transversal degree

We now focus on P-orbits of maximal rank in (P\Z),, and use the principal asymptotics
for these orbits to obtain further restrictions on the support and the transversal derivatives.

Let Z(g) be the center of the universal enveloping algebra U/(g) of g and let t be a
maximal abelian subalgebra in m. We fix a positive system X of the root system of it
in m and write p,, for the corresponding half-sum of positive roots. We further write W
for the Weyl group of the root system >¢ of (a + it)c in gc. Let 7y be the Harish-Chandra

homomorphism 7 : Z(g) — Sym((a @ it)c ) ~ Cl(a @ it)*] e
Proposition 5.1. Let A € af and 0 € M. Further, let w € D(Z,P:o: N\ and let
O € (P\Z),. Assume that O is of maximal rank. Let A, € it* be the highest-weight of

o. If trdeg o(u) # 0, then there exists a non-zero element v € NoX(P) and a dominant
Ym-integral weight A € it* so that

We A+ Ap+ pn) =We - A+ A+ pu +v).
Moreover, if X, € a satisfies B(X,, -) = v, then X, ¢ ap.
Proof. Let z € O and X € a~ be as in Proposition 5.1. By Proposition 3.1 there exists

aw € Ng(a)sothat h, x = Ad(w)hg. In view of Remark 3.2 (a) we may choose w so
that (3.3) is satisfied. Then
1 1
Po.x = —Epwpwfl - §PP,
see Remark 5.3. In view of Proposition 5.1 there exists a left- P-invariant open neighbor-
hood Q of ein G, a k € 3(Ad(w)np Nnp; a) and non-zero distribution p, x € D'(€2,V;)
so that (i) — (iv) in Proposition 5.1 hold. In particular,
R'Mp.x =0 (Y € Ad(w)np). (5.1)
and
RV(Y)MZ,X - ( — A+ PwPw—1 T ’f) (Y):U’Z,X (Y S Cl). (52)

Moreover, for every multi-index 3 with k3 = & there exists a unique cg € V.’ such that
for all ¢ € D(Q, V)

1o x (6 Z/ //N /WNwlmN —A+f’P( V(m )65,86¢(manﬁ)> dr dn da dm.

(5.3)
The representation D’(P : £ : \) admits an infinitesimal character, which via the Harish-
Chandra isomorphism is identified with —(\ + A, + py,). Therefore,

R'(wp=~w)(~ A +A +pu))n  (ue Z(g)).
Since the elements of Z(g) commutate with the adjoint action of GG, we find for all u €
Z(g)

V() (= (A + Ay + pm)) px = lim et (Mo 200.xx) CRY (exp(tX)) R (u)p
—00
= RY(u).x (5.4)
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5. Support and transversal degree

We will prove the proposition by computing R (u) . x using the formula (5.3) for p, x.
For this we first look at the action of M on p, x.
Let my € M. By (5.3) we have for every ¢ € D({2, V)

R m0 ,uzX

_ Z / / /N P /w — _A+pP< vm )Cg,ﬁﬁ(R(mgl)gb)(manﬁ)> dr dn da dm.

The Haar-measure on each of the groups wNpw= N Np, Np and A is invariant under
conjugation by my, and hence the right-hand side is equal to

B M JAJNp wﬁpw_lﬁﬁp
:‘fﬁ:h}

X a_bﬁ ﬂ o (mmy)c (b(m(mex (zn::vAd(m )e)ﬁ) dndndadm
5’xf1 axgn 0)C8, p s 7 0)¢s 2i=0 .
For multi-indices 3 and /', let ng : M — C be determined by
P oCh) ZXB/ (v € C®(wNpw™ ' N Np),m e M).

Here (), denotes conjugation by m. If we denote trdeg () by k and write S for the
set of multi-indices of length at most &, then the representation y of A on C* that for all
multi-indices 3 € S is given by

ZXﬁ/ Ug/ (m e M,v= (U@/)gleg S CS)

is isomorphic to the adjoint representation of M on @;ﬂzo (Ad(w)np N ﬁp)®l
Letc € C¥ @ V* ~ (V)" be the element of which the 3’th component is equal to cg
for each 5 € S. Then for all ¢ € D(Q2,V;)

RY(mo) s x (¢ Z///N/N . a~Mter (5.5)

X (av(m) ((X ®c”) (mo)c>ﬂ7 8ﬁ¢(m(mﬁ)) dn dn da dm.
The center Z(g) is contained in
Z(m®a) ®U(g) Ad(w)iip = (Z(m) ® Sym(a)) & U(g) Ad(w)ip
Let u € Z(g). There exist vm1,...,Vmk € Z(m) and vg1,...,v., € Sym(a) ~ Cla*]

so that
k

u— Z Um,j @ Vq; € U(g) Ad(w)0p

J=1
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IV. The most continuous part of the Plancherel decomposition

We may assume that §; := Ua,j( — A+ pupuw-1 + m) is for every 1 k either equal

<J<
to 0 or to 1. In view of (5.1), (5.2) and (5.5) we have for all ¢ € D(2,V},)

k

RY(u)pz,x (¢ 25 Z/ //NP /wprlmNP a Atee

f{[—}lﬁ

X (crv(m) ((X ®a") (va)c)B, 85¢(manﬁ)) dn dn da dm.

Let =, g,v C (it)* be the set of lowest weights of x®@c " and let vy, : Z(m) — Sym(tc) =~
C[t*] be the Harish-Chandra homomorphism for m. Then (x ® 0") (vm;) acts diagonaliz-
ably on C° ® V* with eigenvalues Vi (U ;) (1) — pm) for n € Z, gov. From (5.4) it follows
that RY (u) . x is a multiple of i, x. It follows from the uniqueness of the element c that
there exists an ) € =, g, so that

5 (X ® V) (mg)e = 0 pm(Vms)(n — pm)e (1< <Kk).

Therefore,

k
RY(u)pzx =Y 67m(vm) (0 — o) iz x

J=1

I
NERD

(%,j( — A+ puwpw-1 + ’i)) (’Vm(vm,j)(n - pm)),uz,X

—_

w) (= A+ E+10 = pu) iz x,

Il
~2 S

and hence by (5.4)

V(W) (= A=Ay — pu) o x = Y(W) (= A+ K+ — pu) s x-

As p, x # 0 and this identity holds for all u € Z(g), the first assertion now follows with
v = —k and A = —n. The second assertion follows from the Remarks 3.2 and 5.3. [

Theorem 5.2. Let A € al., 0 € M and y € D'(Z,P : 5 : \). Let O € (P\Z), be of
maximal rank. The following assertions hold true.

(i) Im X € (a/ap)*. Assume that Tm X is regular in the sense that if w € W stabilizes
Im \, then w normalizes ap + it and acts trivially on (a + it)/(ap + it). Then

trdeg o(p) = 0.

(ii) If trdeg () = 0 and v € Ng(a) satisfies (3.3) and b, x = Ad(v)by for some
z € O and order-regular element X € a~, then

ReA € popy1 + (a/a0)* = Ad*(v) (pp + (a/ay)*)
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Proof. Let O € (P\Z),, be of maximal rank and assume that trdeg o (1) # 0. Let A, €
it* be the highest-weight of o. By Proposition 5.1 there exists a non-zero v € NyX(P), a
dominant Y, -integral element A € it*, and a w € W so that

w- A+ Ag+ pw) =X+ A+ pu + 1.

Moreover, the element X, € a so that B(X,,, - ) = v is not contained in ap.
Note that W stabilizes the real subspace (a @ it)* of (a @ it).. Therefore,

w- (ReA+ Ay + pn) =Re A+ A+ pn + v (5.6)
and
w-ImA=1Im. 5.7

Furthermore, it follows from Corollary 5.2 that Im A € (a/ap)*. Now assume that Im A
satisfies the regularity condition stated in (i). In view of (5.7) the element w normalizes
ao +it and acts trivially on ((a+it)/(ap +it))". Let aj be the Killing orthocomplement
of ap in a. Then (a + it)/(ap + it) is identified with ag; via the Killing form and hence
w acts trivially on aj. It follows from (5.6) that

(ReA+v)| . =w- (ReA+ Ay + pn)|,. = ReA

1L
1) fa) R70)

and thus v[,. = 0. This is in contradiction with X, ¢ ap. We thus conclude that
trdeg o (i) = 0. This proves (i).
Assertion (ii) follows from Corollary 5.2 and Remark 5.3. O

6 Construction and properties of /-fixed distribution vec-
tors

In this section we construct meromorphic families of distributions in D'(Z, P : 0 : \)
and study some of their properties.

6.1 H-spherical finite dimensional representations

We write Z¢ for the complexification G(C)/H(C) of Z. Note that Z naturally embeds
into Z¢. We further write C[Z](*) for the multiplicative monoid of functions f : Z — C
so that

(a) there exists a non-zero regular function ¢ on Z¢ so that f = ¢

7

(b) there exists a v € a* so that
f(man - z) =a" f(2) (me M,ae A,neN).
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IV. The most continuous part of the Plancherel decomposition

It follows from [29, Lemma 5.6] that C[Z]™P) is finitely generated.

For every function f € C[Z]") there exists a finite dimensional representation (7, V),
an f-fixed vector vy € V and a M N-fixed vector v* € V™ for the contragredient
representation 7 of 7 such that f is the matrix-coefficient of vy and v*. If 7 has lowest
weight v € a*, then v* is a highest weight vector of 7" with weight —v. Note that for
meM,a€ A,n€ Np,ge Gandh € H

f(mangh) = v*(r(mangh)vy) = a’v* (7(g)ve) = a” f(g). (6.1)

We define A to be the monoid of a-weights v that occur in C[Z] (P) i.e., A is the monoid of
lowest a-weights of finite dimensional representations 7 with V7 £ {0} and (V*)MN £
{0}. Tt follows from (6.1) that

A C (a/ay)".

The rank of the lattice generated by A is equal to rank(Z), see the proof of [29, Proposi-
tion 3.13].

We define the submonoid C[Z] +P) of C[Z]") by
iz} = {reciz®: ;c\on= |J o}
OcP\z
open

By [29, Lemma 3.6] the set C[Z]SFP) is non-empty. Furthermore, we write A, for the
submonoid of A corresponding to C[Z] (+P). We note that C[Z] SFP)C[Z](P ) =Cl[Z] SFP), and
hence A, + A = A,. AsC[Z] SFP) is non-empty, the submonoid A, has full rank.

Lemma 6.1. Let z € Z be adapted, let o € M and let ) € (V)M = Then there exists
av € (a/ay)* and a regular function f, : Z — V' so that f,(z) = n and

fo(man - 2"y = a’a”(m) f,(2") (me M,a € An € Np,2' € 7).

Proof. We may assume that (V*)M™= =£ {0}, Tt suffices to prove the existence of a
regular function ¢ : Z¢ — C so that ¢ is Npc-invariant and ¢ occurs as a direct
summand in the representation of M generated by ¢. Let z € Z be adapted. We define
the algebras

A:={¢:Zc— C: ¢isregularand ¢(n - 2') = ¢(2) foralln € Np,2' € Zc}

and
Ay = {M/(MNH,)>m— ¢(m-z): ¢ €A}

In order to prove the existence of a function ¢ with the properties mentioned above, it
suffices to prove that Ay is dense in C'(M/(M N H.)). For this we use the Stone-
Weierstrass theorem.

Note that Ay, is a subalgebra of C'(M /(M N H.)), is closed under complex conjuga-
tion and contains the unit, i.e., the constant function 1. By the Stone-Weierstrass theorem
Ay is dense in C (M /(M N H.)) if Ay separates points in M /(M N H.). For the latter
it suffices to prove that .4 separates points in M -z C Z.
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6. Construction and properties of H-fixed distribution vectors

Let mqy, ms € M and assume that m; - z # my - z. By [44, Theorem 2] the Np-orbits
Npmy -z and Npmsy -z are closed in Z. The space Np\ Z is isomorphic to the quasi-affine
space G'/Np X diag() Z and

A ~ C[G/Np x 7]%ae(@),

Therefore, also D; := diag(G) - (eNp X my - z) and D, := diag(G) - (eNp X My - z)
are closed. It is an straightforward corollary of the main result in [10] that then D; and
D, are also Zariski closed. Let Z; and Z, be the ideals of C[G/Np x Z| of functions
vanishing on D; and D, respectively. As m; - z # my - z and z is adapted, it follows
from the local structure theorem, Proposition 3.1 that D; and D are disjoint. Together
with the fact that D, and D, are Zariski-closed this implies that

C[G/Np X Z] = Il +IQ

Since D; and D, are diag(G)-orbits, the ideals Z; and Z, are diag((G)-stable. As diag(G)
is reductive, it follows that

C[G/Np x Z]%2e@) = I?iag(G) _i_I;liag(G).

In particular, there exista ¢; € Z.**(%) and a ¢ € Z5*5(“) 50 that ¢, + ¢» is the constant

function 1. Now ¢(m; - z) = 1 and ¢o(my - z) = 0. We thus conclude that .4 separates
pointsin M - z C Z. [

6.2 Construction on open P-orbits

In this section we construct meromorphic families of distributions in D'(Z, P : o : \)
with support equal to the closure of an open P-orbit. For an adapted point z € Z,
A € pp + (a/ay)%, a finite dimensional representation (o, V) of M, and n € (V)MNH:
we define the function

&(P:o:X:n):Z—=V!

by

{ e.(P:o:X:n)(nma-z)=a**rgV(m)y, (n€ Ng,a€ A,me M),
ex(P:o:Ain)(y) =0, (y g P-2).

We note that in view of Proposition 3.1 this function is well defined.
Let ' be the cone in (a/ay)* generated by A, i.e.,

I'=> Rooh
AEA

Since A has full rank, the interior of I is non-empty.

Proposition 6.1. Let = € Z be adapted. Let (0,V,) be a finite dimensional unitary
representation of M. Assume that n is a non-zero M N H,-fixed vector in V. For
A€ pp—T+i(a/ay)* the function e.(P : o : X\ : 1) is measurable and bounded on every
compact subset of G.
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IV. The most continuous part of the Plancherel decomposition

Proof. Let O = P - z. Note that O is open. The function e,(P : o : A : 1) is continuous
outside of the set J(O), which has measure 0 in G. Therefore, €.(P : o : A : n) is

measurable. Now let A € pp — ' +i(a/ay)*. Let f1,..., f. be a set of generators of
C[Z])"") with fi(z) = 1, and let A, ..., \, be the corresponding set of generators of A.
Let vy,...,v, € C with Rey; > 0 be such that

pp — A= XT: Vi
i=1

Then .
e(Pronin) = (TL#7)e(P o pe i)
=1
Therefore, ]
le(P: o s A m)(@)llo = (Hm =) e(Pz o ppm) (@)l
As

le-(P:o:pp,n)(z)|, = { g?”m Ei ; g;,

the function ¢,(P : o : pp,n) is bounded. Since the functions f; are continuous, it
follows that €,(P : o : A\ : 1) is bounded on every compact subset of G. O

For every adapted point z € Z, finite dimensional unitary representation (o, V,,) of
M, non-zero M N H,-fixed vector n in V¥, and A € pp — ' + i(a/ay)*, the function
€.(P : o : A :n) defines in view of Proposition 6.1 a distribution p,(P : o : A : n) in
D'(Z,P :o: \) given by

p(P:o:X:n):DZV,) - C; ¢~ /Z <€Z(P co A n)(x),qﬁ(x)) dx. (6.1)

It follows from Proposition 3.1, that for all ¢ € D(Z, V)

JP:o: X (6.2)
/ / / a~MPP—2pQ < Y(m)n, ¢(nma - z)) dm dn da.
No Jmymnm, Jajanm,

It is easily seen that for a given adapted point z € Z, finite dimensional representation o
of M, and M N H ,-fixed vector 1 in V7, the family

pp—T +i(a/ag)* A= pu,(P:o:X:n)

is a holomorphic family of distributions in D’(Z,V,). We will show that this family
extends meromorphically to all of (a/ay)¢. To do so we use the theorem of Bernstein and
Sato. Our proof is similar to that of [42, Theorem 5.1].
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6. Construction and properties of H-fixed distribution vectors

Proposition 6.2. Let = € Z be adapted. Let (0,V,) be a finite dimensional unitary
representation of M and let ) be a non-zero M N H ,-fixed vector in V. The family

pp— I +i(a/ag)* 25X = pu,(P:o:A:n)

of distributions in D'(Z,V,,) defined in (6.1) is holomorphic and extends to a meromor-
phic family on pp + (a/ay)¢. There exists a locally finite union H of complex affine
hyperplanes in (a/ay)¢ of the form

{Ne (a/ay)i : A(X) =a} forsome X € aand a € R, (6.3)

so that the poles of the family A — (P : 0 : X :n)lieon pp+H. For A € pp+(a/ay)g
outside of the set pp + H. the distribution pi,(P : o : X : 1) thus obtained is contained in
D(Z,P:o:\).

Proof. Letuy, ... v, € Abeabasis of (a/ay)* and let fy, ..., f. € C[Z]®) be so that
filman - z) = a" (1<j<rméeM,ac A né€ Np).

Note that each f; is real valued and thus fj2 is non-negative. For

A€ Regu; +ia/ay)”,

=1
we define

o = H (ff)uj 1 Z — C,

J=1

where u; € Cis determined by
j=1

By the theorem of Bernstein (see [13, Appendice A]) there exists forevery 1 < 7 < ra
polynomial function b; on (a/ay): and a differential operator D; on Z with coefficients
in C[Z][], so that forall A € 37| R>yv; +i(a/ay)*

D =bj(A)p . (6.4)

Furthermore, there exists a locally finite union H' of complex affine hyperplanes of the
form (6.3) in (a/ay )¢ so that the zero’s of the polynomials b; are contained in #'.

We now write O for the open P-orbit P-z and 1 for its characteristic function. Let n
be the maximum of the degrees of the differential operators D,. Let further f, € C[Z] SFP)
and let v € A, be its weight. Then for all A € (n + 1)y + > 7, R>ov; we have

(’0)\ _ fél—i—lso)\—(n—i—l)'y.
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IV. The most continuous part of the Plancherel decomposition

Since f; vanishes on O and ¢*~("*+1)7 is continuous, it follows that 1 is at least n
times continuously differentiable. From (6.4) it then follows that for all

Ae(n+1)y+ ) Reyy
j=1
andevery 1 < j <r
D;(#*10) = (Di#*)10 = b(N)9* 10,
By means of this functional equation the family
A= goO’A = go’\lo

can be extended to a meromorphic family of distributions on Z. The poles of this family
lieon#H.

Leto € M and n € (V*)M"H= By Lemma 6.1 there exists a regular function
fn:Z—Viandav € (a/ay)* so that

fy(man - z) = a”e"(m)n (m e M,a € A,n € Np).
Now for A € pp —v — 377 Rovj +i(a/ay)*
e(P:o:Xin) = 2P,
It follows that for these \ the distribution . (P : o : A : i) is given by

po(Pio A in)(9) =2 ((fr,0)) (6 €DIZ V),

where (f,, ¢) is short-hand notation for the function Z — C, 2’ + (f,(2'), ¢(z')). As
A = 9PP=A" is a meromorphic family of distributions, it follows that i, (P : o : X : 1)
extends to a meromorphic family of distributions in D'(Z, V,;). The poles of this family
lie on pg — v — H'. Moreover, pi.(P : o : A : n) is contained in D'(Z, P : o : \) for all
A € pp + (a/ay)¢ outside of the poles of the family as this is true for all A in the open
subset pp — I' + i(a/ay)* of pp + (a/ay)¢. O

6.3 Construction on P-orbits of maximal rank

In this section we apply standard intertwining operators to the construction of meromor-
phic families on open P-orbits from the previous section to obtain meromorphic families
whose support equals the closure of a P-orbit of maximal rank.

Lemma 6.1. Let w € Ng(a) be so that (3.3) holds. Let 0 € M. Then for X in
Ad(w)*(pp + (a/ay)t) outside of a locally finite set of complex affine hyperplanes of
the form

{N € Ad(w)*(pp + (a/ay)i) : M(X) =c} forsome X € aanda € R (6.1)
the intertwining operator
AwPw™ :P:0:\):D(P:0:)\) = DwPw':0:\)

is an isomorphism.
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6. Construction and properties of H-fixed distribution vectors

Proof. Let | be the length of w and let P = B,,--- , P, = wPw™! be a sequence of
minimal parabolic subgroups so that A C P; and P; and P, are adjacent for every j.
For 0 < j < llet o; € ¥(a) be the reduced root such that

2(Pjs1.a) N E(Py.a) € {ay, 20}

The rank one standard intertwining operators A(P; : Pj41 : o : \) are isomorphisms for
Ain pp + (a/ap)¢ outside a locally finite union #H; of complex affine hyperplanes of the

form {\ € af. : M(a}) = c} with ¢ € Q. See for example [35, Proposition B.1]. From

[47, Théoreme 1] it now follows that A(P : wPw™"' : o : \) is an isomorphism for

-1

A& (pr+(afa0)) \ UM

J=0

The same then holds for A(P : wPw™ : o : \)* and A(wPw™': P:o:\).
Since (3.3) is assumed to hold, we have

{a; : 0<j <1} CE(wPw™,a)NE(Pa) = B(wQuw ™, a) NX(P, a).

In view of Remark 3.2 af ¢ Ad(w)ay for all j. Therefore, the intersection of H; with
Ad(w)*(pp + (a/ay)g) is for every 1 < j < I — 1 alocally finite union of affine hyper-
planes of the form (6.1). [l

‘We now come to construction of distributions on maximal rank orbits.

Proposition 6.2. Let w € Ng(a) be so that (3.3) holds. Let further O € w - (P\Z)open
and let z € O be weakly adapted. Now the wPw™-orbit wPw™ - z is open in Z and
2z is adapted to wPw™' = MAwNpw™'. Let (0,V,) be a finite dimensional unitary
representation of M and let 1) be a M N H ,-fixed vector in V}. The assignment

A= (P:o:Xin)=AwPw™ :P:o: ) 'u(wPw™t :0:\:n) (6.2)

defines a meromorphic family on p,p,-1 + (a/a0)t = Ad(w)* (pp + (a/ay)%) of distri-
butions in D'(Z, P : o : \). These distributions have the following properties.

(i) If
A € pupw— — Ad" (W) +i(a/ap)" = Ad(w)*(pp — T +i(a/ay)*),

then the distribution 11,(P : o : X : n) is for ¢ € D(G,V,) given by the absolutely
convergent integral

p(P o X n)(9) 6.3)

e / / / a/_)‘—"_Ad* (w)pP_2 Ad* (w)PQ
NpnwNow-! JM/MAH, JAJANH.

X (av(m)n, d(nma - z)) da dm dn.
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IV. The most continuous part of the Plancherel decomposition

(ii) There exists a locally finite union H of complex affine hyperplanes of the form
{Ne (a/ap)t : AY) =a} forsomeY € aanda € R (6.4)
in (a/ap)g, so that the poles of the family X — (1,(P : 0 : X : n) lie on p,py-1+H.
(iii) For every A € p,py-1 + ((a/ao)(*c \ H) and n € (V)MNH=\ {0} we have
supp (P :o: X :n) = O.

(iv) Up to scaling the distributions p,(P : o : X\ : 1) do not depend on the choice of w,
ie, ifw € Ng(a) satisfies (3.3) and w - (P\Z)open = W'+ (P\Z)open, then there
exists a c > 0 so that

p(P:o:X:n) =cAWwPw ™" P:o: N (wPuw " o N:n)
as a meromorphic identity on py,p,-1 + (a/a0)g.

Remark 6.3. For reductive symmetric spaces the distributions 1,(Q : & : X : n) from
Proposition 6.2 were constructed in [4]. The proof uses the same crucial point: the geo-
metric decomposition (3.5) in Theorem 3.2 translates to a decomposition of a distribution
w.(P : o : X :n) for an adapted point z, as constructed in Section 6.2, into an inter-
twining operator and a distribution that transforms under a conjugate minimal parabolic
subgroup wPw~" and is supported on the closure of a non-open wPw~!-orbit. In [4] the
objects under consideration are H-invariant functionals on C*°(P : o : \); we consider
here distributions in D'(Z, P : o : A). The resulting analysis is formally the same. How-
ever, we choose here to look at distributions rather than functionals since in this way we
can avoid working with densities.

Proof. In view of Proposition 6.2 the family (6.2) is a meromorphic family of distribu-
tions in D'(Z, P : o : \). It follows from Proposition 6.2 and Lemma 6.1 that the poles
of this family lie on a locally finite union of complex affine hyperplanes of the form (6.4).
This proves (ii).

We move on to (i). Let A € Ad(w)*(pp — I' + i(a/ay)*) and ¢ € D(Z,V,). By
Proposition 3.1 the wPw!-orbit wPw™! - z is open. Moreover, if P = MANp is
replaced by wPw™' = M A(wNpw™1), then the point z is adapted. Therefore, it follows
from Proposition 6.1 that the integral

/ / / / |(n, p(knma - z))| dk q ReAFA W)pp=2Ad(W)oQ g dm dn
wNow=1 JM/MH, JAjAnH, JK

is absolutely convergent. The product map
(wNow™ ' N Np) x (wNogw™ N Np) = wNow™; (7,n) — An

is a diffeomorphism with Jacobean equal to the constant function 1. Therefore, we may
replace the integral over wNgw ™! by a repeated integral, the first over wNow™" N Np
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6. Construction and properties of H-fixed distribution vectors

and the second over wNgow ™' N N p. For ¢ € D(Z, V) we set

X=(P o An)(6)

-:/ / / q MAT (w)pp—2Ad* (w)pq
NpnwNow~—t J M/MNH, JA/ANH,

X <av(m)17, o(nma - z)) da dm dn.

It follows from Fubini’s theorem that the integral x,(P : o : A : 7)(L,¢) is absolutely
convergent for almost every g € G, and the resulting function

I(@) : g X=(P 0 Xin)(Ly9)

is locally integrable on G. We claim that the integral is absolutely convergent for every
g € G and that I(¢) is smooth. Indeed, in view of [19, Théoreme 3.1] we may write ¢ is
a finite sum of convolutions ) * x with ) € D(G) and x € D(Z,V,). It follows from the
above analysis that the integral

/G Y I(x)(y'g) dy

is absolutely convergent for every g € G. Moreover, it depends smoothly on g and by
Fubini’s theorem it is equal to /(1) * x)(g). This proves the claim. It is now easily seen
that Ad(w)*(pp — T + i(a/ag)*) 3 A+ x.(P : 0 : A : 1)) defines a holomorphic family
of distributions in D' (Z, V).

We claim that x,(P :0: A:n) € D'(Z,P:0o:\). To prove the claim, we first note
that

LY(ma)x.(P:o:X:n)=a """ (m x(P:0:)\:n)
for every m € M and a € A. To prove the claim it thus suffices to show that

LYn)x(P:o:X:n)=x.(P:0:X:n) (n € Np). (6.5)
Let M, be a submanifold of M so that

My — M/(MNH,); mg— me(MNH,)
is a diffeomorphism onto an open and dense subset of M /(M N H.) and let du be the
pull back of the invariant measure on M /(M N H,) along this map. Let further A, be a
closed subgroup of A so that
Ay — AJ(ANwH,w™); agr ag(ANwH,w™)

is a diffeomorphism. For every p € P the map

NpNwNow™' = Np/(Np N H,.); nwn(NpNH,.) (6.6)
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IV. The most continuous part of the Plancherel decomposition

is a diffeomorphism by Proposition 3.1. We normalize the Np-invariant measure d,,..,» on
Np/Np N H,.. so that its pull-back along (6.6) is the Haar measure on Np N wNQuF1
After changing the order of integration we get for all ¢ € D(G, V)

X(P:o:A:n)(o

/ / / g~ AT (W)pp—2 Ad* (w)pq 6.7)
Mo J Ao J Np/(NpNHmq.2)
X (av(m)n, o(nma - z)) AVia.»(n) da dp(m).

The identity (6.5) follows from the invariance of the measures on the homogeneous spaces
Np/Np N H,... We have thus proven the claim that x,(P: 0 : A:n) € D'(Z,P:0: \).

We move on to show that x.(P : o : A:n) = u.(P:o:X:n). By (@3.3)and (4.1)
we have for all ¢ € D(G, V)

[A(wPw™ : P:o: AN)x.(P:o:X:n)](¢)

NpnwNguw—! J NpnwNow—! JM/MnNH, J A/ANH.

X <Uv(m)n, é(mnma - z)) da dmdn dn

:/ / / g MA (w)pp—2Ad* (w)pq
wNow~1 JM/MnNH, JAJ/ANH

X (UV (m)n, p(nma - z)) da dm dn.

The right-hand side is equal to u.(wPw™ : o : X\ : )(¢), and hence
AwPw™ :P:o: N)x.(P:o:X:n)=AwPw ' :P:o: Nu(P:0:\:n).

It follows that (6.3) holds for A € Ad(w)*(pp —I' +i(a/ay)*) for which the intertwining
operator A(wPw™' : P: ¢ : \)is an isomorphism. In view of Lemma 6.1 this is the case
for \ outside of a locally finite union of hyperplanes. Since x.(P : ¢ : A : 1) depends
holomorphically and p,(P : o : A : ) meromorphically on ), the identity (6.3) holds in
fact for all A € Ad(w)* (pp — T +i(a/ay)*).

We move on to prove (iii). Assume that 77 £ 0. From (6.3) it follows that

suppp.(P:o:X:n) CO.

Since the support of u.(P : o : A : 1) is a union of P-orbits in Z, it suffices to prove that
the restriction of 1. (P : o : A : 1) to the open subset Z \ 0O is non-zero. The right-hand
side of (6.3) defines for every A € Ad(w)*(pp —I'+i(a/ay)*) anon-zero distribution on
Z \ 00. Moreover, the dependence on A is holomorphic, and hence the right-hand side
of (6.3) defines a holomorphic family of distributions on Z \ 0O with family parameter
A€ Ad(w)*(pp — T +i(a/ay)*). As this family coincides on a non-empty open subset
of Ad(w)*(pp — T + i(a/ay)*) with the meromorphic family

AHNZ(P:U:)\:n)‘Z\ao,
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6. Construction and properties of H-fixed distribution vectors

it follows that i, (P : 0 : A :n
This proves (iii).

Finally we prove (iv). Let w' € Ng(a) satisfy (3.3) and w - (P\Z)open = W' -
(P\Z)open- Because of meromorphical continuation, it suffices to prove the uniqueness
for X in the open subset Ad*(w) (pp — T +i(a/ay)*) of Ad*(w)(pp+ (a/ay)s). For these
A the distribution (P : o : A : n) is given by the right-hand side of (6.7). It follows
from Proposition 3.1 that there exists ay : M x A — R so that for every ) € D(Z),
mée Manda € A

/ w(nma - 2) dvpmq..(n) = v(m, a) / Y(n'ma - z)dn'.
Np/(NpNHma.z)

Npﬁw’NQw’_1

>}Z\8O # 0 for all X for which u,(P : o : X\ : 1) is defined.

The function

v(m, a)

v(ee)

is a character of M x A. Therefore, there exists a ¢ > 0 and a v € a* so that

M x A— Ry (m,a)—

v(m,a) = ca” (me M,a € A).
It follows that,

(P o X:n)(o)

= C/ / / g MAT (W)pp—2Ad* (w)pg+v
Npnw Now' =1 JM/MNH. J AJANH.

X <Jv(m)n, o(nma - z)> da dm dn.

Since w' satisfies (3.3), we have w'Npw' ="' N Np = w'Now'~! N Np. Now for every
¢ €D (G,V,)

[AWPwW ™ :P:o: Np(P:o:X:n)](e)

= C/ / / / a—)\+Ad*(w)pp—2Ad*(w)pQ+u
w' Now'='NNp J Npnw' Now' =1 J M/MnH, J AJANH,

X <0V(m)n, é(nma - z)) dadmdn

g C/ / / a—)\+Ad*(w)pp—2Ad*(w)pQ+y
w'Now'~t JM/MNH, JAJ/ANH,

X <0V(m)77, é(nma - z)) da dm dn.

Since A(w'Pw'=": P: 0 : \)u,(P: 0 : X :n)is adistribution in D' (w'Pw'~" : o : \),
v must satisfy

A+ Ad*(w)pp — 2Ad"(w)pg + v = =X + Ad*(w')pp — 2 Ad" (w') pg.
Thus, in view of (6.2), we have
AWPw™ P o : Np(P:o:X:n)=cu,(wWPuw ™" :0:\:n).

This concludes the proof of (iv). O
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IV. The most continuous part of the Plancherel decomposition

Let O € P\Z be of maximal rank and let z € O be weakly adapted. Assume that
ao = ay. Let & € M. We recall from Corollary 4.2 that if (V°°')"= % {0}, then &|, .

is trivial, ¢ is finite dimensional and unitarizable and &|, is irreducible. For £ € M, and
n € (V¢)Me"= we define the meromorphic family of distributions

p=(Q & A m) = p(P:&|m: A+ pp—pg 1)
with family parameter A € (a/ay).

Theorem 6.4. For every z, &, 1) as above, the assignment

(a/ag)e DA = p(Q: € At m)

defines a meromorphic family of distributions in D'(Z,Q : £ : \). The poles of the family
lie on a locally finite union of complex affine hyperplanes of the form

{Ne(a/ay)g: AY) =a} forsomeY € a\ ayanda € R.

Let O € P\Z satisfy ap = ay and let z € O be weakly adapted. Let w € N¢(a) be so
that (3.3) holds and [O] = w - (P\Z)open- If

A € pugu-1 — Ad*(w)I' +i(a/ay)* = Ad(w)* (pg — T + i(a/ay)*),

then the distribution 1,(Q : & : X : n) is for ¢ € D(G, V) given by the absolutely
convergent integral

pe(@ & A m)(9) (6.8)

= / / / a AT We <§v(m)77, ¢(nma - z)) da dm dn.
NonwNow~—! JM/MNH, JA/ANH,

Proof. We first prove that ,(Q : £ : A :n) € D'(Z,Q : £ : \). By Proposition 6.2
we have 1,(Q : £ : A :n) € D'(P : &l : A+ pp — pg). In view of Lemma 4.2 and
meromorphicity it suffices to show that y,(Q : € : X : ) is left-Mg N N p-invariant for
A € pugu-1 — Ad*(w)T' + i(a/ay)*.

The fact that ap = a; implies w € N' = Ng(a) N Ng(ay). In view of Remark 3.2 the
element w normalizes L, and hence also M. Since (3.3) is assumed to hold, w even
normalizes Mg N N p. The point w™! - z is adapted. Therefore,

Lone =wLguew ' CwHy-1,w™ ' = H,. (6.9)
In particular, o
MoNNpCH..
We claim that Mg N N p normalizes Np N wNgw ™. In fact, M has this property.
As Np = (Np N Mg)Ng, we have
NpnN wNQw’1 = NgnN wNwal. (6.10)

The claim is now proven by observing that Mg normalizes N and hence also wNgw ™.

As M and A normalize M, NNp, Mg NN p normalizes Np N wNQw_l, it is follows
from (6.9) and (6.3) that 1, (Q : € : X : ) is left-Mg N N p-invariant. This concludes the
proof that 11, (Q : £ : A :m) € D'(Z,Q : & : N).

The remaining assertions follow directly from Proposition 6.2 and (6.10). U
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6. Construction and properties of H-fixed distribution vectors

Remark 6.5. Let O € P\Z be of maximal rank and z € O weakly adapted. If ap = a,
then there exists a positive H,-invariant Radon measure on (H, N Q)\ H.. To prove this
it suffices to show that H, N @ is unimodular. The modular character of H, N () is given
by

A:H.NQ— Rog;  h |det (Ad(h)

hzﬂq) ‘

Let w € N be so that (3.3) and [O] = w - (P\Z)open- In view of (6.9), Proposition 3.1
and Theorem 3.2 we have

H,NQ=Lon(H.NP)=LonMNH,)ANH)(NpNH,)
= Lonc(MNH,)(ANH)(NgNH,).

Since L, 1s semisimple, M N H, is compact and Ng N H, is unipotent, the restriction
of A to each of these three subgroups is trivial. It thus remains to show that the restriction
to AN H is trivial as well.

As AN H is contained in the center of L it centralizes Lg (M N H,)(AN H).
Therefore,

A(a) = | det (Ad(a)| (ae ANH,).

nQﬁhz) ’
It follows from Proposition 3.1 and (6.10) that the multiplication map

(Ng NwNouw™) x (Ng N H.) = Ng;  (n,ng) — nng

is a diffeomorphism. Moreover, this map is A N H,-equivariant, and hence

det ( Ad(a 200
t( ( )|nQ) ‘ a (ac ANH.).

A(a) = ’det (Ad(a)‘ - apQ+Ad*(w)pQ

nQﬂAd(w)nQ)

As AN H, is connected, w centralizes this subgroup. It follows that A is the trivial
character and hence that /7, N @ is unimodular. This concludes the proof of the claim
that (H, N Q)\ H, admits a positive H,-invariant Radon measure.

The invariant measure allows to describe the distributions ,(Q : £ : A : n) as a
functional on C*°(Q) : £ : A). To do so, let g € G be so that gH = z. We use (4.2)
to identify D'(Z,Q : £ : ) with D'(Q : & : N\)". Recall the map wg/\ from (4.1).
A straightforward computation shows that for a suitable normalization of the invariant
measure on (H N g~ 'Qq)\ H

(@i rm)(n = | (1 fgh)dh  (feC™(@Q:€:N).

(HNg=1Qg)\H

The distributions i, (P : o : A : i) from Proposition 6.2 with z a weakly adapted point
contained in a P-orbit O in Z with ap # aj, can be similarly description as functionals
on C*°(P : o : \). However, in this generality not all homogeneous spaces (H, N P)\H,
admit positive [ ,-invariant Radon measures. To remedy this, one has to consider the
elements in C*°(P : o : \) as smooth densities; see [4, Lemma 3.1].
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IV. The most continuous part of the Plancherel decomposition

6.4 A description of D'(Q : £ : \)¥

In this section we give a precise description of D’(Q : ¢ : \)¥ for a finite dimensional
unitary representation £ of Mg and A € i(a/ay)* outside of a union of finitely many
proper subspaces. We identify distributions on Z with H-invariant distributions on G via
the map (4.2). We recall that the point eH € Z = G/ H is chosen to be admissible.

We define

(P\Z)a, = {0 € (P\Z)max : a0 = ay}.

First we choose a set of good representatives of the P-orbits in (P\Z),, .

By [39, Proposition 3.13] every open P-orbit contains a point = - z with

x € GNexp(ia)Hc.
For such a point the equality
anNAd(z)ht =anpt

holds. For every O € (P\Z)open We choose an zp € G N exp(ia)Hc so that xo H is an
adapted point in O C Z = G/H. We may and will choose zpp to be e.

We recall the group N' = Ng(a) N Ng(ay) and its subgroup W from (3.1) and (3.3).
For every N /W we choose a representative v,, € K NN as follows. In view of Theorem
3.3 the set /W is in bijection with the set of equivalence classes of P-orbits in (P\Z),,,
i.e., the map

N/W = (P\Z)a,/~; W = v (P\Z)open
is a bijection. We choose an order-regular element X € a~. For w € N /W we now
choose v, € K NN so that
b-x = Ad(vw)bo
for some weakly adapted point in an P-orbit O with [O] = w - (P\Z)open. We note that
this equation determines v,, up to right-multiplication by an element from Z N K and that
v Z 1s independent of the choice of z. The elements v,, do however depend on the choice
of X. The crucial property of the v,, is that they are representatives of the elements in
N/W,ie.,
VW = w (w e N/W).

We may and will choose the v,, so that they satisfy (3.3). The representative of e}V we
choose to be e.
By Theorem 3.3 (iii) and (iv) the points

le’@/H (’w € N/W, O/ S (P\Z)open)

form a set of weakly admissible representatives for the P-orbits in (P\Z),,. If O €
(P\Z)a, then we write zo for v,z0r, Where w € N/W and O € (P\Z)qpen are so that
P VLo H.
For a finite dimensional unitary representation (£, V¢) of My we define the vector
space
V*(g) — @ (va)MQﬁacoH:cal

(’)e(P\Z)%

and equip it with the inner product induced from the inner product on V.
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6. Construction and properties of H-fixed distribution vectors

Proposition 6.1. Let O, 0" € (P\Z),,. If O ~ O/, then
MgNzoHzy' = Mg NzoHay, .

In particular
MgnNazoHzy' =MogNH (O € (P\Z)open)-

Proof. Let O € (P\Z),,. Let w € N /W be so that [O] = w - (P\Z)open. Then
To = VuTo, for some open P-orbit Op. It follows from Remark 3.2 that N normalizes
Mg . Therefore,

Mg NzoHzg' = v,(MgN :EOUH:U(_Q(l))U;l.

Since v,, only depends on the equivalence class [O], and not on the particular orbit O in
it, it thus suffices to prove the assertion only for the open P-orbits O.
We have Mg = M Lgne and Lg ne € 2o H x(;l. Hence it suffices to prove

MNzoHzg' =MNH (O € (P\Z)open)-

Note that M N zpHz,' = M NaxpHery'. Lett € exp(ia) and h € Hc be so that
o = th. Then

M NzeoHexy' = M NtHct ™' = M N He.

For the last equality we used that ¢ centralizes M. The assertion now follows as M NH¢ =
MANH. 0

As a corollary of the previous proposition we obtain that the group
MQ,[(')] = MQ N $(9H$(_91

only depends on the equivalence class [O] € (P\Z),/ ~, not on the choice of the
P-orbit in [O]. Therefore,

Vo= @ (oree)”

[O1€(P\Z)ay /~

Here V¥ for a vector space V and a finite set S denotes the vector space of functions
S — V. We write v, for the s-component of a vector v € V9, i.e., v, = v(s).

Remark 6.2. The space V*(&) will serve as the multiplicity space in the Plancherel de-
composition for the principal series representations Ind%(f ®A® 1) with A € i(a/ag)".
In case H is symmetric, i.e., H is an open subgroup of the fixed point subgroup G°
of some involution ¢ of G, much information about these multiplicity spaces has been
given in [5]. If H is equal to the full fixed point subgroup of an algebraic involution on
G, then Proposition 6.1 coincides with [5, Lemma 7]. For symmetric spaces we have
(P\Z)a, = (P\Z)open, see Appendix A.
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IV. The most continuous part of the Plancherel decomposition

Theorem 6.3. There exists a finite union S of proper subspaces of (a/ay)* so that for
every finite dimensional unitary representation (£, V¢) of Mg and every X € (a/ay) with
Im A\ ¢ S the map

Q&N V() =DQ:: N ns Y on(Q: 6 X n0)

(OG(P\Z)ub

is a linear isomorphism.

Proof. Let

8 = (a/ay)'n | (a/ao)

OeP\Z
apFay

If A € (a/ay)¢ satisfies Im A ¢ S, then we have in view of Theorem 5.4
(P\Z)u < {O € (P\Z)max : a0 = ah}

for every n € D'(Z,Q : £ : \). Further, it follows from Theorem 5.2 that there exists a
finite union S, of proper subspaces of (a/ay)* so that

trdego(pn) =0 (O € (P\2),)

forall A € (a/ap)s withIm A ¢ S; USsandall p € D'(Z,Q : € : \).
In view of Theorem 6.4 there exist a finite union S; of hyperplanes in (a/ay)* so that
the poles of the meromorphic family of maps A — p(Q : & : \) lie in S5. We set

82281USQU83

We fix A € (a/ay)g with ImA ¢ S. Let now p € D'(Z,Q : £ : \). To prove the
theorem, it suffices to show that y is a sum of distributions i,z (Q : & : A : 7o) with

O € (P\Z)y, and 5o € (V) 701155",
The condition on A assures that

(PAZ) © (P\Z)q,

and
trdego(n) =0 (O € (P\Z),).

If yo # 0, then there exists an O € (P\Z),. Since trdego(n) = 0, there exists a
distribution 1 on O so that © on
U=2\ (ao v U 6)
0’e(P\2),\{O}

is given by
W) = no(dl,) (¢ €DUV)).

By [35, Lemma 5.5] pe 1s in fact given by integrating against a smooth function. More-
over, since i is right- H-invariant, also pe is right- -invariant. Likewise, (i inherits the
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6. Construction and properties of H-fixed distribution vectors

left- P-equivariance from . As O is a P-orbit in Z, e is fully determined by its value
in any given point. In particular, we may evaluate p in 2o := xoH. This results in a
non-zero vector 7o in (V¢)MeMo = (%*)MQ”‘”(?H“BI. Let w € Ng(a) satisfy (3.3) and
(O] = w - (P\Z)open- It follows from Theorem 3.2 that (¢) is for every ¢ € D(U, V)
given by

/ / / a MAT Wrg <§v (m)no, p(nma - z)) da dm dn
NpnwNqw~—t JM/MNH, JA/ANH,
= zo(Q 1 € A1 10)(9).
Hence 1/ := pt — 12, (Q : £ - X : o) is a distribution in D'(Z, Q) : £ : ) with
(P\Z) € ((P\2),\ {O}) U{O' € (P\Z),, : O’ C 00}
and
trdeg o (1) = 0 (0" € (P\Z)).

We now replace . by i/ and repeat this argument. After finitely many iterations of this
process we obtain that y is a sum of distributions 1., (Q : & : A : o) with O € (P\Z),,

and no € (‘/E*)meon(Bl_ u

From now on we fix a finite union S of proper subspaces of (a/ay)*, so that the

conclusions of Theorem 6.3 hold and for every v € A and { € J/\/[\Qfu the intertwining
operators Z,(Q : & : A\) and Z2(Q : £ : \) are isomorphisms for Im A\ ¢ S.

6.5 Actionof AponD'(Q:¢: \)H
We recall the from (3.1) that ay denotes the edge of C, ie.,
ap =CnN—C.
We write Ag for the connected subgroup of G with Lie algebra ag, i.e.,
Ap = exp(ag).

The group Ag normalizes the Lie algebra ). In fact, it follows from the theory of smooth
compactifications of Z that A normalizes Hc, and hence also H. See [17, Theorem 4.1]
where this is shown for an algebraic subgroup of GG for which the identity component of
the group of real points is equal to Ag. Therefore, Ag acts from the right on Z = G/H
by
gH -a := gaH (gEG,aEAE).
We now investigate the induced right action of Ax on the spaces D'(Q : & : \).
If O € (P\Z),,, then we define

to : (VE)Memel — V*(¢) (6.1)

to be the inclusion map determined by
_Jn (0=0),
(L(Dn)o/ = { 0 (O £ (r)/)
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IV. The most continuous part of the Plancherel decomposition

Proposition 6.1. Ler (£, Ve) be a finite dimensional unitary representation of Mg and
A€ (a/ag)e withIm A ¢ S. Ifw e N/Wand O € w - (P\Z)open, then

RY(a)opu(Q :€:N)owp = a‘Ad*(Ual)HpQ,u(Q & N) o (a € Ap).
We first prove a lemma.

Lemma 6.2. Letw € N'/W and O € w - (P\Z)open. Then
Toa € vyav, roH (a € AE).

Proof. By [39, Lemma 12.1] the little Weyl group W, and hence also W, acts trivially
on ag/ay. Let O' € (P\Z)open be so that 1o = v,xe. Further let ¢t € exp(ia) and
h € Hc be so that oy = th. Now

roa = (tpav; ) vet (e~ ha) = (veavg)zoh ™ (atha) (€ Ag).
The assertion now follows as
h™'(a"ha) € HeNG = H.
0

Proof of Proposition 6.1. By meromorphic continuation, it suffices to prove the assertion
only for
A€ Ad(v)*(pg — T +i(a/ay)*).

For these A the distribution yi,, iz (Q : € : A : ) is given by (6.8).
If 5 is an Ag-stable subspace of g, then we write A, for the character of Ag given by

As(a) = ‘detﬁ(Ad(a_l)‘s)‘ (a € Ap).

If » € D(G) and @ € A, then

/H d(ha™") dh = Ay(a) /H é(a'h) dh.

As g =bhdng dw' @ d for suitable subspaces m’ and a’ of m and a, respectively, we
have

Ag = Ay Apgser.

Since G is reductive, the character A is trivial. As Ag centralizes m’ and a’, also Ay
is trivial. Furthermore,

Ay, (a) = a= %@ (a € Ag).

ng
We thus conclude that
Ah (CL) = g?%e ((l € AE)

The assertion now follows from Lemma 6.2, (6.8) and the invariance of the measure on
A/ANH. O

190



6. Construction and properties of H-fixed distribution vectors

6.6 B-matrices

We continue with the notation from the previous section.
The following is an immediate corollary of Theorem 6.3.

Corollary 6.1. Let & be a finite dimensional unitary representation of Mg, v € N, and
A € (a/ay)s withIm X\ ¢ S. Then there exists a unique linear operator

By(Q:&:A): V() = Vi(v-¢)
so that the diagram

T (Q:6:N)

D(Q:&: N D(Q:v-&: Ad*(v)\)H (6.1)
HQiEN) p(Qugad m))
V*(€) ey Vi)
commutes.

A similar map was first introduced in [1] in the setting of real reductive symmetric
spaces, where it was called the B-matrix, hence our notation.
We will prove a few properties of B-matrices. Recall the maps ¢» from (6.1) and the
set of representatives {v,, : w € N /W} for N/W in NN K from Section 6.4. If w € N,
then by slight abuse of notation we write v,, for v,,y. Every element w € N defines a
bijection
Sw i (P\Z)ay = (P\Z)ay; O+ PwzoH. (6.2)
Note that
[$0(O)] = w - [O] (wEN,(’)E (P\Z)ah),

and hence
MQ,[st} = MQﬂU-[O} = wMQ,[O]w_l (w - N, O e (P\Z)a;,)-

Proposition 6.2. Let & be a finite dimensional unitary representation of Mg and \ €
(a/ag)e with Im X\ ¢ S. Let vyw € N and let O € w - (P\Z)open- Let further
n € (Vg*)MQ’[Ol = (%*)MQ””““H”EI. Then B,(Q : & : \) o vo(n) satisfies the follow-
ing assertions.

(i) If vw ¢ Zo(ap/ay), then
(BN otom) =0 (O'€(P\D)open).

(ii) If dim (v Ngv N Ng) + dim(O) < dim(Z2), then
(BU@:€:Notom) =0 (O'€(P\D)open).
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IV. The most continuous part of the Plancherel decomposition

(i) If dim (v"'Ngv N Ng) + dim(0) = dim(Z) and vw ¢ W, then
(BU(Q £ 0o Lo(n))o =0 (O € (P\Z)open)-

(iv) If v = U;l, then

(BUQ:¢: N 010(n)) Lo
L (Q € o}, = 0 (O € (P\Z)open, 0" # 5,(0)).

Proof. Let i =Z,(Q : & : N)ou(Q :&: ).
By Proposition 6.1 we have for all a € Ag

RY()n=T,(Q: €: N) o RY(a) o p(Q: £ : N)(n) = o A DMray,

Lety € V*(v- &) be so that u = ,u(Q cv- € Ad*(v)A)n’. Then forall a € Agp

Riapu= Y 3 a M@ N oo (ng).

w’EN/W O’Gw,'(P\Z)open

Both identities are identities of meromorphic functions in the parameter A. Therefore,
the only terms in the sum on the right-hand side of the second identity that can be non-
zero, are those for w' € N /W with v 'vv, € Zg(ag/ay). Since W is a subgroup
of Zg(ag/ay), see [39, Lemma 12.1], the latter condition is equivalent to v, vw €
Zg(ag/ay). Assertion (i) now follows by taking w' = eW.

We move on to prove (ii) and (iii). By meromorphic continuation it suffices to prove
the assertion for A € (a/ay); for which the intertwining operator A(v™'Qu : Q : € : \)
is given by a convergent integral over v"'Ngv N N. Since supp (,u(Q 2 € )\)77) C O,
we then have

supp(p) = v - supp (.A(v_le Q& )\)u) Cuo- (v*lNQv HNQ) - O.

If dim (v™'Ngv N Ng) + dim(0) < dim(Z), then the interior of the support of 4 is
empty. This proves (ii). Assume that dim (v"'NgvN Ng) 4 dim(O) = dim(Z) and the
support of £ contains an open P-orbit @’. Then v™! - O’ C (v"*Nguv N Ng) - O, and
hence v - O’'NO #0. Letz € v1 - O N O. It follows from Proposition 3.1 that

v 'Ngu = v 'Ngu-2z; nrn-z
is a diffeomorphism. Since
(v"'NguN Np) x (v"'NouN Np) = v 'Ngv; (7, n) — nin
is a diffeomorphism as well, we obtain that
(v'NguN Np) = (v 'NogvN Np) - 2z; n—=n-z
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is a diffeomorphism. We note that v normalizes M in view of Remark 3.2 as it is
contained in V. Therefore,

U_INQU N Np = U_INQU N NQ.

It follows from Proposition 3.1, Theorem 3.2 and the assumption on the dimension of O
that

dim(Np - z) = dim(Ng) — dim(Z) 4 dim(O) = dim(Ng) — dim (v""Ngv N Ng)
= dim (U_INQU N Np) = dim ((U_INQU N Np) . z)
This implies that (v Nov N Np) - z is open in Np - z. in view of [44, Theorem 2] both

(v"*Ngv N Np) - z and Np - z are closed. Therefore, (v™*Ngv N Np) - z is also closed
in Np - z. Moreover, both are connected. We thus conclude

(v"'!NguN Np)-z= Np- 2.

In particular we see that Np - 2 C v~ - O’ N O. Since every Np-orbit in O contains
a weakly admissible point, we may without loss of generality assume that z is weakly
admissible.

Now v - z is an admissible point in (. Hence if X € a~ is order-regular, then there
exists an u € W so that b,,.. aq)x = Ad(u)by . We now have

b x = Ad(v )by adwx = Ad(vu)by.

This implies that O € v u - (P\Z)open- By assumption O € w - (P\Z)open. Therefore,
utvw stabilizes (P\Z)open- Since the stabilizer is equal to VW by Theorem 3.3(ii), we
may conclude that vw € W. This proves (iii).

Finally, we prove (iv). Let v = v, 1. In view of (6.2) we have

1= LY (0)taon (07 P s € A4 pp — po i 7).

Using meromorphic continuation, (6.3) and the fact that v,, satisfies (3.3) we obtain

p= puzor (P:v-&: Ad ()X + pp — po =) = p(Q : v- & Ad*(V)A) © ts,0) (1)
This proves (iv). [l

We define the map
BE:A) V() = V(E)
forn € V*(€), O € (P\Z)open and w € N'/W to be given by

<6(§ : A)77>svw<<9) N ’y(vw@vwllz Q:&:)) <B“51<Q ak /\)">o' ©.3)

We will use 3( : A) for the normalization of the map (@ : € : ) in the next section.
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IV. The most continuous part of the Plancherel decomposition

Let ev, denote evaluation in a point g € G Since

<BUJI(Q : 5 : /\)77)0 = €Vy,z0 OA(’UwQ/U;l : Q : 6 : )\) O/L(Q : 5 . )\)

depends meromorphically on A\ € (a/ay)s for w € N/W and O € (P\Z)open, the
assignment

(a/ag)t = End (V*(§)); A= B(E:A)

is a meromorphic function. Moreover, A — £(& : ) is holomorphic on
{N€ (a/ay)t : Im A ¢ S}.

If we order the orbits in (P\Z),, by dimension and choose a basis of V*(¢) subject
to the decomposition

Vi) = @ ()Meo,

OE(P\Z)ah

then in view of Proposition 6.2(ii — iv) the matrix of 5(£ : \) with respect to this basis
is upper triangular and the diagonal entries are reciprocals of y-factors. It follows that
B(€ : A\) is invertible. Since A — S(£ : \) is meromorphic, it follows from Cramer’s rule
that also

(a/ag)g = End (V7(§)); A= BN

is meromorphic. This observation has the following corollary.

Corollary 6.3. Let & be a finite dimensional unitary representation of Mg. For every
v € N the B-matrix B,(Q : € : \) depends meromorphically on \ € (a/ay)¢.

Proof. The map B(€ : N ou(Q : € : N tisforp € D'(Q : € : N, w e N/W and
O € (P\Z)open given by

(Ble: N 0@ €: )7 ()

_ 1 o 1.0.¢-

S eOe O E )\)evvww A(v,Quy™ Q1 &2 N) ().

It follows that for a meromorphic family of distributions py € D'(Q : & : \) with
family parameter A € (a/ay)f, the assignment A — (€ 1 A) o u(Q : & 2 A\) 7 (wy) is
meromorphic. We apply this to

pr =Zo(Q: & A) o (@ €2 A)(n)
for v € A and n € V*(£) and thus conclude that

BuQ: €N =p(Q:&: N oL (Q: € N) o u(@: € N (n)
= B(E: N e (B N on(@: €N ()

Svy (O)

depends meromorphically on A. U
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6.7 Normalization

We continue with the notation from the previous section. For a finite dimensional unitary
representation & of My and A € (a/ay)g with Im A ¢ S, we normalize our distributions
w(Q : € - \)n using the map S(€ : \) from (6.3) by defining

o a) -1 — * -
HOEN = AQ:Q:6:0)  opu(Q: €N 0BE N VH(E) = D(Q:E: N
(6.1)
The reason for normalizing the distributions is to make sure that the composition of the
constant term map and x° (€ : A) will have a desirable form, see Section 8.4.
We end this section with a reformulation of Theorem 6.3.

Theorem 6.1. For every finite dimensional unitary representation (£, V¢) of Mg and ev-
ery A € (a/ay)t withIm A\ ¢ S the map

(€N VHE) = D(Q: € N (6.2)
is a linear isomorphism. The assignment

A= (€ A)n

defines for every nn € V*(&) a meromorphic family of distributions in D' (G, V) with
family parameter X € (a/ay)g. The poles of the family lie on a locally finite union of
complex affine hyperplanes of the form

{Ne (a/ay)i : A(X) =a} forsome X € aand a € R. (6.3)

Proof. The poles of standard intertwining operators, as well as the poles and zero’s of
~-functions, all lie on a locally finite union of complex affine hyperplanes of the form
(6.3). The proposition now follows from Theorem 6.3. O]

For future reference we record here that in view of the corollary we may and will
equip D'(Q : € : \)¥ for A € (a/ay)i with Im A\ ¢ S with an inner product so that the
map (6.2) is an isometry.

6.8 The horospherical case

We call the real spherical homogeneous space Z horospherical if a normalizes b, for one
(and hence for every) adapted point z € Z. We note that Z is horospherical if and only if
the compression cone C equals a, which is equivalent to the little Weyl group of Z being
trivial. In this case the stabilizer H, of an adapted point 2z € Z is given by

H,= (LgNH,)Ng = (Mn H,)exp(ay)LonNog,

where L . is the connected subgroup of G with Lie algebra g .. In this section we
further explicate the description of D’(Q : £ : A\)¥ from Theorem 6.4 and Theorem 6.1
under the assumption that A is horospherical.
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We first note that Np C LQ,HCNQ C H, for every adapted point z. As P admits
only one open orbit in G/ N p, it follows that there exists precisely one open P-orbit O
in Z. Recall that the point eH € Z = (G/H is assumed to be admissible. As in [39,
Example 3.5] it is easily seen that the set of adapted points in Z is equal to M AH/H. In
particular, we are in the situation of Remark 3.4 (b) and (c), and hence the Weyl group W
acts transitively on the set of P-orbits in Z of maximal rank. This action is given by (3.3)
and (3.4). By Theorem 3.3 (ii) the stabilizer of the open orbit is equal to Z/M A, where
Z = NLQ (Cl)

It follows from the Bruhat decomposition that each P-orbit in Z is of the form PwH,
with w € Ng(a). If O = PwH, then

ap = aNAd(w)h = Ad(w)a.
In particular, each orbit is of maximal rank. Therefore, the map
Ng(a)/Z - P\Z; vZ+~— PvH 6.1)

is a bijection. We recall from (3.1) that A/ denotes the group N¢(a) N Ng(ay). The image
of A/ Z under the map (6.1 ) is equal to the set (P\ Z),, of P-orbits O in Z with ap = ay.
We complete the set {v,, : w € N'/W?} from Section 6.4 to a set of representatives 91 of
N/Zin NN K. Then

N — (P\Z)max; v— PvH

is a bijection and the points v/ € Z with v € 91 are weakly adapted. The v € 1 play
the role of the elements x» € G from section 6.4.
Let & be a finite dimensional unitary representation of M. Then

V(&) = Pve) e 62)

vVEN

It follows from Proposition 6.2(i) that the map (£ : \) is diagonal with respect to a
basis of V*(&) subject to the decomposition (6.2). Now Proposition 6.2 (iv) yields that
pe(€ 2 \) forn € V*(€) is given by

PE A= Y0 Qu:Q: & NAQ: Q& N (@6 At my).

veN

For v € 1 we write ¢, for the inclusion map
Ly ¢ (VE)MenHy™ oy yr(g). (6.3)

For v € N we write Z2(¢ : ) for the normalized intertwining operator Z2(Q : & : \)
from Section 4.3.

Corollary 6.1. Ler (£, Ve) be a finite dimensional unitary representation of M. For all
A€ (a/ag)s withIm X\ ¢ S the map

P& N VHE) = D(Q: € M), (6.4)
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6. Construction and properties of H-fixed distribution vectors

is a linear isomorphism. The assignment

A= pf(§r A)n

defines for every n € V*(&) a meromorphic family of distributions in D'(G, V) with
family parameter \ € (a/ay)¢. For all v € N the distributions

peD(Q:vt-¢: Ad (v HA)"

are smooth in e and may therefore be evaluated in e. The inverse of (6.4) is given by

D'(@Q:&:NT = V()
[ <eveoA(Q:@:v_1.§:Ad*(v_l) ) o T3 (€ A)(u )) , (6.5)

veEN

where ev, denotes evaluation in a point g € G.
Letv € M. Then

RY(a)p°(€: N) o1y = a~ AT@TDMre 062 XY oy, (a € A) (6.6)

and
Z(E N op®(E: X) ore=p°(v- & Ad*(0)A) o 1. (6.7)

Finally, if \ satisfies Re \(aV) > 0 for all « € —%(Q) N Z(vQu™?), then for every
RS (Vg)MQm”%f1 the distribution 11°(€ : X) () is for ¢ € D(G, Vg) given by

YQ : vQu™ 1 £ N (€ N) (o) (9) (6.8)

:/ / // a—A—Ad*(v)pQ<€v(m)n,¢(nmavﬁ)> dn da dm dn.
NQOUNQ'L)*l Mg JA WQ

Proof. Except for the identities (6.5), (6.7) and (6.8) all assertions follow directly from
Theorem 6.4, Proposition 6.1 and Theorem 6.1.

Let € V;"°™ . 1t follows from (6.8) that 11(Q : € : \)(een) for ¢ € D(G, V¢) and
Aepo—T+ z(a/ah)* is given by

( (Q: & M) Le77 /NQ /MQ//NQ a pQ )n,qﬁ(nmaﬁ))dﬁdadmdn.

In view of (4.1) in Proposition 4.1 and (6.1) we have

(1°(& = A)(em)) /N N / /N ) a~ e gv (m)n ¢(maﬁ)> didadm.  (6.9)

The right-hand side is a convergent integral for all A € (a/ay)¢ and depends holomorphi-
cally on . Therefore, the identity holds for all A € i(a/ay)*.
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IV. The most continuous part of the Plancherel decomposition

Letv € Mandn € VgMQmH. Since

AQ:Q :v-&: Ad*(v)A) o Zg (€ = N)
1 2y *
= ’y(v—lév:azfz)\)A(Q'Q'U.S'Ad (v)A)
A(Q :vQu" tv- £ Ad*(v)A) o LY (v)
= 'y(v@v_l cQv-E: Ad*(v))\)A(Q coQuliv € Ad*(v))\) o LY(v),
we have by (6.9) and (4.1) for ¢ € D(G : VYY)

(A(Q Qv € ACEN O TIE: N onle N(een)) (6)
=9(0Qu Qv Ad ()

/ / // — Ad* (0)A—Ad*( pQ(( &) (m)n ¢(nmavﬁ)> e di d
NoroNguv—1 J g Ja S,

under the condition that A satisfies Re A(a¥) > 0 for all @ € 3(Q) N —X(v'Qu). It
follows from (6.8) and (6.1) that the right-hand side equals

7(?}@?}‘1 Qv-& Ad*(v))\)uvH(Q cv-€AdY(v)A 77) (9)
_ (A(Q Qv €A W)N) 0 (v- € AdT(0)A) (Lvn)>(¢).
By meromorphic continuation we obtain (6.7).
If A satisfies Re A(a") > 0 for all & € —%(Q) N Z(vQu~!), then (6.8) follows from
(4.1), (6.7) and (6.9).
Finally we move on to show (6.5). Let v,w € Dt and n € (V%*)MQWH‘“_I. We set
=AQ:Q:v " & A (vTHN) 0 T2 (€2 A) 0 (€ 2 ) (L)
By (6.7) we have
p=AQ:Q:v - &:Ad" (v HA) o Iy, (w'E: Ad*(w™h)A)
o p®(wlE s Ad*(w™A) (ten)
= cA(Q: v 'wQu v vt - £ AdT(vHA) o LY (v w)
o p®(w™'E s Ad*(w™HN) (een)

for some ¢ € C. By meromorphic continuation it follows from (6.8) and (4.1) that

supp(p) € Nov~tw@,

and hence e € supfiu) if and only if v = w. Now suppose v = w. Then y is smooth on
the open subset vQ) N . We may therefore evaluate 1 in e. Now

eve(p) =eveo A(Q: Qv - & Ad (v H)A) o p® (v Ad* (v A) (ee)
=eveopu(Q:v ¢ Ad (vTHA) (L) = 1.
This proves (6.5). O
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7. Temperedness, the constant term and wave packets

7 Temperedness, the constant term and wave packets

We continue with the notation and choices from Section 6.4. If V' is a finite dimensional
vector space, 1 € D'(G,V) and ¢ € D(G,V), then we write m ,, for the matrix coeffi-
cient

My, G—C; g (R (g)u)(4).

The aim of this section is to show that for every unitary representation £ of Mg and
A € i(a/ay)* outside of a finite union of hyperplanes all matrix-coefficients for p €
D'(Q : ¢ : \)¥ are tempered and that wave-packets of these matrix-coefficients are
square integrable.

7.1 Temperedness

The space Z admits a polar decomposition, which was first given in [29]. The following
version is a slight reformulation from [39, Proposition 8.6].
Recall that K is a maximal compact subgroup so that £ is Killing perpendicular to a.

Proposition 7.1. There exists a compact subset ) C G so that

G= |J QexpC)zoH. (7.1)
O€(P\Z)open

The set ) can be chosen to be ) = U;Zl fiK;withr € N, f; € G and the K; maximal
compact subgroups of G.

Let £ be a finite dimensional unitary representation of Mg and A € (a/ap)s. We call
a distribution € D'(Q : £ : \) tempered if there exists an N € Ny and a continuous
seminorm p on D(G : V¢) so that for every ¢ € D(G : V)

Mg (wexp(X)zo)| < e+ |IX)Vp(¢) (O € (P\Z)opensw € 2, X €C).

We recall that we have equipped the spaces D'(Q : € : M), with Im \ ¢ S, with an
inner product so that the map (6.2) is an isometry.

Theorem 7.2. Let § be a finite dimensional unitary representation of Mg and € a com-
pact subset of {\ € (a/ag)t : Im X ¢ iS}. There exist an N € Ny and a continuous
seminorm p on D(G, V¢) so that for every A € €, € D'(Q : £ : M), ¢ € D(G, V),
O € (P\Z)open w € Qand X € C

Imou(wexp(X)zo)| < meseretOTHe ATEAO A4 XY llp(9)-

In particular, every distribution € D'(Q : € : \) with X\ € i(a/ay)* \ i8S is tempered.

The proof for the theorem is by induction on the faces F of C. In the Sections 7.2 we
give an a priori estimate which accomplishes the initial step of the induction. In Section
7.3 we recall the notion of boundary degenerations and some of their properties. As the
proof of the theorem relies heavily on the theory of the constant term map from [18], we
have to recall the necessary definitions and results. We do so in Section 7.4. Finally the
proof of the theorem will be given in Section 7.5.
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IV. The most continuous part of the Plancherel decomposition

7.2 An a priori estimate

We begin the proof of Theorem 7.1 with an a priori estimate on matrix-coefficients.
For \ € (a/ay) we define (\) : a — R by

(\) := max ({0} U{Re Ad*(w)\: w € W}).

Lemma 7.1. Let £ be a finite dimensional unitary representation of Mg and € a compact
subset of {\ € (a/ay)¢ : Im A\ ¢ S}. There exists an ¢ € (a/ay)* with (|a, = pola,, and
a continuous seminorm p on D(G, V¢) so that for every A € €, u € D'(Q : £ : \)¥ and
¢ € D(G, V) we have

[mgu(wexp(X))| < eV Dp() (v e QX € exp(C)).

Proof. Let ay be a complementary subspace to ap ina. Let k € Nand let D},(Q : € : \)
be the subspace of D'(Q : £ : \) of distributions of order at most k. We recall the maximal
compact subgroup K of G and note that D},(Q : £ : \) is canonically isomorphic to the
space D}, (K; Ve)™ of left- M -invariant distributions in D’( K, V) of order at most k. Note
that D, (K’; V)M is a Banach space. The same proof as for [2, Lemma 10.1] yields the
existence of constants C' > 0 and r > 0, independent of A\ € €, such that for every
X € ag, the operator R( exp(X)) maps D}, (Q : £ : \) to itself with operator norm

1R (exp(X))]| < Ce.

We recall that the spherical root system ¥ in (a/az)* admits the image C/ag of C under
the projection a — a/ag as a Weyl chamber. By taking a sum of positive roots, we find
a functional {, € (a/ag)* that is strictly positive on C \ az. Note that (o|,, = 0.

By Proposition 6.1 we have for all € D'(Q : £ : \)#

(Y)+Re Ad*(w)A

\m¢7u(g eXp(Y))] < max ef? (Y)\m¢7u(g)| (g eGY e aE).

weW
We recall the isometry 1°(€ : A) from Theorem 6.1. Since the distributions p°(€ : X)) de-
pend smoothly on A € € and linearly on 7, the assertion therefore follows, after rescaling
Co if necessary, with ¢ = (p + pg. ]

7.3 Boundary degenerations

To improve the a priori estimate from the previous section we will use the theory of the
constant term as developed in [18]. In this theory certain degenerations of Z play an
important role. We recall here the necessary definitions and results.

The closure of the compression cone C is finitely generated and hence polyhedral as
—CV is finitely generated. We call a subset F C C a face of C if 7 = C or there exists a
closed half-space H so that

F=CNH and CNOH =0.
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7. Temperedness, the constant term and wave packets

There exist finitely many faces of C and each face is polyhedral cone. For a face F of C
we define
ar := span(F)

and denote the interior of F in ar by F°. _
Let z € Z be adapted and let F be a face of C. By [39, Lemma 8.1] the limits b, x
are the same for all X in the interior of /. We may thus define

bz,]—' = hz,Xa

where X is any element in the interior of F.
The following lemma is [39, Lemma 8.3].

Lemma 7.1. Let = € Z be adapted and let F be a face of C. The Lie algebra h.risa
real spherical subalgebra of g. Moreover,

Ng(b.7) = b7+ ar + Na(h. 7).

Finally,
b.rNa=a.

For an adapted point z € Z and a face F of C we define H. 5 to be the connected
subgroup of G with Lie algebra b, ». Each subgroup H, r equals the connected compo-
nent of a group of real points of an algebraic subgroup of G, namely the subgroups H; .
defined in [17, Section 4.5]. We write Z, » for the homogeneous space G/H, . These
spaces are called the boundary degenerations of Z. Since ar normalizes b, r, the group
Ay := exp(ar) normalizes H, r.

One boundary degeneration will be of particular interest to us when we come to Sec-
tion 8: the boundary degeneration for the face 7 = C. If z € Z is an adapted point so
that M N H, = M N H, then b, x = by for all X € C. Therefore, the group H, ; is in
this case the connected component of the subgroup

H@ = (LQ M H)NQ

7.4 Preparation for the proof of Theorem 7.2

The proof of Theorem 7.2 relies heavily on the theory of the constant term as developed
in [18]. In this section we recall the necessary objects and results, which we will then
use in the next section to prove the theorem. We first discuss the algebras of invariant
differential operators on Z and its boundary degenerations and some relations between
them. We then give the differential equations satisfied by the matrix-coefficients. Finally,
we introduce the notion of JF-piece-wise linear functionals and construct an JF-piece-
wise linear functional 8 , which will be used to improve the a priori estimate on the
matrix-coefficients from Lemma 7.1.

We fix an adapted point z € Z. In this and the next section we will suppress the
indices 2 and simply write Zr, Hr and hr for Z, , H, r and b, r, respectively.

We now follow [18, Section 5].
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IV. The most continuous part of the Plancherel decomposition

Letb = m@&adng and by = (mNb,)Day. Now U(b)by is a two-sided ideal of U (b).
We recall from [18, (5.4)] that the rings D(Z) and D(Z) of G-invariant differential op-
erators on Z and Zr, respectively, may be identified with subalgebras of U/(b)/U(b)by.
By [18, Lemma 5.2] the limit

tliglo Ad (exp(tX))D

exists for every D € D(Z) and X € F° and defines a G-invariant differential operator
on Zr. The limit does not depend on the choice of X. Moreover, the map

65 :D(Z) = D(Z5); D~ lim Ad (exp(tX))D
—00

is an injective algebra morphism. The a-weights occurring in 6=(D)—D, with D € D(Z),
considered as an element of U(b) /U(b)by, are strictly negative on F° and the a-weights
occurring in §x(D) are non-positive on C.

Every element v of the center Z(g) of U(g) determines a differential operator D,, €
D(Zx). We write Dy(Zx) for the image of Z(g) in D(Zx). By [18, Lemma 5.6] the ring
D(Z#) is finitely generated as a Dy(Zx)-module. Let V= be a finite dimensional vector
subspace of D(Zx) so that the linear map

Do(Z]:)@Vf%D(Z]:); ZDj@Uj '-)ZD]'U]'
J J

is surjective.

For A € (a/ay)¢ we write 7, and Zx , for the ideals of D(Z) and D(Zx), respectively,
generated by the elements of the form D, — x(u) with u € Z(g), where x, : Z(g) — C
is the infinitesimal character of D'(Q : £ : \). Now Iz, = 6£(Zy). As

Do(Zr) = C+Irp,

we have
D(Zr) = (C+Zr)VF.
Since
Tra\Vr = Lr \Do(Z5)Vr = I \D(ZF5) = D(ZF)LF (7.1)
we find

D(Z7) = Vi + D(Z5r)Tra.

For every A € (a/ay)¢ there exists a subspace Ur of Vz so that the sum
D(Zzr) =Ur ®D(Z5)Lr (7.2)

is direct sum of vector spaces. As V is finite dimensional and Vx NID(Zr)Zr , depends
continuously on ), the subspace Ux can in fact be chosen locally uniformly with respect
to A\, i.e., every A € (a/ay)¢ has an open neighborhood B in (a/ay)f so that there exists
a subspace Ur of Vr for which (7.2) holds for all A € ‘B.
We define
PFN: D(Z]:) — End(U;)
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7. Temperedness, the constant term and wave packets

to be the map determined by
Du € prx(D)u+D(Z5)Ir (D € D(Zz),u € Ur). (7.3)

Then pr ) defines a representation of D(Zx) on Ur which is isomorphic to the canonical
representation of D(Zx) on D(Zx)/D(Zr)Zr », and pr , depends polynomially on .
There exists a natural injective algebra homomorphism

S(ar) = D(ZF); X — Dy, (7.4)

which is determined by

d
Dxf(z) = Ef(z : exp(tX))‘tZO (X €ar, f€&(ZF), 2 € Zr).
In view of (7.4) the D(Zx)-representation px , induces a Lie algebra homomorphism
F]:,)\ arF — El’ld(U;)7 X — p]:,)\(Dx)t.

We note that I' £, depends polynomially on . B
We use this machinery to analyse the matrix-coefficients m, , for p € D'(Q : € : \)¥
and ¢ € D(G, Vg). To do so we define the map

CPAMZS A — U;_—
by setting
(‘I’u,¢>(@)> (u) = (R(u)my,)(a)  (a € Aju € Us).
The function @, 4 satisfies the system of differential equations

OxPuy=Tra(X)Pus+V,5x (X €ar) (7.5)

with
\I]u,qb,X A — U}k:

given by

U, sx(a)(u) = <R(Xu — p;}A(X)u)mgb,u) (a) (a € Aju € Ug).

As in [18, Lemma 5.7] we may solve the ordinary differential equation (7.5) and obtain
that foralla € Aand X € ar,

1
D, s(aexp(X)) = XD (a) + / eU=IMrnX)g o« (aexp(sX))ds. (7.6)

0
Let Qr  be the set of generalized ar-weights of I'x . For v € Oz, we define
E, € End(U3%) to be the projection onto the generalized eigenspace with eigenvalue v.

We further define
O, =E, 00, (p€D(G V).
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IV. The most continuous part of the Plancherel decomposition

In view of (7.6) we have

1
<I>Z,¢(a exp(X)) = eFfv*(X)CDl”m(a) + /0 Eye(l’s)rf**(x)\lfu7¢7x (a exp(sX)) ds
forallp € D(G,Ve),v € Qr,a € Aand X € ar.

If X € ar and u € Ug, then in view of (7.3) and (7.1) the element Xu — pr (X)u
is contained in VrZr y = Vzdz(Zy). Therefore, if ui, ..., u, is a basis of Vz, then there
exist bilinear maps

w;_—,AZCl]:XU]:—)I)\ (1§z§n)

so that

Xu—p;7A(X)u:Zuﬁ;(w}_—’/\(){,u)) (XGa;,uGU;).

i=1
We denote by = £ , the finite set of all a-weights that occur in

{67 (wr (X, u) —wh (X, u): 1 <i<n,X €ar,ucUsr}.

We recall from Section 3.9 that the image of C under the projection a — a/az is a Weyl
chamber of the spherical root system Y in (a/ag)*. Let X} be the positive system of
Yz so that this Weyl chamber is the negative one. We then define 5~ ) on a by

Bra(X):= max v(X), (X €a).

VEE]:M\UE}—

Because of the signs of the a-weights occurring in D(Zx) and elements of the form
57(D) — D with D € ID(Z), we have 7|, < 0 and fr |, < 0. The maximum in
the definition of 5, also runs over the set of positive roots in X z; this is to ensure that
Br . vanishes on the edge of 7. We do not actually need this, but we simply follow the
definition in [18, (5.23)]. Note that S  depends polynomially on \.

7.5 Proof of Theorem 7.2

We continue with the notation from the previous section. We start with the a priori esti-
mate from Lemma 7.1 and use the theory of the constant term to improve this estimate
recursively. The proof is by induction on the faces F of C.

Let F be a face of C. We call a function ¢ : @ — R an F-piecewise linear functional
on a if it is piecewise linear and satisfies

C‘BJ—':pQ|8}"

Here OF denotes the union of the faces F' of C with 7/ C F. Note that for any two
F-piecewise linear functionals ¢ and (’, also the functions

a3 X — max (((X),¢'(X)) and a> X +— min (¢(X), (X))
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7. Temperedness, the constant term and wave packets

are JF-piecewise linear functionals on a. Moreover,

a=arx (aNaz) 3 (X,Y)— {(X)+ ()

defines an F-piecewise linear functional as well.
For an F-piece-wise linear functional ¢ we decompose Qr , as

Qr = Q% UQY\ UQY,,
with
Q% == {v € Qra: Rew(X) > ((X) + (\)(X) for some X € F°},
Q55 = {re QraiRer <(+ (N},
Q5% = Qra \ (QFH U Q)

={veQr :Rev <(+ ()\>|f
and Re v(X) = ((X) + (\)(X) for some X € F°}.

The following lemma is needed for the induction step.

Lemma 7.1. Let F be a face of C and ¢ a finite dimensional unitary representation of
Mg. Let further € be a compact subset of {\ € (a/ay)t : Im A\ ¢ S} such that there
exists a subspace Ur of Vr for which (7.2) holds for all A € €. Let ( : € x a — R be a
continuous function so that (, := ((\, -) is an F-piecewise linear functional on a for all
A € €. Assume that there exists an N € Ny and a continuous seminorm p on D(G, V)

so that for every A\ € €, u € D'(Q : £ : \) and ¢ € D(G, V)

[ (wexp(X))] < el O XY ulpie)  weRXeT). @

Then there exists an N’ € Ny, a continuous semi-norm p' on D(G, Vg), and a continuous
function ' : € x a — R so that

(i) ¢§ = ('(\, -) is an F-piecewise linear functional for all X € €
(i) G|, = max ({G+ 36ra.p0} U{Rev = (\) 1w e Q1 )| foralire e
(i) Forall A € €, € D'(Q : € : M and ¢ € D(G, V)
o (wesp(X))] < S O)OQ L XD Il (6)  (wer X eT).

Proof. We apply Lemma 7.1 to Zr instead of Z, and find that there exists an Nr € Ny,
a continuous semi-norm pr on D(G, V;) and a (» € a* so that

C#lo, = ral,,

and for every i € D'(Q : £ : N7 and ¢ € D(G, V%)
Mo (exp(X)] < OO L X rllpr() (e € X €. 72)
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We define (' : € x a — R by requiring that forall X € arandY € aNax
]:

¢ %) = max ({G(X) + 5B2(X), pa(X)} U {Rew(X) = (V(X) 1w € Q27 }),

¢'(\,Y) =max ((\(Y), ¢(#(Y)),
C/()\,X +Y)= CI(A,X) + C/()\, Y).

Observe that ¢’ is continuous and ¢’(), - ) defines for every A € € an F-piecewise lin-
ear functional on a. Therefore, it suffices to prove the existence of an N/ € Ny and a
continuous semi-norm p’ on D(G, V) such that for every A € €, u € D'(Q : £ : \)H,
xS D(G, Vg) and v € Q]:,)\

[, (exp(Q0) ]| < SFOO@ L XY (@) (X €.

For this we follow [18, Sections 5.3, 5.4, 6.2 & 6.3].
If one uses the estimate (7.1) instead of the tempered estimates, then in the same way

as in the proof for [18, Lemma 5.8] it follows that there exists a continuous semi-norm ¢
on D(G, Vg) such that forall A € €, p € D'(Q : £ : \)¥, and ¢ € D(G, V)

1L() @0 (exp(X)) | < OO XDV lullg(Lw)s) (v € Ul@), X €T),
(7.3)
and for every compact subset B C a, there exists a constant C' > 0 so that

I L(0) ¥ g, x (exp(Y)) ]| < 06(“”‘”(”)‘”(1 HIY Dl Xl (Lv)e)  (74)
forallv € U(a), X € arandY € B +C. Let
E,\X)=e"ME, 0Tz \(X) (M€ veQry, X €ax).

The same arguments as the ones for [18, Lemma 5.9] show the existence of constants
¢ > 0and n € Nj so that

B <0+ X)) (\e€reQruXear). (15
We define 6, : ar — [0, 1] by
_ o (fRev(X) = G(X) = M) Gm 1 o
5x(X) = min ({ R v e Q% } U {5}) (X € F°).

In view of (7.3), (7.4) and (7.5) it suffices to prove that for every ¢ € D(G, V), A € €,
peD(Q:¢&: )" andv € Qr , there exists a function 7% : A — U so that

| @, (aexp(tX)) — &% (aexp(tX))|| (7.6)

< e(Cxﬂhﬁfﬂr( ) (“E (A, tX)H||(I)#¢< )|

+/O°° — (et Bratr 8X)}|E( (t —s) )||H\Ifu,¢,x(aexp(8X))Hds)
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foralla € A, X € F°andt > 0, and

|57 (exp(X))|| < (SN XY ullan(d) (X €T) AT

for some N, € Ny and a continuous semi-norm ¢, on D(G, V).

If v QQ Forv e Qf/\ , then we may take (I>”°° = (. The estimate (7.6) is the
analogue of [18 Lemma 5.11] and is obtained as in [18 Corollary 5.16 & Lemma 5.17]
and [18, Lemma 5.18], respectively.

Letv € QCA YV IFY € FowithRev(Y) > G(Y) + Bra(Y) + (A\)(Y), then it follows
asin [18, Section 5.4.1] that the limit

(IDZ?;( a) = 1tlim e_trf’*(y)q)l’;qb(a exp(tY)) (a € A)
—00 ’
exists and is independent of the choice of Y. Note that such Y exist because v € QCA 0
and Bz 5| ro<o. We first show that (7.7) is satisfied. For u € D'(Q : £ : \)* we define

pry DG, Ve) = C; ¢ @07 (e)(1).

From the definitions it is easily seen that jiz ¢, is a distribution in D'(Q) : £ : \). We
claim that p1r,, is right Hr-invariant. To prove the claim we choose Y € F° so that
GY)+ (A (Y) =Rev(Y). From (7.6) it follows that

Jian e 0 (exp(1Y)) = B (exp(1¥) | = 0
Moreover, if we use this Y in the proof of [18, Lemma 6.2], then we obtain
03 (aexp(X)) =@ (@e A X an)

Now the claim follows with the same arguments as in the proof for [18, Lemma 6.5(ii1)].
The estimate (7.7) follows from the claim and (7.2).
We finish the proof by showing that (7.6) holds also in this case. If v € QCA Y and

X e F°with Rev(X) < G(X) + §871(X) + (A)(X), then the estimate follows from
(7.7) and the estimate on ®¥ " ¢(a exp(tX )) that one obtains analogous to [18, Lemma
5.17]. If X € F° with

G(X) + 87a(X) + (N(X) < Rev(X) < G(X) + ()(X),

then we find as in the proof for [18, Lemma 5.19] that
33 (aexp(tX)) = By (aexp(t) + [ B0, (aexp(sX)) ds.

Now (7.6) follows from (7.4) and (7.5). (The fact that 9, is not a constant like in [18,
(5.37)] is irrelevant for the proof.) [l

Proof of Theorem 7.2. We prove the theorem using the principle of induction on the faces
F of C. In particular we will show that for every face F of C there exists an N € Ny, a
continuous seminorm p on D(G, V) and a continuous function ¢ : € x a — R so that
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IV. The most continuous part of the Plancherel decomposition

(i) ¢ :=C(A, -) is an F-piecewise linear functional for all A € €,
(i1) CA|; =
(iii) Forall A € €, u € D'(Q : £ : M) and ¢ € D(G, V)

ma(wexp(X))] < OO LX)V ulpe) (@ e X €T).

Lemma 7.1 serves as the initial step with 7 = az. Let F be a face of C with F # ag, and
assume that for every face 7' of C with 7/ C F there exists an Nz € Ny, a continuous
seminorm pr on D(G, V) and a continuous function (# : € x a — R so that (i) — (iii)
hold with F’ in place of F. Without loss of generality may assume that (= (A, X) >
po(X) forall A € € and X € F. We define

G:Exa—R (AX)— min (z(A X)

Then (; is a continuous function with the property that (4()\, - ) is an F-piecewise linear
functional on a and there exisis an Ny € Ny and a continuous seminorm po on D(G, V)
sothatforall A\ € €, u € D'(Q : £ : M) and ¢ € D(G, V%)

|5, (w exp(X)) | < @OV @ IX[) | ullpo(¢)  (w € QX €C).

We use Lemma 7.1 to improve this estimate.
After passing to a finite cover of € of sufficiently small compact subsets of

{A € (a/ag)e : Tm A & S,

we may assume that € satisfies the condition in Lemma 7.1. We now apply Lemma
7.1 repeatedly and obtain sequences (Ng)keno> (Pk)ken, and (Cx)ren, of natural numbers,
continuous seminorms on D(G, Vg) and continuous functions on € x a — R, respectively,
so that the above assertions (i) and (iii) hold with Ny, p and (; in place of N, p and (.
The sequence ((x)xen, satisfies for A € €and X € F

St (7.8)
= max ({Ck()\,X)+%5f,A(X),pQ(X)}U{Reu(X)_ ANX):ve Qck(,\ })

We claim that there exists an n € N so that ( (A, - )| = pg|r for every &k > n and
A € €. To see this, we first note that the subsequence ((y )xen is decreasing. This implies

that the sets Qg_-k’(;")’o and Q%&A")’_ are decreasing with k. Note that the cardinality

of QC’“(’\ * is bounded by the dimension of UZ. Furthermore, the fact that Sx ) is a
piece-wise linear functional that depends continuously on A implies that

QoA X) — pe(X)

n' = sup -2 < 0
AEE, X EFo Bra(X)

The claim now follows from (7.8) with n = n’ + dim(Ux). The above assertions (i) —
(ii1) now follow with N = N,,, p = p,, and ¢ = (,. O
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7. Temperedness, the constant term and wave packets

7.6 Constant term approximation

We now give a version of the constant term approximation (see [18, Theorem 1.2] and
[36, Theorem 6.2]) which is applicable to our setting.

Theorem 7.1. Let £ be a finite dimensional _unitary representation of Mq. Let further
2z € Z be admissible and let F be a face of C. There exists an open neighborhood $ of
i(a/ag)* \ iS in (a/ay)s and for every A € L a linear map

CT.7(E:0):D(Q:&: N = D(Q:&: N7 e r
with the following properties.
(i) For everyn € V*(&) the map
U=D(@Q:&: N7 A CT. #(£: ) o p®(€: N)(n)
is a holomorphic family of distributions.

(ii) Letx € G be sothat 2 = xH € G/H = Z and let X € F°. If A € i(a/ay)* \ iS
and p € D'(Q : £ : \), then

lim e~tP(X) (Rv (exp(tX)z)p — RY( exp(tX))Mz,f) =0 (7.1)

t—o00

with convergence in D'(G, V).

(iii) For every compact subset € of i(a/ay)* \ iS, every compact subset B of G and every
closed cone T C F° U {0}, there exists ay € a* with |z < 0 and y|y\10y < 0, an
N € Ny, and a continuous seminorm p on D(G, V), so that
e PV +X) ‘m(m (gexp(Y + X)z) — my . - (gexp(Y + X)) ’
< O+ Y)Y ullp(e)
forall\€ ¢ peD(@Q:6: N, ¢eD(G, V), YeC XeYandg € B.

(iv) Let z € Z be an admissible point so that M N H, = M N H. For the face F = C
the image of ' (£ = \) lies for all A € tin D'(Q) : € : N)Ho, where

Hy = (Lo N H)Ny.

The distribution p, 7 is called the constant term of ;. with respect to the adapted point
z and the face F.

Proof. Without loss of generality we may assume that z = eH. We fix \g € i(a/ay)*\iS
and set

QF :={v € Qr), : Rev(X) > po(X) for some X € F°},

Q;‘ = {V € Q}—,)\o : (RGV - pQ) Fo < 0}7

Q% == Q7 \ (QFUQZ) = {v € Qr ), : Rev|r = pglr}.
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IV. The most continuous part of the Plancherel decomposition

Let 20 C a’ be an open polydisc centered at pg|,, so that
(QrUQ7) N (A+iar) = 0.

There exits an open neighborhood Iy of g in {A € (a/ay)g : Im A ¢ S} so that QF )
does not intersect with the boundary of 2(. We may choose Lly so small that there exists a
subspace Ur of Vx for which (7.2) holds for all A € Ll,. We define

E : 4y — End(Ux)

for A € 4, to be the projection onto the generalized eigenspaces of I' r , with eigenvalues

in %, i.e.,
E(\):= )Y E.

VGQ[QQ]:,)\

It follows from the Cauchy integral formula for spectral projections from functional cal-
culus that £ is holomorphic.
We fix an element X € F°. After shrinking {l; we may assume that

Rev(X) > po(X) + (M(X) + Bra(X) (A€o, v € QF,).

From the estimate (7.4) with ( = pg, we obtain that for ;i € D’ (Q: €: N, with X € 4,
and ¢ € D(G, Vg), the Ux-valued integral

/ E\)e T Xy (exp(sX)) ds
0

converges uniformly on any compact subset of Lly. We may thus define CT({ : M\)u €
D'(G,Vg) for ¢ € D(G, V) by

(CT.cr(6 V) (0) = (B oRe) [ B 000, x (exp(s) ds) 1),

For every nn € V*() the family of distributions
Yo A= CT, 2 (€: X))o p(€: M)

is holomorphic.

In view of Theorem 7.2 all distributions in D’(Q : £ : \)? with X € i(a/ay)* \ iS are
tempered. We may therefore apply [18, Theorem 6.9] to these distributions. It follows
from [18, (5.36) & (6.1)] that the constant term-map coincides with CT, (¢ : \) for
A € UgNi(a/ay)*. It follows that CT, #(& : A) maps D'(Q : € : ) to D'(Q : € : \)H=7
for these \. By analytic continuation the same holds for all A € i4,.

With the above construction we find for every A\ € i(a/ay)* \ ¢S an open neighbor-
hood £l so that the constant term map D'(Q : £ : M) — D'(Q : £ : \)=# from [18]
extends holomorphically to A € $y. It follows that there exists an open neighborhood
of i(a/ay)* \ iS so that the constant term map extends holomorphically to 4L.

The remaining assertions in (ii) and (iii) are a reformulation of [18, Theorem 6.9]
with uniformity in the estimate in A € €. The uniform estimates are obtained by using
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7. Temperedness, the constant term and wave packets

the estimates (7.3), (7.4) and (7.5), which are uniform in A\ € €, instead of the estimates
in [18, Lemmas 5.8 & 5.9].

Finally, we turn to (iv). By holomorphicity it suffices to prove the assertion for
A € i(a/ag)* \ iS. For these A it follows from [18, Lemma 6.5] and Corollary 6.1
that CT, (¢ : A)pforap € D'(Q : € : )™ is uniquely determined by (7.1). Since M
centralizes a, it is easily seen that

RY(m) o CT, o€ : X) = CT. (€1 N o R¥(m)  (m € M).
In particular, for every m € M N H and u € D'(Q : £ : \)?

RY(m) (CT_ (€ - M) = CT,o(€ : ) (R (m)ps) = CTo(& - M

As
Hy=(MnNH)(Hp)e=(MnN H)szg,

this proves (iv). ]

7.7 Construction of wave packets

We use the notation from Section 6.4, and recall the finite union S of hyperplanes in
(a/ay)* from the end of Section 6.4. For a finite dimensional unitary representation £ of
Mg we define the wave packet transform

WPe : D(i(a/ay)* \ iS) @ V(&) @ D(G, Ve) — E(2),

to be given by

WP:(6 © 1 © ¢)(gH) = /

o (R @ ent (€ N ) @)y

for ¢ € D(i(a/ay)* \ iS), n € V*(€), ¢ € D(G,Ve) and g € G. The following is the
main result in this section.

Theorem 7.1. Let & be a finite dimensional unitary representation of Mq. The image of
WP is consists of square integrable functions on Z.

Remark 7.2. Theorem 7.1 has an important consequence for the multiplicity spaces in
(1.3). Each multiplicity space M¢ ) is a subspace of the space of H-fixed functionals
on C*®(Q : € : \). In view of the topological isomorphism (4.2) we may view M\
as a subspace of D'(Q : ¢ : \)f. From the theorem it follows that for almost every
A € i(a/ay)* the multiplicity space M , equals D'(Q : £ : \) and the map

/LO(£ : /\) : V*(f) — M&,\
is a linear isomorphism. We will prove this in Corollary 8.2.
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IV. The most continuous part of the Plancherel decomposition

Proof of Theorem 7.1. In view of (7.1) we have every integrable function y on £

/ dz—z > // (fikexp(X)zoH)Jj o0k, X)dX dk.

Jj=1 OE P\Z)open

Here dX is the Lebesgue-measure on a, dk denotes for each j the Haar measure on K.
The Jacobian B
Jj’(g : K] xC — Rzg

are readily seen to be constant in the first variable. We therefore consider these functions
as functions on C only. Important for our consideration is the estimate

Jio(X) < Ce e (f € F.O € (P\Z)open, X € C)

for some constant C' > 0. This estimate follows from [30, Proposition 4.3].

We will decompose the integral over C as a sum of integrals over suitable subsets
which allow to apply Theorem 7.1. We recall from Section 3.9 that the little Weyl group
is the Weyl group of the spherical root system Y in (a/ag)*. The faces of C are in
bijection with the power set of the simple system 11, of >, whose corresponding positive
system consists of all roots that are strictly negative on C. To be more precise, to a face
F of C a subset Sr of IT; is attached with the property

F={X€a:0(X)=0forallo € Srando(X) < 0forallo € II;\ Sr}.

The assignment ' — Sr is a bijection between the faces of C and the power set of
IIz. Let F be a face of C. If F'is the unique face of C with Sz = Il \ Sz, then
FNF =CN(—C) = ag is the edge of C. We then define the cone

FJ_ = ./T"/ N ClJ]_Ej
and set
ar.| = span(}l).
Now
a=arDar (7.1)
and B
C=F+F..

We write pr to be the projection a — a along the decomposition (7.1). We fixa o > 0
and define cones C'r in C by setting

Cap = {X €C 1| X[l < (1+0)|[pr(X)||}

if 7 = ag, and then recursively by

Gr={xct\ | CrlXl<1+0)pr)]]}

F' face of C
FICF
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7. Temperedness, the constant term and wave packets

for the remaining faces F. Then for every face F of C there exists a closed cone Y 7 in
F° U {0} so that

Cr c {X €Cipr(X) € To ||IX| < (14 0)[|p=(X)] }.

c= || c=

F face of C

Moreover,

Now

/ dz-Z > > // (fikexp(X)zoH)J;j0(X)dX dk

Jj=1 OE P\Z)opcn F face of C

<C’Z > > // (fikexp(X)zoH)e ™) dX dk

J 1 OE(P\Z)open ]-—fdce ofC

for every non-negative measurable function y on Z.

Let K’ be a maximal compact subgroup, F a face of C and z € Z an adapted point.
To prove the theorem, it suffices to prove that for every ¢ € D(i(a/ay)*\iS),n € V*(&)
and ¢ € D(G, Vg) the function

K'xCr—C;  (k,X)— e EWP(1p @0 ® @) (kexp(X) - 2)

is square integrable.
It follows from Proposition 6.1 that for each w € W there exists a linear map

prw(€:N) 2 VE(E) = D(G, Ve) =7
so that

CT.r(§: N op(§: ) =Y prw(€: )
weWw
and

RY (exp(X)) 0 prw(€: A) = e (FAT @ Nt0) (00 (weW,X €ag).

The family A — gz, (€ : A) is meromorphic. Moreover, the family is holomorphic on
{Ae (a/ay)g : Im A ¢ S}.

We now fix a face 7 of C and a w € W. Let v+ € a* and p = p, 7 satisfy the
properties of Theorem 7.1 (iii) with the closed cone T taken to be T and the compact
subset B equal to K'. As x|y, < 0, we have

2
[ (D@ - oY) dx <o
Cr
for every N € N. Therefore, it suffices to prove that for every ¢ € D(i(a/ ap)* \ iS),
n e V*() and ¢ € D(G, Ve) the function
Qe - G x (a/ay) = C;

(g,X) N ePQ(X)/

) (R (gexp(X)) pr (€ An) (6) dA
i(a/ag)*
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IV. The most continuous part of the Plancherel decomposition

is square integrable on K’ x Cr.
Let Zcuq be the Euclidean Fourier transform on a/ay, i.e., the transform

Fewer : S(a/ay) = S(i(a/ay)”)
given by
Fenatl©) = | P(X)eEdX (v € S(a/ag), € € i(a/ay)”).

For every X € ar and n € V*(&)

e#a0) R (exp(X) )zl s A = (MO ey,

and hence

Qg X) = e o) /
i(a/ay)*

= ok (3o 6OV (B (@i l€ - N0 (9) ) (Ad(w) X)),

Since A — ¢(A) (RY(9)pr.w(€ : A)n)(¢) is compactly supported and smooth, the func-
tion X — €y, 4(g, X) is contained in S (a ]-‘). Moreover, the continuity of %, implies
that for every continuous seminorm p on S(az) there exists a continuous seminorm ¢ on

D(i(a/ay)*), independent of g € G and ¢ € D(G, V), so that

P(Qunolg: ) < a(A = D) (R (9)ir.ul€ - M) (9)). (7.2)

Let € C i(a/ay)* \ iS be a compact subset. We claim that for every differential op-
erator D on i(a/a,)* with constant coefficients there exists an N € Ny and a continuous
seminorm 7 on D(G, V) so that forall A € €, ¢ € D(G, V), k € K’ and Y € a the
estimate

) (B (gexp(X)) 1z (€ : M) (6) dA

|D(RY (kexp(Y)) rw(& : M) (0)] < e (1 +[|Y])¥r(9) (7.3)

holds. It suffices to prove the claim for D = 0f, with o a multi-index. We first note that
it follows from Theorem 7.1 that A — p17,,(§ : A)n extends to a holomorphic family of
distributions with family parameter X in an open neighborhood 4( of i(a/ay)* \ iS. Let
€ > 0 be so small that the polydisc A with radius € and center \ is contained in (. Let
now Ajs be the polydisc centered at A of radius 6 > (. For every § < € we obtain from
Cauchy’s integral formula the estimate

O sup [(RY (kexp(Y)) ral€  Xm)(6)]-

|05 (R (kexp(Y)) prw(€ : M) (9)] < Slol e

We now invoke Theorem 7.2. This yields the existence of an N’ € Ny and a continuous
seminorm 7’ on D(G, V) so that

SEE | (RV (k eXp(Y)),U]-‘,w(f : )\/)77) <¢>‘

< sup ma ereC R AT N (1 4y )V (g) < eI (14 Y)Y (),
MNeA; we
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8. The most continuous part of L*(Z)

The claim now follows with N = N’ + |a| and r = ea!r’ by taking § equal to the
minimum of € and (1 + ||Y||)~ .

We now consider the space D¢ (i(a/ay)*) of functions ¢ € D(i(a/ay)*) satisfying
supp(¢) C €. Every continuous seminorm on D¢ (i(a/ay)*) can be dominated by a sum
of seminorms of the sort ¢ — sup | D¢|, where D is a differential operator with constant
coefficients. It follows from (7.2), the Leibnitz rule and (7.3) that for every continuous
seminorm p on S(ay) there exist continuous seminorms r and s on D¢ (i(a/ay)*) and
D(G, V), respectively, and an N € N, so that for all ¢ € De(i(a/ay)*), n € V*(),
» € DG, Ve), A€ € ke K'andY € athe estimate

p(ar 3 X = Quao(k, X +Y)) < (14 IVIDYr()|nls(o).

holds. In particular, for every n € Ny there exist continuous seminorms r,, on D¢ (i(a/ag)*)
and s,, on D(G, V) so that

sup (1+ [|X[)"[Qu ek, X + V)| < L+ V) ra() Inlls0(0).

Xear

for every ¢ € De(i(a/ag)*), n € V*(&), ¢ € D(G,Ve), k € K'and Y € a.
From the definition of C'r it follows that there exists a constant ¢ > 0, so that if
Xear,Year and X +Y € Cr, then ||V < ¢||X]|. Forn > N + dim(a/ay)/2 the

integral
// | Qs (b, X)|* dX dk
K Jor

is therefore absolutely convergent and bounded by

Vol(K’)'r’n(w)Hn||8n(¢)/ (14 [|x||)Heimtez0=20 g X,

Tr

This proves the theorem. ]

8 The most continuous part of L?(7)

8.1 Abstract Plancherel decomposition

In this section we describe the abstract Plancherel theorem for the space Z. We denote by
G the unitary dual of G. For each equivalence class [r] € G we choose a representative
(m,H,), i.e., H, is a Hilbert space and 7 is a unitary representation of G on H, in the
equivalence class [r]. We denote the space of smooth vectors of 7 by H°.

Let [r] € G. Since Z is real spherical, the space (H2') is finite dimensional. See
[33, Theorem C] and [37]. For every pu € (H') and f € D(Z) the functional

HX v / f(gH) (W(g)u> (v)dgH
Z
actually defines a smooth vector for 7. We define the Fourier transform

Z f(m) € Homg¢ (( ffv’)H,’H;O)
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IV. The most continuous part of the Plancherel decomposition

of a function f € D(Z) and pu € (HX')" by
Fiwn= [ faHm(gndgh.
z

By the abstract Plancherel Theorem there exists a Radon measure dp)[7] on G and for

every [7] € G a Hilbert space
Ma C (H)",

depending measurably on [r], so that the Fourier transform
e
F D(Z) — /\ HOIH(C (Mﬂv, HW) dp][ﬂ']
G

with the induced Hilbert space structure on Home (Myv,H,) extends to a unitary G-
isomorphism

®
F A7) — /A Home (Mv, Hr ) dpi[7). (8.1)
a
The measure class of the Plancherel measure dp)[7] is uniquely determined by Z. Once
dp[7] has been fixed, the multiplicity spaces M, including their inner products, are
uniquely determined for almost all [7] € G. By dualizing (8.1) we obtain that the dual

space of M,v is equal to M. Therefore, the abstract Plancherel decomposition may
also be written in its more common form

@
LQ(Z) Z/A MW®HWdP1[7T}.
G

We recall the Bernstein morphisms B; with I C Il from (1.1) and (1.2). In the

remainder of Section 8 we will derive the decomposition of the most continuous part of
L*(2)
Lyo(Z) = TIm (By) N L*(Z)

into a direct integral of irreducible unitary representations of G.

8.2 Plancherel decomposition for Z;
We recall that Zy = G/ Hy, where

Hy = (Lo N H)No.

In this section we determine the Plancherel decomposition for Zj.
We choose a set of representatives 9 of A'//Z in N'N K as in Section 6.8 and define

‘/@*(5) — @(‘/%*>MQFWHU*1.
veEN
We write

M€ ) V() = D@ 62 A
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8. The most continuous part of L*(Z)

for the map from Corollary 6.1 for the space Z;. Now we define the Fourier transform
Fof(€:A) € Home (V5(6Y),C%(Q:€:0) = V5 (§) @ C®(Q: & N).

of a function f € D(Zy) by

Fof(€: = | FloH)R"(9)(njl€” s —Nm) dgHo.

Zy

Let (-, -)p¢v be the inner product on V(") induced by the inner product on Vv, and let
(-, -)o.¢,x be the inner product on Vi (§) ® Ind%(é ® A ® 1) induced by the inner products

(-, )o.¢ and (-, )5, on V(&) and Ind%(§ ® A ® 1), respectively.

Recall that ]/\4\@ fu denotes the set of equivalence classes of finite dimensional unitary
representations of Mg. Let (a/ay)% be a fundamental domain for the action of A on
(a/ay)*. We recall that we normalize Lebesgue measure on i(a/ay)* by requiring that

e) = /i(a/a . /A/(mm é(a)a da d) <¢> e D(A/(AN H))).

We then have the following Plancherel decomposition.

Theorem 8.1. The Fourier transform f — %y f extends to a continuous linear operator

L*(Zy) — @ F(€) @ IndG(§ @ A® 1) dA. (8.1)

a/a, )*
geMQ fu / b

Moreover, for every f1, fo € L*(Zy)

[ h@RGEd = 3 (v /

€1€ Mo 1 (a/an)%

(Fofi(€: N, Fufal€: ) dA

0.6
(8.2)

Remark 8.2. In view of the following assertions the decomposition (8.1) is in fact the
Plancherel decomposition for Zp.

(a) Let¢ € ]\/ZQ. Forevery A € i(a/ay)* the representation Indg(f ®A®1) is irreducible.
See [12, p. 203, Théoreme 4] and [34, Theorem 4.11].

(b) Let&, ¢ € M\Q. For almost all A\, \" € i(a/ay)* the representations Indg(f RAIAR1)
and Indg(ﬁ’ ® N ® 1) are equivalent if and only if there exists a w € N so that

£ =w-& and A = Ad"(w)N. This assertion follows from the same arguments as
those in the proof of [9, Theorem 10.7].

WEe first prove a lemma. Recall the inclusions ¢, for v € N from (6.3).
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IV. The most continuous part of the Plancherel decomposition

Lemma 8.3. Let § be a finite dimensional unitary representation of Mo, \ € i(a/ay)*\iS
and f € D(Zy). Then for every n € VMQOH

Fof(€: )\)(Len) f(g tamHy)a* P& (m)n dadm. (8.3)

Mg /(MgnH) /A/<AmH>

Furthermore, for every v € N

Fof(v-&: Ad"(v)A) oty (8.4)
- g A BT e AufE o
Finally, for every v € Wand n € V™" — MM e pave
[Zof (v € AC@N) ()lgen = 1207 ) (n)lger 65)

Proof. Letn € VMQQH By (6.8) the distribution 1G(§" : —A)(een) is for ¢ € D(G, V)

and A € (a/ay)s glven by

(1g(& + =X)(eem)) /MQ//NQ ar” pQ qb(maﬁ)) dn da dm dn.

Let f € D(Zy). Then
(Z0f(&: N (em) ) (0)
| FgHa) R (9) (4567 - =N (eem) ) () dg Ho

:// / [ f(gH@)a’\’pQ<£(m)n,¢(maﬁg’1)> dndadm dgHy
Zy J My No

_ / / / FlaHy)a*# (&(m)n. o(mah~g™")) dh da.dm dg H,
ZQ) MQ/(MQOH) A/(AOH) H@

Let M, be a submanifold of Mg so that
M0—>MQ/(MQHH); mono(MQﬂH)

is a diffeomorphism onto an open and dense subset of M /(Mg N H) and let dy be the
pull back of the invariant measure on My /(Mg N H) along this map. Let further A, be
a closed subgroup of A so that

A0—>A/(AF‘|H), aon—>a0(AﬂH)
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8. The most continuous part of L*(Z)

is a diffeomorphism. Then

(Z0r€: ) (1) ) (9)
:/Z /H /M . f(ghHg)a "= (f(m)n,¢(mah’1g’1)> da du(m) dh dgHy

:/G/M : f(gHyp)a "2 <§(m)77, (b(mag’l)) da dp(m) dg

:/G(/Mo AOf(g‘lamH@)aA‘pQﬁ(m)ndadu(m%cb(g)) dg

:i/(/ /' ﬂfmm%m*%ammmmmmm)@.
c \ J Mg/ (Monm) J Aj(anm)

This proves (8.3).
The identity (8.4) follows from (6.7) as the intertwining operator Z; (€Y : —\) acts on
the subspace C°(Q) : £ : \) of D'(Q : €Y : —\) by

1
Y Qu Q€ /\)

Finally, (8.5) follows from (8.4) as (8.6) is a unitary map. [l

Lw)oAlw™Qu:Q: & )N). (8.6)

Proof of Theorem 8.1. Let f € D(Zy). In view of the decomposition polar G = K AH,,

we have
/ F(2)Pdz = / / 020 f (kaHy)[2 da dk.
Z K JA/(ANH)

By Fubini’s theorem the function
AJANH > aw a PR f(kaHy)

is square integrable for almost every £ € K. We now apply the Plancherel theorem for
the euclidean Fourier transform on A/A N H to the inner integral and obtain

fera= [ |
Zp K Ji(a/ay)*

Since M C K, we have for every § € D(G/Hp) and a € A

/H(kaH@)dk—// 0(kmaHy) dm dk.
K K JM/(MnH)

2

/ a*"2 f(kaHy) da| d\dk.
AJ(ANH)

It follows that

fera= [ [ f
Zy K Ji(ajag)* J M/ (MAH)

2

/ a* "2 f(kmaHy) da| dm d)dk.
AJ(ANH)
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IV. The most continuous part of the Plancherel decomposition

By Fubini’s theorem the function
M/(MNH)>m— a**Q f(kmaHy) da
A/(ANH)

is square integrable for almost every £k € K and A € i(a/ay)*. For every finite dimen-
sional representation o of M we choose an orthonormal basis E, of VM The set of

equivalence classes of irreducible unitary representations of A/ we denote by M. We now
apply the Peter-Weyl theorem for M /M N H and obtain

/M/(MmH)

Z dim(V,

2
dm

/ a* "2 f(kmaHy) da
A/(ANH)

‘/ / a7 f(kmaHy)o(m)n da dm
M/(MnH) J A/(AnH)

In view of Lemma 4.1 and Corollary 4.3 we may replace M by M, hence the right-hand
side equals

> dim(Ve) Y

[E]eMg tu ST

2

g

2

/ / a2 f(kmaHy)€(m)n da dm
Mg /(MgnH) JA/(ANH)

Here L . denotes a choice of an orthonormal basis of VgMQmH

|f WP dz = Z dim(Vg) Z/

3

. By (8.3) in Lemma 8.3

/K |20 (€ 2 (en) ()] b x

GZ/M\Q o UEEg Z a Clh
= X am) 3 [ s Ve
(e Mg neBg. Vo)

Since N is a set of representatives of N'/Z in K NN and (a/ay)% a fundamental domain
for the action of A/ Z on (a/ay)*, the right-hand side equals the sum over v € N of

Z d1m 1§ Z / _15 Ad*( ))‘)(Len)H%v—l{,Ad*(v_l))\ dA.

[€)€Mq s nEE, 1. (ﬂ/ﬂn)+

MQﬂvHv’l MQﬁUHU

Since V. QOH =V

, the set B¢ ,, := E,-1.¢ . 1s an orthonormal basis of V
Therefore EU

ven Eg » 18 an orthonormal basis of V(£). We now apply (8.5). Th1s yields

L 1i@r=3 3 am(vy) Z/ [ 2010 () g

u Cl[
vEN [gle o neBe, ” 0/o)

S dim(1) Y /( st g
a ah T

— (2
[€leMq su ne ke

= Y dlmvg/ [ Z0f (= N[5 AN

(€M (a/a9)3
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8. The most continuous part of L*(Z)

This proves (8.2) for f € D(Zp).

From (8.2) and the density of D(Zy) in L*(Zy) it follows that f — Fyf extends
uniquely to a continuous linear operator (8.1) and the identity (8.2) holds for f € L*(Zy)
as well. []

8.3 Multiplicity spaces

We recall that MQ@ denotes the set of equivalence classes of finite dimensional unitary
representations of Mg and that (a/ay)* is a fundamental domain for the action of A
on (a/ay)*. Further, we recall that the Lebesgue measure on i(a/ay)* is normalized by
requiring that

(e) = /i(a/a . /A o é(a)a* da d) (gb € D(A/(AN H))).

Theorem 8.1 and [17, Theorem 11.1] have the following direct corollary.

Corollary 8.1. For every [¢] € ]/\ZQiu there exists a measurable family of Hilbert spaces
Mg\, with family parameter \ € i(a/ay)* so that L2 (Z) decomposes G-equivariantly
as

—  r®
2 ~ G
L2 (Z) ~ @ - Mey®Indg (@ A® 1) dA. (8.1)
[EleMq,

Each multiplicity space M , is as a vector space naturally identified with a subspace
of the space of H-fixed functionals on C=(Q : ¢ : )), and hence in view of the topo-
logical isomorphism (4.2) we may view Mg ) as a subspace of D'(Q : £ : \)*. The
Theorems 6.1 and 7.1 now have the following corollary.

Corollary 8.2. Let § be a finite dimensional unitary representation of M. For almost
every \ € i(a/ay)’ the multiplicity space M  is equal to D'(Q : £ : \)" and the map

pe(€ = A): VE(E) = Mea
is a linear isomorphism.

Proof. 1t suffices to prove that for almost every A € i(a/ay)* the dimensions of M
and V*(¢) coincide.
For \ € i(a/ay)i, n € V*(&) and ¢ € D(G, V), the function

Z—C gl (RY(9)0 (€ ) ()(9)

is in view of the identification (4.1) a generalized matrix coefficient for Ind% (é RAR 1).

Since the representation Ind% (€ ® A ® 1) is irreducible for almost every A € i(a/ay)?,
such a generalized matrix coefficient does not vanishes for almost all A if n # 0 and
¢ # 0. By Theorem 7.1 all wave packets of generalized matrix coefficients are square
integrable. For almost every A € i(a/ay)* the representation Ind% (§ RA® 1) is inequiva-

lent to any representation Ind% (E@N®1) with X' € i(a/ay)% and A # X. It thus follows
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IV. The most continuous part of the Plancherel decomposition

that the dimension of the multiplicity space M , is for almost every A € i(a/ay)* atleast
as large as the dimension of V*(¢). On the other hand, the dimension of M , is bounded
by the dimension of D’(Q : £ : A\)¥, which is for almost every A € i(a/a;)* equal to the
dimension of V*(¢) by Theorem 6.1. This proves the corollary. O

In view of Corollary 8.2 the multiplicity space M , can for almost every \ be iden-
tified with V*(§). The multiplicity spaces are Hilbert spaces and thus equipped with an
inner product. We write (-, -)pi¢ » for the inner product on V*(¢) that is induced by the
inner product on the multiplicity space M ). To make the unitary equivalence (8.1) ex-
plicit, we have to determine (-, -)pj¢ . This we do in Section 8.6 using a refinement of
the Maal3-Selberg relations from [17, §9.4].

8.4 Constant Term

For the application of the Maal3-Selberg relations from [17, §9.4] in Section 8.6 we need
a description of the constant term map from Section 7.6 for F = C.

We recall the finite union of proper subspaces S C (a/ay)* and the set of elements
{ro : O € (P\Z),,} from Section 6.4. For a finite dimensional unitary representation {
of Mg, A € i(a/ay)* \ iS and O € (P\Z)open We write

CTo(E:N):D(@Q:: N =D(Q:¢: N, s Poor e

for the constant term map for the adapted point z = v H and face F = C. Since we only
consider F = C we have dropped the subscript F.

Our description of the constant term map will be given in terms of the intertwining
operators from Section 4.3. We recall the choice of a set of representatives 91 of N’/ Z in
N N K and the space V{(§) from Section 8.2.

Proposition 8.1. Let \ € i(a/ay)*\iS, let  be a finite dimensional unitary representation
of Mg and O € (P\Z)open- For every u € D'(Q : £ : N\ the distribution

AQ:Q v € Ad (v )A) 0 T (€ (k)
is smooth in the point xo. We have
CTo(&: M= p(§ = A)n,
where 1 € Vi (§) is given by
Mo =eVeo 0 A(Q : Q 1 v - & Ad* (vHA) 0 Z2-1 (€2 A) () (veMm).
Proof. Let u € D'(Q : € : \)H. Since CTp(¢ : N € D'(Q : & : X\)Ho, it follows
from Corollary 6.1 that there exists an n € V{/(£) so that CTo(§ : M = pg(§ = A)n.
Moreover, 7 is given by

m=eveo AQ:Q:v & Ad (v )A) 0 Z0-1(£: A) 0 CTo (€ : M)p (veMn).
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8. The most continuous part of L*(Z)

We set B
o :=A(Q : Qv - & Ad (v HN) o Z2-1 (€2 M) (w)
and
fop =A(Q: Qv & Ad (vTA) 0 -1 (€ 1 A) (1) 0 CTo(€ = A)(w).
It then suffices to prove that for every v € 0
eVao (o) = €Ve(flyp)- (8.1)

It follows from Theorem 7.1 that for every X € C the limit

lim e~#e(X) (Rv (exp(tX)zo)ps — RY( exp(tX))pJv,@)

t—o00

exists and equals 0. Since 4, is contained in D'(Q : v~ - & : Ad” (vil))\)H, it is given by
a smooth function on the open subset O. Let x = ev,, (/,). Then

o (manzoh) = a=*tP2¢Y (m)x (m € M,a€ An€ Np,h e H).
By Lemma 6.1 there exists a v € (a/a;)* and a regular function f, : G — V" so that
fx(manzoh) =a”¢(m)x ~ (m € M,a € A,n € Np,h € H).
Let vy, ...,v, € Abe abasis of (a/ay)*. Then there exist regular functions
fisooos fr :G—=R
so that
fi(manzoh) = a" (1<j<rmeM,a€ Anée Np,heH).

Note that each f; is real valued and thus fj2 is non-negative. Now

r

ol = (H (faz)ujfx> lo

j=1
where u; € Cis determined by
—A+pg—v= QZujyj.
j=1

Let V be the span of R(G) f,. Then V' is finite dimensional and the restriction of R to V/
has lowest weight v. Note that f, is an H-fixed vector in V. The limit of

e_t”(X)R( exp(tX)zo) fy
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IV. The most continuous part of the Plancherel decomposition

for t — oo exist and is a non-zero lowest weight vector in V. In fact,

eve< lim e’t”(X)R(eXp(tX)x@)fQ = fy(zo) = x.

t—o00

Likewise, for every 1 < j < r the span V; of R(G)f; is finite dimensional and the
restriction of R to V; has lowest weight v;. The limits of

e’t”f(X)R(eXp(tX)x@)fj (1<j5<r)

for t — oo exist, and

( lim e t”J(X)R(eXp(tX):cO)fj) = fi(zo) =1 (1<j5<r).

t—00

It follows that
e "RV (exp(tX)zo)

converges for ¢ — oo uniformly on a neighborhood of e in G, and the limit z, y satisfies

eVe(:U’U,@) - eve( lim e —t( X)RV(eXp(tX)J}O)Mv> =X = €Vgp (:uv)

—00

This establishes (8.1). O

In view of Theorem 6.1 and Corollary 6.1 there exists for every O € (P\Z)open @
unique linear map

Lo(&: ) : VH(E) = V(&)

so that the diagram

NG _ CTo(EN)

ff"r
M

B (&) (&)

Lo (§:2)

V(&) Vi (€)

commutes. We end this section with a description of this map I'o (¢ : A) in terms of the
B-matrices and the map (£ : \) from Section 6.6.
We recall the maps s,, for w € N from (6.2).

Proposition 8.2. Let \ € i(a/ay)*\iS, let £ be a finite dimensional unitary representation
of Mg and let O € (P\Z)open- Then for everyn € V*(§) and v € N

1
r S A = — — By-1(Q:&: A\ AL . 8.2
(Fole ), =g gy (Br@ € ese: N ) o 62
In particular, if n € V*(§), O € (P\Z)open and v,, is the representative in K "N of an
element w € N /W from Section 6.4, then

(Fo(&: Xn) =m0 (33)

Vw
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8. The most continuous part of L*(Z)

Proof. Letn € V*(§), O € (P\Z)open and v € M. Then by Proposition 8.1

(Fo(£ ; )\)n)y = eV 0 A(Q: Qv & Ad (vTA) 0 Zo (€1 A) o (€ N) ().
Using (6.1) and the identity
AQ:Q:v " & A (v YN oI (E: V) 0 A(Q: Q= & : )\)71

_ 1 Vi1 o “1.0.¢.
_y(v@v—h@:f:A)L(v Jo A(vQu Q€1 N)
1

= — — L1 (Q: &N,

”y(va*l:Q:f:)\) (@:6: )
we find
(FO(ﬁi)\)n)U
1

Vo 0 L-1(Q 1 € : \) o p(Q : €2 A) 0 B(E + X)7 ().

- YQut: Q€ N)
By (6.1) we thus have
(To(: Am)

v

1
A (wQut Q€N

B 1
Y(Qul:Q : £ N)
This proves (8.2). The identity (8.3) follows from (8.2) and the definition (6.3) of the
function B(& : \). O

Vo 0 Q1§ 1 A) 0 By (Q 1 £ A) 0 B(€: \) " (n)

(Ba(Qig:NeBE: N M) .

o

For a finite dimensional unitary representation § of My and v € 1 we define the
space

Vi@ = P (v)Memmi, (8.4)
OE(P\Z)open

open Vo (€). We now reorder the components

We view Vi’ (£) as a subspace of Ppe(p\ )
of the constant term maps and thus define

TN V)=V P WE

O&(P\Z)open
by setting
(Tule s 0m) = pr,olo(€:0) (0 € V'(€),0 € (P\Z)open),

where .
pr, : Vg (&) — (V)M s . (8.5)

Now Proposition 8.2 has the following corollary.
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IV. The most continuous part of the Plancherel decomposition

Corollary 8.3. Let £ be a finite dimensional unitary representation of Mg and A\ €
i(a/ag)* \ iS. Then for every w € N'/W

Fvw (5 : )\)77 = (7751;/,” (O)>(’)€(P\Z) € ‘/EZ;:UU) (5)
Proof. The identity is a reformulation of (8.3). L]

open

8.5 Invariant differential operators

Let ¢ be a finite dimensional unitary representation of Mg. For w € N /W define the
subspace of V*(¢)

Vi) = @ ()M 8.1)
Ocw-(P\Z)open
We view V(£) as a subspace of V*(£). In this section we show that the subspaces
po(€ 2 N)(Vi(€)) of D'(Q : &+ M) for w € N/W are spectrally separated by the
invariant differential operators on Z. Recall the maps o for O € (P\Z),, from (6.1).
Proposition 8.1. Let £ be a finite dimensional unitary representation of M. For every

w € N /W and for X € i(a/ay)* outside of a finite union of proper subspaces there exists
a differential operator D,, in the center of D(Z) so that

o(c . _J €N oo (O€w: (P\Z)open),
Dwou(f.)\)ow—{g © (O ¢ w- (P\Z)open).

Before we prove the proposition we first give a corollary, which we will use in Section
8.6. By Corollary 8.2 the multiplicity spaces M , in (8.1) can for almost every A &
i(a/ay)* be identified with V* (&) via the map p°(€ : A). Recall that (-, -)p; ¢\ denotes the
inner product on V*(&) that is induced by the natural inner product on the multiplicity
space Mg ».

Corollary 8.2. The decomposition
Vi = D Vi
weN /W
is for almost every X\ € i(a/ay)* orthogonal with respect to the inner product (-, -)pi ¢ x.

Proof. Every differential operator D € D(Z) defines a operator on L?(Z) with domain
D(Z). To every D € D(Z) we can associate a formal adjoint D* which is defined by

| po@it = [ o@DiGia: (o0 e D(2).

It is easy to see that D* is a G-invariant differential operators and thus is contained in
D(Z). Furthermore, if D is contained in the center of D(Z), then for all ¢, ¢ € D(Z)
and D' € D

(2)
/Z D'D*(2)0(2) d = / o(=) DD (z) dz = / o(2) D" Di(z) dz

_ / D" D'o(=)0(7) dz,

226



8. The most continuous part of L*(Z)

and hence D* is contained in the center of D(7) as well.

Since the differential operators in ID(Z) commute with the regular representation of
G, each D € D(Z) induces for £ € ]/\ZQiu and A € i(a/ay)* an operator (£ : A)(D) on
the multiplicity space M, = V*(&). The operator is given by

Dou(€:X) = (€ Nor(€: (D) (DeD(2)). 8.2)

Furthermore, if T denotes hermitian conjugation with respect to (-, -, )pi¢., then

(€ N(DY) = (rE: (D) (DeD(2)).

If D is contained in the center of D(Z), then (&, \)(D) commutes with 7(&, \)(D)T,
and hence r(&, \)(D) is normal. In particular, eigenspaces corresponding to different
eigenvalues are orthogonal to each other. The assertion now follows from Proposition
8.1. [

In the remainder of this section we give the proof of Proposition 8.1. Part of the
proof is based on ideas of Delorme and Beuzart-Plessis, in particular our Lemma 8.5. We
begin by recalling the Harish-Chandra homomorphism of Knop from [26]. For a smooth
complex Gc-variety X let Uy = Oxr ® U(g), where Oy denotes the structure ring of
X. We equip Uy with the structure of an algebra by equipping it with the multiplication
determined by

(f®& -(gen) =fegxén+ flg)e@n  (f,9€Ox,&ncg).

Since elements of U/(g) naturally define differential operators on X, we may view Uy
as a subsheaf of the sheaf of differential operators on X. If X is pseudo-free (see the
definition at the bottom of [26, page 259] ) and ¢ : X — Xisan equivariant, birational,
proper morphism, then we define Uy := ¢.Uy;. The sheaf Uy does not depend on the
choice of X or ¢. We set U(X) := H(X,Us), where X is any smooth Gc-equivariant
completion of X'. The differential operators in /(X') are called completely regular. Fi-
nally, let Z(X) := U(X)%. By the [26, Corollaries 7.6 & 9.2] the algebra Z(X') is equal
to the center of U/ (X’) and is contained in the center of the algebra D(X’) of G¢-invariant
differential operators on X'.

We now consider X = Z¢. We first apply the local structure theorem, [28, Theorem
4.2], to Z¢. Let B be a Borel subgroup of G that is contained in Pr. The local structure
theorem then yields a parabolic subgroup R of G¢ and a Levi-decomposition R = Ly Ng
so that RN He = LN Hc is a normal subgroup of Ly and Lg/(Lg N Hc) is a torus. By
[28, Lemma 9.3] Lz may be chosen so that Ac C Lg. Let now t be a maximal abelian
subalgebra of m N [z. Then j := a @ t is a Cartan subalgebra of g. Without loss of
generality we may assume that jc = ac @ tc¢ is contained in the Lie algebra of B.

Let V' be a finite dimensional representation of G¢ which contains a vector v whose
stabilizer is equal to Hc. Such a representation exists since Z¢ is quasi-affine. See [17,
Lemma 12.7]. We embed Z¢ in V' via the map

gHe — g - 0.
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IV. The most continuous part of the Plancherel decomposition

Let Z¢ be the Zariski closure of Z¢. Note that Z¢ is affine. Let X € jc/(jc N bhc) be a
cocharacter so that a(X7) > 0 for every a € Iz, where I1z. C (jc/jc Nhec)* is a simple
system of the spherical roots system of Z¢ that consists of roots whose restrictions to C
is non-positive. We decompose C[Z¢] as

=P clZcw.

where the sum ranges over all highest weights v occurring in C[Z¢] considered as a
re;gesentation of G¢, and C[Z @](,,) is the sum _of all irreducible subrepresentations of
C|Z¢] with highest weight v. We provide C[Z¢] with a filtration induced by X; by
setting

ClZd)™ = P ClZelwy (neN).

v(X1)<n

With this filtration we define the ring
R =@ C[Zc]"t" C C[Zd[t),

and set Vhor = Spec (R) CV xC. Let Atbor © Yhor — C be the projection onto the
second component. Now Ay, is the regular G¢ x C*-equivariant map corresponding to
the inclusion homomorphism C[t] < R. Let S be the horospherical type of Z¢, see [25,
p. 5]. By [25, Satz 2.2] there exists a G¢-stable Zariski open subset of Al:olr({O}) that
is Gc-equivariantly isomorphic to V x Ge¢ /S, where Visa complex algebraic variety
on which G¢ acts trivially and S is a subgroup of G¢ in the horospherical type S. Let
W, C Aﬂo ({0}) be the complement of this Zariski open subset and let Wo C Vo
be the Zariski closure of all G¢ orbits in A 1 (C) of dimension strictly smaller than
dim(Z¢). Note that W, is the Zariski closure of the G¢ x C*-orbits through A \ Zc.
Therefore, W5 N Ahor({O}) has dimension strictly smaller than the dimension of Z¢. As
the dimension of A1 ({0}) equals the dlmensmn of Z, it follows that W, N AL ({0})
is a proper Zariski closed subset of AL ({0}) with Zariski dense complement. We now
define Vi, := Yior \ (W7 UWs) and

Ahor = Ah0r|yhor : yhor — C.

The latter construction is called the horospherical degeneration of Z¢. By construction
the fibers of Ay, satisfy

At ={ 55 6s W20

where V is a non-empty Zariski open subset of V. As in the proof of [26, Theorem 6.5]
we obtain a canonical map

inor 1 U(Ze) =U(Ze x C) = U(Vhor) = U(A({0})) =U(Gc/S). (8.3)
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8. The most continuous part of L*(Z)

The equalities follow from [26, Lemma 3.5] and the canonical map
U(Vhor) = U (D4, ({0}))

is obtained by applying [26, Lemma 3.1] to the injection ¢y, : Agolr({O}) — Vhor In the
same way as in [26, Corollary 3.4]. (In the proof of [26, Corollary 3.4] the spaces X and
Y are erroneously interchanged.) From the fact that ¢, is Gc-equivariant it follows that
inor maps Z(Zc) to Z(Gc/S). The latter is isomorphic to C|[(j/j N )], see the top of
page 272 in [26]. Let pp be the half-sum of the roots of Lie(B) in j. After a p-shift, we
obtain Knop’s Harish-Chandra homomorphism vz, : Z(Z¢) — Clpg + (j/i N h)&]. Let
W7 ¢ be the little Weyl group of Zc, see [28, (9.13)], and W the Weyl group of the root
system of gc in j. Finally, let v : Z(g) — CJ[j%]"© be the Harish-Chandra isomorphism.
By [26, Theorem 6.5] the map 7z is an isomorphism onto C[pg + (j/j N b)&]"V%< and
the diagram

Z(g) - Cliz]"e (8.4)

| |

Z(Zc) —~Cpp + (/inb)z]" 7S

commutes. Here the right vertical arrow is the restriction map.

We now wish to compare Knop’s Harish-Chandra homomorphism for Z¢ to that for a
degeneration of Z¢. The degeneration of Z¢ is obtained by a degeneration to the normal
bundle, as in [28, Remark 12.2.3]. Let F be a face of C. In this article we only need to
consider F = C, but for reference in future articles we treat here the general case.

Let X, € a be an element contained in the coweight-lattice so that — X5 is in the
interior of the face F. We consider the partial toroidal G¢ x C*-compactification Yz of
Z¢ x C* attached to the fan with only one non trivial cone R, (X3, 1). By functoriality of
toroidal compactifications there exists a G¢ x C* equivariant map Az : YV — C whose
restriction to Z¢ X C* equals the projection Z¢ x C* — C*, i.e., the diagram

Z(c X C*C—— y]:

| jm

C*———=C

commutes. For ¢ € C*, let a; = exp (log(t)X>) € A. It follows from the local structure
theorem [28, Theorem 4.2] that the map

C* = V¢, t— (a;- Hg,t)

extends to a regular map s : C — Vr.
Fort € C, let z, = s(t). Then for t € C* the stabilizer H, of z; in G¢ is equal to
a;Hea; ' and A7 ({t}) = Gc - 2 ~ Zc. Let

Zre = A7 ({0}).

From the properties of compactifications it follows that Z z ¢ is the G¢ x C*-orbit through
2o and the subgroup {(a;, t) : t € C*} stabilizes z,. Therefore, Zr ¢ = G¢-2,. Moreover,
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IV. The most continuous part of the Plancherel decomposition

the stabilizer of z, in G has Lie algebra bz c. This implies that the space Zr := Z.gy
from Section 7.3 is a finite cover of the real form G - z of Zr c.

Lemma 8.3. The map Ax : Yr — C is smooth.

Proof. Let A be the closure of Ac - Hc X C* in Vz. Then A is the product of the
toroidal compactification of Ac/(Ac N Hc) and C. The restriction of Ax to A equals the
projection onto the second factor, and hence is smooth. By the local structure theorem
[28, Theorem 4.2] the natural map ¢ : Ugc X Loc/(Lg N He) Xa. A — YVris an
isomorphism onto an open subset )7 of Vr that intersects with every Gc-orbit. Since

Aro @(u,l,a) = A]:(CL) (’LL c UQ,(c,l c LQ}((:/(LQ@ NHc,a € .A)

it follows that A x is smooth on the open subset V7. The claim that Az is smooth now
follows as Vr = G¢ - V% and Ar is G¢-equivariant. [

We move on to relate the Harish-Chandra homomorphisms for Z¢ and Zzc. As in
the proof of [26, Theorem 6.5] the inclusion ¢ : Zz ¢ — Vr induces a canonical map

1F - Z/{(Z(c) = Z/{(Z(C X (C) = Z/{());) — U(Zf@).

The first two equalities follow from [26, Lemma 3.5] and canonical U (YVr) — U(Zrc)
is obtained by applying [26, Lemma 3.1] to the injection ¢r in the same way as in [26,
Corollary 3.4]. Since 7 is Gc-equivariant the map i maps Z(Z¢) to Z(Zrc).

Lemma 8.4. The diagram

afc) Ze . Clps+ G/inh)E]"
Z(Zre) 25 Clpp + (/i n b)) "

commautes.

Proof. The strategy of the proof is to construct a horospherical degeneration ) — C of
the G¢ x C*-variety V. This yields a map A : ) — C? whose fibers are isomorphic to
Zc, Zrc and V x G¢/S, where G¢ /S is horospherical and V is a variety on which G¢
acts trivially. From the various inclusions of these fibers into ) we then obtain canonical
maps between the rings of completely regular invariant differential operators on these
spaces as in (8.3).

Let X7 € jc/(jc N he) be the cocharacter we used to define ),,. Recall that V' is a
finite dimensional representation of G¢ and v € V is a vector whose stabilizer is equal
to Hc. The variety )V embeds into V' x C. To be more precise, let V =V, & --- BV,
where the V), are irreducible subrepresentations. Let v; be the lowest weight of V; and let
v =", v; be the decomposition of v with v; € V;. Then Vr equals the set of G¢ orbits

through
{(Zt’l’”‘(x?)at ‘vt) it € C}.

i=1
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8. The most continuous part of L*(Z)

I_,et V= be the ZarisEi closure of Vx. We note that ) = is affine and YV is Zariski open in
V7. We provide C[)Y #] with a filtration induced by the cocharacters X by setting

CYA™ = @ CUrly (el

v(X1)<n

where C[YVr],) is the sum of all irreducible subrepresentations of C[Y#] with highest
weight v. We define ) = spec (R), where

R=@CFA" < O

Recall the regular map Ar : Vr — C. Let ¢ be the corresponding homomorphism
Cls] — C[Yz]. We define A : JJ — C? to be the regular map corresponding to the
homomorphism C[s,t] — C[Y#|[t] that restricts to ¢z : C[s] — C[Vz] — C[V#|[t]
on C[s] € C[s,t] and to the inclusion homomorphism C[t] < C[V£][t] on C[t] C
Cls,t]. Note that A is G¢ x (C*)%-equivariant. Let W, be the Zariski closure of all
G'c-orbits in K_l({(C x C*}) of dimension strictly smaller than dim(Z¢). We note that
the complement of W, in A=(C x {0}) is Zariski dense. Let S be the horospherical type
of Zc, see [25, p. 5]. In view of [25, Satz 2.5] the varieties Zr ¢ and Z¢ have the same
horospherical type. By [25, Satz 2.2] there exists a G¢ x C*-stable Zariski open subset
of A=1(C x {0}) that is G¢ x C*-equivariantly isomorphic to V x G¢/S x C, where
V is a complex algebraic variety on which G¢ x C* acts trivially and S is a subgroup of
G ¢ in the horospherical type S. Let W5 be the complement of this Zariski open subset of
A~1(C x {0}). Then we define J := ) \ (W1 UW>) and A := Aly. The fibers of A
satisfy by construction

Z(C (S7t# 0)
A_l({(s,t)}) ~ Z]:y(c (S = O,t 7é 0)
V x Gg/S (s€C,t=0),

where V is a non-empty Zariski open subset of V.
We now consider the inclusions

1V xGe/S=A"{0,0}) — A ({0} x C),
L AT {0} x C) = Y,
lhor = L2011 : V X Ge/S = AT ({(0,0)}) — V.

As in the proof of [26, Theorem 6.5] we may apply [26, Lemma 3.1] to these inclusions
and use this in combination with [26, Lemma 3.5] to obtain canonical maps

1 ZZ/[(Z]:@) — U(Gc/S), 19 U(Zc) — Z/{(Z}"(C), Thor U(Z((:) — U(G((:/S)

The maps 7. and vz, . are obtained from 4y, and 4; by restricting them to Z (Zc) and
Z(Zr ), respectively, and applying [26, Lemma 6.4.]. As 3 0 11 = (pe, the uniqueness
of the maps obtained from [26, Lemma 3.1] implies that iy o i3 = %y,,. Moreover, it
follows from [26, Lemma 3.5] that 75 = 7. This proves the lemma. O
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IV. The most continuous part of the Plancherel decomposition

We now give an alternative description of the map i. The right-action of G induces
a natural isomorphism

D(Z) = U(g)u/U(9)h,
where
U(g)n == {u e U(g) : Ad(h)u —u € U(g)h forall h € H}.

Likewise, we have
D(Zc) ~U(g)n./U(g)bh,

where
U(g) . = {ucU(g): Ad(h)u — u € U(g)h forall h € Hc}.

Clearly, D(Zc) € D(Z). Letb = m @ a® ng and by = (m N bh) @ a;. Then U (b)by
is a two-sided ideal of &/(b). From the Poincaré-Birkhoff-Witt theorem we obtain the
isomorphism

U(b)r /Ub)by ~U(g)u/U(g)h ~ D(Z), (8.5)

where U(b)y = U(b) NU(g)n. We thus may view D(Z) as a subring of U(b) /U(b)by.
By the same reasoning we may view ID(Zx) as a subring of U (b)/U(b)by. We recall
from [18, Lemma 5.2] that the limit

tliglo Ad (exp(tX))D

exists (inU(b) /U(b)by) for every D € D(Z) and defines a G-invariant differential oper-
ator on Z . The limit does not depend on the choice of X. Moreover, the map

0r:D(Z) - D(Zr); D tlim Ad (exp(tX))D

is an injective algebra morphism. Since the complexification of Zx is a finite cover of
Zrc, we may view D(Zz ) as a subalgebra of D(Zx). The following lemma is due to
Delorme and Beuzart-Plessis and was communicated to us by Delorme.

Lemma 8.5. The image of Z(Z¢) under the map 6 is contained in Z(Zr ). Moreover,
z;(u) = (5]:(’&) (u S Z(Z]:y(c)).

Proof. We claim that if X’ is a smooth complex G¢-variety and V' C X is a Zariski open
and pseudo-free subvariety, then

(Ux)|, =Uy. (8.6)

To see this, let 2?_ be pseudo-free and ¢ : X — X an equivariant, birational, proper
morphism. Then U x := ¢.Uy. The variety ¢ (V') is an open in the pseudo-free variety
X and therefore is pseudo-free. Therefore,

(27;() ‘v - ((b*uf() ‘V = Olly-1(0) = Uy
The claim now follows as V' is pseudo-free, and hence Uy =Uy.
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8. The most continuous part of L*(Z)

Let ) be any smooth Gc-equivariant completion of Jz. By [26, Lemma 2.3] the
variety Vr is pseudo-free as all G¢-orbits in Vr have the same dimension. We may thus
apply (8.6) to X = Vr and V' = Vr. Thus we obtain

Us,)ly, = Uy

Therefore, o
UVr) = H (Vr Uy,) C Uy, (VF).

In particular, every differential operator in U() ) restricts to a differential operator on
any Gc-orbit in V.

Let u be an element in Z(Z¢). By [26, Lemma 3.5] the latter algebra is isomorphic
to U(Yx). Let v € U(Y#) be the image of u. Then ix(u) is given by restricting v to
Zrc € Yr. Let f be aregular function on an open affine set of Vr containing z,. Now

(0f)(20) = lim(v ) ().

If ¢t # 0, then (vf)(z) = ((u ® 1)f)(z). In view of (8.5) there exists an element
w € U(b) so that u is given by the right action of w. Hence

(Uf) (Zes) = (LAd(eXp(sX))wf> (Zes)
Taking the limit for s — —oo and using the definition of d =, we obtain
(0f)(20) = (Lor(u )(20):

Using Gc-invariance we deduce from this that the restriction of v to Vr is given by
Lz (v)- 0

Proposition 8.6. The diagram

Z(g) : Clig]"™

I

Z(Zc) Clps + (/i nh)e] " **

o
Z(Zrc) st Clps +G/inb)z]"”
commutes.
Proof. The assertion is a direct corollary of (8.4), Lemma 8.4 and Lemma 8.5. 0

We return our attention to the face 7 = C. Since the corresponding real spherical
space is denoted by Zj, we change notation and write dy instead of J;.

For every D € D(Z) the a-weights that occur in D — §y(D), considered as an element
of U(b)/U(b)by, are strictly negative on C. When applied to Zj this leads to

D(Zp) =~ 5(a)/S(a)ay @ U(m) g /U(m)(m N H),
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IV. The most continuous part of the Plancherel decomposition

where U (m)y := U(m) NU(g)n. We note that U (m) /U (m)(m N h) may be identified
with the ring ]D)(M /(M N H)) of M-invariant differential operators on M /(M N H). In
particular,

Z(Zyc) C S(a)/S(a)ay @ D(M/(M N H)).

The little Weyl group W, ¢ of Zj ¢ acts trivially on the subspace (a/ay)¢ of (/i N h)¢
and is isomorphic to the little Weyl group W s of M¢/(Mc N He).

Using that vz, is an isomorphism, we see that the set of characters of Z(Z¢) is in
bijection with (pp + (3/j N h))/Wyc. Likewise, the set of characters of Z(Zyc) is in
bijection with (pp + (3/j N h)E) /W, c

Lemma 8.7. Let £ be a finite dimensional unitary representation of Mg and let A €
(a/ay)s withIm A ¢ S. Let further v € N. The image of j13(& : \) oL, is stable under the
action of D(Zy). Moreover, if the Z(Zy c)-character Wz, c-v € (pp+(G/inh)e) /W, c
occurs in the spectrum of the action of Z(Zyc) on the image of 115(§ : \) o Ly, then

Imy}a = —Ad(vHA,
I/‘,t S Z't*/WZ,M.

Proof. Let X € a. The corresponding invariant differential operator Dy = RY(X) acts
in view of (6.6) on the image of 13 (& : A) o ¢, by the scalar — Ad(v™")A(X) + po(X).
Since the operators Dx with X € a are contained in the center of ID(Zj), it follows that
action of ID(Zy) preserves the image of 5(§ : A) o ¢, if A is sufficiently regular. By
meromorphic continuation the same then holds for all .

Assume that the Z(Zy c)-character Wz, c - v € (pp + (3/j N h)) /W, c occurs in
the spectrum of the action of Z(Zyc) on the image of 15(£ : A) o ¢,. Since

Im (vz,(Dx))(v) = Imv(X)

it follows that Im v|, = — Ad(v™1)\.

From the explicit formula (6.8) for 1°(£ : A) o ¢, for sufficiently anti-dominant \ and
by using meromorphic continuation one easily sees that Z(m) C D(M /(M N H)) acts
on the image of 11° o ¢, by the infinitesimal character of the restriction (v='-&)[5; of v™1- &
to M. Since this infinitesimal character is real, it follows that the restriction of v to t is
contained it* /Wy y;. O

The final ingredient for the proof of Proposition 8.1 is a relation between the constant
term and the map Jy.

Lemma 8.8. Let A € i(a/ay)*\iS and let £ be a finite dimensional unitary representation
of Mq. Then

CTo(€:A) oD =dg(D) o CTo(€: N (D eD(Z),0 € (P\Z)open)-

Proof. After replacing H by zo H z,,' we may assume that O = PH. Let D € D(Z) and
pw € D(Q : & N\, The a-weights that occur in D — §y(D), considered as an element
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8. The most continuous part of L*(Z)

of U(b)/U(b)by, are strictly negative on C. Therefore, for a fixed X € C there exists an
e >0andawu € U(b)/U(b)by whose weights are non-positive on C so that

Ad (exp(tX)) (D - 5@(17)) — et Ad (exp(tX))u (¢t >0).
It follows from Theorem 7.2 that

lim e PRV (exp(tX)) p = 0.

t—o0

Since Ad (exp(tX))u converges for ¢ — oo, it follows that

lim e~ X~ RY (exp(tX)) RY (u)u = 0. (8.7)

t—o00

Using that X centralizes dy(D), we obtain
e—tre(X) (RV ( eXp(tX)) Dy — RY ( exp(tX))ém(D)Mm)
= e tPeX)=et pv (exp(tX))RY (u)p
+ e—th(X)(;@(D) (RV ( exp(tX)),u —RY ( eXp(tX))[L@) .

In view of (8.7) and (7.1) in Theorem 7.1 the right-hand side converges to 0 for ¢ — oo.
By [18, Lemma 6.5] this identifies dy(D)CT (& : A)(u) as the constant term of Dy, [

Recall the maps pr, from (8.5). From Corollary 6.1 it is easily seen that for every
v € 1 there exists an element u € S(a)/S(a)a, C ID(Zy) so that the diagram

D@ :€: N LY (@ g a)Ho
ué’,(&tk)‘ g (§:X) oLy
Vi (

5) PTy (V%*)MQI’TUHU_l

commutes. Note that R (u) is contained in the center of D(Zy). For v € 9 we define a
map 7, (& : A) : D(Zy) — End (Vj7,(€)) similar to (8.2) by requiring that the identity

Disj(& - N(no) = 13(& - M (raule: N)(DIn), )

holds for every D € D(Zp), n € Vi, (€) and O € (P\Z)open- As before Vi, (€) is con-
sidered here to be a subspace of P (p) 7)., Vi (). Now Lemma 8.8 has the following
immediate corollary.

open

Corollary 8.9. Let £ be a finite dimensional unitary representation of Mg and \ €
i(a/ag)* \ iS. Then for every D € D(Z) and v € N

Lo(€:A) or(§: A)(D) = r9,0(§ : A)(09(D)) 0 Tu(€ 2 N).
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IV. The most continuous part of the Plancherel decomposition

Proof of Proposition 8.1. We only consider A € i(a/ay)* whose stabilizer in N\ is equal
to Z and for which the implication for v € Ng.(j/j N bh)

Ad*(v)A € i(a/ay)* = v € N ((a/ay)*) N N (/N h)*)

holds. It suffices to prove the proposition only for these A as all elements i(a/a,)* outside
of a finite union of proper subspaces have these properties.

We claim that the Ty c-orbit Wy c - A does not contain the points Ad*(v, ')\ for
w # eW € N/W. To prove the claim we assume that there exists a v € Wy ¢ so
that v - A = Ad*(v,')\ for some w € N'/W. We will prove the claim by showing that
w=eW.

The assumption on A guarantees that v normalizes a/a,. We write Ny, .(a/ay) and
Zw,(a/ay) for the normalizer and centralizer, respectively, of a/a, in Wzc. By [28,
Theorem 9.5] the little Weyl group W of Z is related to the little Weyl group Wy ¢ of
Z(C by

Wz = Nw,(a/ay)/Zw,.(a/ay).
This identity is to be considered as an identity of finite reflection groups on a/a,. It
follows that v - A € W - A = Ad*(W)A. Since the stabilizer of A in V is by assumption
equal to Z, it follows that v,, € W, and hence w = eWV. This proves the claim.

Let v € N. After replacing A by — Ad*(v~!)\ we may conclude from the claim
that the Wy c-orbit through — Ad*(v=')\ is for every ' € N\ vW disjunct from the
W, c-orbit through — Ad*(v/ ")\

In view of Lemma 8.7 there exist v1,...,1,. € (a/ay)* @ i(t/t N h)* so that the
Z(Zy ¢ )-characters occurring in D'(Q : € : A\)H0 are given by

Wze - (= Ad(v, )X + 1) (weN/W,1<j<r).

The real subspaces (a/a,)* ©i(t/tNh)* and i(a/ay)* @ (t/tNh)* of (j/j N h)E are stable
under the action of N¢..(j/j N h). Therefore, the W c-orbits through — Ad*(v"')\ + v;
for 1 < j < rare disjunct from the 1/, c-orbits through — Ad*(v’_l))\+yj forl1<j<r
and v’ € N\ oW.

Let now w € N /W. It follows that there exists a polynomial

pw € Clps + (/i nh)e] " #*

so that
pu(—Ad* (v YA + 1) = 1, (1<j<rvev,W)
pu(—Ad" (v HA+ ;) =0 (1<j<rveN\uvW).

Let D, := 75" (pw())). We claim that the differential operator D has the desired prop-
erties.

To prove the claim, let v € 1. Proposition 8.6, Corollary 8.9 and the construction of
D guarantee that

Cu(§:N)or(€: M) (Dy)
= g€ N (6(Da)) o Tu(€ : A) = {
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8. The most continuous part of L*(Z)

We now substitute v = v,, with w € N /W and apply Corollary 8.3. We then have for

ey (0 € - (P\Z)m)
(@] cw- open )
(“5 D w>77)o - { g (O ¢ w- (P\Z)open)-

The proposition now follows by applying 1°(£ : A) to both sides and using the identity
HO(€: A) o (€ : A)(Du) = Dy (€ : V). =

8.6 Plancherel decomposition of L2 (7)

We now come to the main theorem of this article.
For a finite dimensional unitary representation £ of Mg and A € i(a/ay)* \ iS we
define the Fourier transform

Ff(€:X) € Home (VH(EY),C®(Q: €: X)) =V () @C™(Q: £ )\
of a function f € D(Z) by

FH& N0 = [ Ha)R' @) (7(€ =) dotH.

Let (-, -)¢v be the inner product on V*(£) induced by the inner product on Vv, and let
(-, )¢ be the inner product on V*(§) ® Ind%(g ® A ® 1) induced by the inner prod-

ucts (-, )¢ and (-, ")z, on V*(§) and Indg(f ® A ® 1), respectively. We then have the
following description of the Plancherel decomposition of L2, (7).

Theorem 8.1. The Fourier transform f — Z f extends to a continuous linear operator

—  ®
*(z)— P V(¢ @ IndG(§ @ A® 1) dA.
el i(a/ap)%
Q.,fu

Moreover, for every f1, fo € L2 .(Z) we have

/Zfl(z)mdz— Y dim(V) /i(a/a ; <9f1(§:)\),%’fz(f:)\)>£’Ad>\.

[g]EﬂQ,fu

Proof. By Corollary 8.2 the multiplicity space M , is isomorphic to V*(&) for all £ €

Mg s, and almost every A € i(a/ay)*. In view of (8.1) it therefore suffices to show that
for almost all A € i(a/ay)* we have the equality

(5P = dim(Ve) (-, -)e (8.1)

of inner products on V*(§). To prove this identity we will use Theorem 8.1, Corollary
8.2 and the MaalB-Selberg relations from [17, Theorem 9.6].

We fix a finite dimensional unitary representation § of M. It follows from Theorem
8.1 that the multiplicity space for the representation Ind% (¢ ® A ® 1) in the Plancherel
decomposition of L?(Zy) is for almost all A € i(a/ay)* equal to V;*(£). Moreover, the
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IV. The most continuous part of the Plancherel decomposition

inner product on the multiplicity spaces induced by the Plancherel decomposition is the
inner product dim(V¢)(-, -)p.e, where (-, -)g ¢ is the inner product on V(&) induced from
the natural Mg-invariant inner product on Ve. We recall the spaces Vi, (&) from (8.4).
We view these spaces as subspaces of V{*(§). The inner product (-, )y, ¢ on Vi, (§)
obtained by restriction equals the inner-product induced by the natural inner product on
Ve.

By Corollary 8.3 the kernel of I', (£ : A) equals the direct sum of the subspaces
V¥ (&) with w' € N /W, w' # w. In view of Corollary 8.2 the latter equals the or-
thocomplement of V.*(¢) with respect to (-, -)pi¢ . Let I, (€ : A)T be the dual map of
Iy, (€ : A) with respect to the inner products dim(Ve)(:, -, )u,,¢ and (-, -)p1g x on Vi, ()
and V*(€), respectively. It then follows that the image of ', (£ : \)T is equal to V*(€).
Moreover, by the MaaB-Selberg relations from [17, Theorem 9.6] the map I, (£ : \) is
a partial isometry for every w € N'/WW and almost every A € i(a/ay)*, i.e., T, (€ : A)1
is for almost all A € i(a/ay)* a unitary map onto its image V,(£). Since I',, (€ : A)
is essentially the identity map, the restrictions of dim(&)(-, )¢ and (-, -)pi¢,» to the sub-
spaces V*(&) with w € N /W coincide for almost every A € i(a/ay)*. This proves the
identity (8.1) as the decomposition (8.1) is orthogonal with respect to both dim(&)(-, -)¢
and (-, -)p1 ¢\ by Corollary 8.2. O

8.7 Corollaries I: regularity of the families of distributions

In this and the next section we record two corollaries of Theorem 8.1. The first corollary is
the regularity of the families of distributions we constructed in Section 6 on the imaginary
axis.

Corollary 8.1. Let £ be a finite dimensional unitary representation of Mg. For every
n € V*(&) the family of distributions X\ — p°(& : X\)n is holomorphic on a neighborhood

of i(a/ay)*.

Proof. Letn € V*(£). By Theorem 6.1 the family A — p°(€ : \)n is meromorphic. It
therefore suffices to proof that the family does not have any singularities on ¢(a/ay)*.

We aim for a contradiction and assume that A — p°(£ : \)n has a singularity on
i(a/ag)*. The poles of the family lie in view of Theorem 6.1 on a locally finite union of
complex affine hyperplanes of the form

{Ne (a/ay)i : A(X) =a} forsome X € aanda € R.

Since the singular set of a meromorphic function on (a/ay ) is a union of complex an-
alytic submanifolds of C-codimension 1, it follows that there exists a subspace H of
i(a/ay)* of codimension 1 so that A — p°(§ : A) is singular on H. For every f € D(Z)
the assignment A — % f(£¥ : A\)n defines a meromorphic function on (a/a,)¢ and there
exist functions f € D(Z) so that & f(£¥ : A\)n is singular on H. Let f be such a function
and let w € i(a/ay)* be transversal to 7. Then there exists a 4 € H and n € N with
n > 1 so that

t—> " F (&Y u+tw)n
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extends to a continuous function on a neighborhood of 0 that is non-zero in 0. Therefore,
there exists an € > 0 and an open neighborhood 2 of 1 in H so that

[ FE A +twmllen > ct] ™ (—e<t<et#0,AeQ).

It follows that A — ||.Z f(&Y : A)n||e. is not square integrable. This is however in
contradiction with Theorem 8.1. [

8.8 Corollaries II: refined MaaB-Selberg relations

The second corollary of Theorem 8.1 is a refinement of the Maal3-Selberg relations. The
MaaB-Selberg relations from [17, Theorem 9.6] state that each of the maps

Lo(§:0) V7€) = Vi (©)  (vem).

is a partial isometry, i.e., its Hermitian dual of I', (£ : A) with respect to the inner products
on V*(§) and Vi, (§), induced by the Plancherel decompositions Theorems 8.1 and 8.1,
is a unitary isometry. In view of the Theorems 8.1 and 8.1 these inner products are up to
factor dim(V) equal to the inner products induced by the inner product on V. We can
now refine the MaaB-Selberg relations from [17] for the most continuous part of L?(Z)
as follows.

Corollary 8.1. Let £ be a finite dimensional unitary representation of Mg, A € i(a/a*)
and v € M. Then

Cy(€:N)
Moreover, if w = vW, then

Fv(€ : )‘>

0 (weN/W, oW +£w).

Vi)

vete) : Val©) = V3 (0)
IS a unitary map.

Proof. The assertions follow Proposition 8.1, (8.8) and the Maal3-Selberg relations from
[17, Theorem 9.6]. [l

The MaaB-Selberg relations from Corollary 8.1 are reflected in the symmetries of the
combined constant term map

PE:N:VE©O— P VeE

O€e(P\Z)open
given by
(D€ 2m)  =Tol€: n (1€ V()0 € (P\D)open).

Note that I'(§ : A) decomposes according to the decomposition Vi (§) = @,cq Vi, (§)
as

(D) =TuE:meVi,© eV (©wemn).
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To describe the symmetries we first introduce an action of N'/Z on 0. Forw € N'/Z

and v € 91 C N we define w - v to be the element in 91 determined by the identity in
N/Z

(w-v)Z =vw™?,

i.e., w - v is the representative of vw ™ € N'/Z in 9.
For w € N'/Z we now define the scattering operator

Sw(f:/\)::ZFw.v(fz)\)OFv(f:)\)T' b v@(g)% b we.

vEN P\Z)open P\Z)Open
We then have the following immediate corollary of Corollary 8.1.

Corollary 8.2. Let £ be a finite dimensional unitary representation of Mg and A\ €
i(a/ay)* \ iS. The following hold true.

(i) Su(&: X)) =0foreveryw € (N/Z)\ Wy.

(ii) The assignment Wy > w +— S,,(€ : \) defines a unitary representation of Wz on

b .

OE(P\Z)open

(iii) For every w € Wz we have S,,(§ : A) o T'(£: A) =T'(£ : N).

Remark 8.3. In [15] scattering operators were defined under the restricting assumption
that G is split, but for all boundary degenerations, not just for the horospherical boundary
degeneration 7 as we do here.

We finish this section with a description of the scattering operators in terms of the
action of standard intertwining operators on D'(Q : £ : \), or rather in terms of the
induced action on the parameter spaces V*(£). We first define for v € N the normalized
B-matrix

Bi(€:A): V(&) = Vi(v- &)
by
1
Bo(€:\) = — Bw-€: Ad*(V)N) 0 By(Q 1 €: N o B(E: N7
YT Qu: QA

The normalized B-matrices are characterized by the fact that the diagram

D@Q:¢: N BEN D@ v-€ o AdE ()N
B (€ pe (v-e:4d” (0)0)
V() e Vi€
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commutes. If vy, v, € N then the identity

5, (v2 - €t Ad™(2)A) o I3, (8 1 A) =I5, (§ 1 A)

implies
By (v & Ad*(v2)A) 0 By, (€2 X) =By, (§: ). (8.1)

Each normalized intertwining operator Z° (£ : \) is unitary and hence is a unitary map
between the multiplicity spaces M \ and M,.¢ aa* (o)1 Furthermore, p°(§ : A) is in view
of Theorem 8.1 a unitary map from V* (&) (equipped with dim (V) times the inner product
induced by the one on V;) to Mg . Therefore, the normalized B-matrices 55 (£ : \) are
unitary.

For v € 91 we define the map

jv<£>:V*<v*1fH%fv<£>g b we©

€(P\Z)open
by
(jv(é)n)o =10, (77 € V*(Uil 5)7 Oe (P\Z>0Pen)'
The dual map
WO P VO =V SV g
OE(P\Z)open
is given by
j’u(g)T Vi €) =0 (U/ S mv v’ 7& U)
and

o) =m0 (1€ V5, (€),0 € (P\Z)open)-

Now the scattering maps are given by the following.

Corollary 8.4. Let & be a finite dimensional unitary representation of Mg and let X €
i(a/ag)* \ iS. Then

= Gun(€) 0 By 1, (€ N 04T (w e Wy).
vEN

Proof. Letw € N'/W and let v € M be so that v}V = w. In view of Proposition 8.1 we
have

Lo(€:A) =Te(v - £ A" (vT)A) o Bia(€:A)  (veM).
Moreover, by Corollary 8.3
Fe(vfl SE Ad*(vfl))\) = ju(§),

and hence
Lo(€: ) =5u(§) 0 Bya(§:A)  (veMN).

The assertion now follows from the unitarity of the normalized B-matrices and (8.1). [J
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Appendices

Appendix A: Wavefront spaces

The space Z is called wavefront if the compression cone of Z is given by
C=a +a.

A main class of examples of wavefront spaces is the class of reductive symmetric spaces,
i.e., the spaces Z = G/H with H an open subgroup of the fixed point subgroup of an
involutive automorphism of G.

For the most continuous part of L?(Z) the P-orbits O of maximal rank with ap = a;
are of relevance. The open P-orbits satisfy this condition. In view of the following
proposition, the open P-orbits are all orbits with ap = a; in case Z is wavefront. We
recall the groups NV, Z and W from (3.1), (3.2) and (3.3), respectively.

Proposition A.1. Assume that Z is wavefront. Then W = N. In particular, the little
Weyl group is equal to
Wy =N/Z.

Theorem 3.3 and Proposition A.1 have the following corollary.

Corollary A.2. Assume that Z is wavefront and let O € (P\Z)max. Then O is open if
and only if ap = .

Proof of Proposition A.1. As W is a subgroup of \/, we only have to prove the inclusion
N CW. Let w € N. From the fact that E/ a; 18 a fundamental domain for action of the
little Weyl group on a/ay, it follows that there exists av € W so that Ad(v—'w™)a~NC #
(). After replacing w by wv we may thus assume that Ad(w)C Na~ # (). We may further
adjust w by multiplying it from the right by an element from Z and assume that (3.3)
holds. It now suffices to prove that w € M A. As the stabilizer of pp in Ng(a) is equal to
M A, it is thus enough to show that w stabilizes pp.
Since

(Ad(w)a® 4+ ay) Na* = —(Ad(w)CNa”)

is open and nonempty, its dual cone

(( > Rsa)n a/ah) > Ruga (A.1)

aeS(wPw1) aeX(P)

is proper. Note that

pp — Ad*(w)pp = Z dim(g, ).

aeX(P)N—S(wPw—1)

Since w normalizes ay, it follows from Remark 3.2 that w normalizes lg. In view of (3.3)
we have

Y(P)N —S(wPw™) =X(P)N -S(wQu ™) = 2(Q) N —S(wQuw™"),
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and hence
pp —Ad*(w)pp = pg — Ad"(w)pg.

As Z is unimodular, we have

po(X) = trad(X)\nQ = —trad(X)| =—trad(X)|, =0 (X €ay).

mta+th b

Therefore, pg € (a/ay)* and, as w normalizes ay, also Ad(w)*pg € (a/ay)*. It follows
that

Ad*(w)pp — pp € ( Z R>or) N (a/ay)*

aeX(wPw™1)

and
pp — Ad*(”LU)pp € Z REQOA

a€X(P)

Since (A.1) is proper and contains both Ad*(w)pp—pp and pp —Ad*(w)pp, we conclude
that pp = Ad"(w)pp. This proves the claim. O

Appendix B: Intertwining operators

Let S be a parabolic subgroup of GG with Langlands decomposition S = MgAgNg. Fur-
ther, let £ be a representation of Mg on a Hilbert space V¢ and A € aj . In this appendix
we are concerned with a description of the action of standard intertwining operators on
D'(S : £ : A). In the course of this appendix we will prove all assertions in Proposition
4.1. We begin by introducing some spaces of functions.

Recall the map ag : G — Ag which is given by

xr € Ngag(x)MgK (x € G).

We write Lg ¢ » for the space of equivalence classes of measurable functions ¢ : G — V¢
such that

> ag" o (@) 6(2) e

is integrable. Here two functions are equivalent if and only if only differ on a set of
measure 0. We endow Lg ¢ , with the norm

b / a5 (2)6() ¢ d < oo.

With this norm L , is a Banach space.

Lemma B.1. For every compact subset C of G there exists a constant ¢ > 0 such that for
everyg e Candx € GG

¢ Mag s (xg)| < lag ™" (2)] < clag S (xg)]

S g)l = lag = Clag g)l-
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Proof. Let C be a compact subset of 7, let g € C' and let x € G. Then

as(zg) € ag(x)as(Kg).

Since K C'is a compact subset of G and ajS[Aip 5 is continuous, there exists a constant
¢ > 0 so that
At
c> e (y)  (ye KO).
With this constant c the desired inequalities hold. [

It follows from Lemma B.1 that L , is invariant under right translations by elements
of G. We write R for the right-regular representation of G on Lg .

Proposition B.2. The representation (R, Lse, )\) is a continuous Banach representation.
Proof. The proof is the same as the proof for [38, Proposition 2.9]. U

Let Vg \ be the space of smooth V¢-valued functions on G that represent a smooth
vector for R in Lg¢ y. The local Sobolev lemma ensures that every smooth vector in
Ls¢ » can indeed be represented by a smooth Ve-valued function. See also [43, Theorem
5.1]. We endow Vg, , with the unique Fréchet topology so that the natural bijection
Vsex — L3¢ ) is a topological isomorphism. Note that

Vser = {¢ € £(G, V) /G Hangs(x) R(u)¢(z)||e dv < oo for every u € Z/l(g)}.

Lemma B.3. For ¢ € Vs » the function

G-V o »—>/ / / a Ps¢(m™ Y p(manz) dn da dm
Mg JAg J Ng

is defined by absolutely convergent integrals and forms an element of C*°(S : £ : \).
Moreover, the map

Vser = CF(S €1 A)

thus obtained is G-equivariant and continuous.

Proof. Let ¢ € Vg, \. By Fubini’s theorem the integral

—— —Aps -1
To(x): /MS /AS /Nsa E(m™)¢p(manz) dndadm (B.1)

is absolutely convergent for almost every x € K and the function 7¢ : K — V thus
obtained is integrable. Since L(man)T ¢ = a > 7s&(m~1)T ¢, it follows that the integral
T ¢(z) is absolutely convergent for almost every = € G and the function 7¢ : G — V¢
thus obtained is locally integrable.

We claim that the integral (B.1) is in fact absolutely convergent for every x € GG and
that 7 ¢ is a smooth function for every ¢ € Vg¢ . From [19, Théoreme 3.3] it follows
that

Ve =span{n(f)¢: f € D(G),d € Vgen}- (B.2)
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Therefore, to prove the claim it suffices to show that for every f € D(G) and ¢ € Vg »
the function 7 (7(f)¢) is smooth. Let f € D(G) and ¢ € Vs . Then, by Fubini’s
theorem

T (m /M /A /N a s (m / f(y)d(manzy) dy dn da dm
= /Gf(a: ) /MS /AS /NS a NP5 (mY) d(many) dndadm) dy

- / @'y Toly) dy.

Since T ¢ is locally integrable, the last expression defines a smooth function in x € G.
This proves the claim. Note that it follows from the claim that 7¢ € C°(S : £ : \) for
every ¢ € Vg¢ x. This proves the first statement in the lemma.

The equivariance of 7T is clear. It thus remains to prove the continuity. Let L!(K : &)
be the space of integrable functions ¢ : ' — V that satisfy

o(mk) = E(m)p(k)  (me MNK, ke K).

As stated above, the restriction of 7 ¢ to K is integrable for every ¢ € Vg, 1. Moreover,

/ | Tkl dk < / g™ (2)(2) e de-

Therefore 7 defines a continuous map V¢, — L'(K : &) which intertwines 7| 5 and
the right regular representation of K on L'(K : £). Since (7r| e VS,&,\) is a smooth
representation, 7 in fact defines a continuous map Vs ¢y — L'(K : £)*°. From the local
Sobolev lemma it follows that there is a natural identification between L'(K : £)> and
the space C*(K : ) consisting of all smooth functions f : X' — V¢ such that

f(mk) =&(m) f(k) (me MNK, ke K).

This identification is a topological isomorphism. See also [43, Theorem 5.1]. Finally, the
restriction map ¢ —» gb| 18 a K-equivariant topological isomorphism between the spaces
C>®(S :&: A)and C*(K : &). This proves the second claim in the lemma. O

It follows from Lemma B.3 that for every n € C°(S : £ : \)’ the right-hand side
of (4.2) defines a continuous linear functional on Vg, 5. We thus conclude that every
p € D'(S : & : \)extends to a continuous linear function on Vg y. In fact, the injection

{1 e Vs, : psatisfies (4.1)} = D'(S:£:N); p— N‘D(G%) (B.3)
is a bijection.

Now let S; and Sy be parabolic subgroups such that Ag, = Ag, € A. We identify
ag ¢ by the subspace of ag of elements that vanish on a N mg.
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IV. The most continuous part of the Plancherel decomposition

Proposition B.4. Let \ € af ¢ satisfy
(Re ), ) >0 (@ eX(a:S)N—X(a:5)). (B.4)

For every ¢ € Lg, ¢ » and almost every x € G the integral

/ _ ¢(nx)dn
Ng,NNs,

is absolutely convergent and the function | Ns. (N ¢(n - ) dn thus obtained represents an
2 1
element of Lg, ¢ ». Moreover, the map

Ls,exn— Lsiex; ¢+ ~ ¢(n-)dn
NSQQNSI

s continuous.

Proof. Let ¢ € Lg, ¢ ». In view of Fubini’s theorem, it suffices to show that

/G [VS2 r‘lﬁsl

for some ¢ > 0.
Using the invariance of the Haar measure on (G, we obtain

/vav [VS2 ﬁﬁgl

ag (m)qb(nas)HEdnd:v <c /G lag, 2 (@)p(x)|ledr (B.S)

a5 @)o(na) | dnde = / - / st (@)g(na)| da dn
3 NSQHNsl G

:/ /Hasl/wpsl(nx)qﬁ(x)Hgdxdn
NSQI"]Nsl G
A tps,
] s ) dn ot
G NS2QN51

Note that

/ B ’a;;\ﬂ)sl (nx)| dn = c(S2 : S1: —Re /\)a;fe/\ﬂs2 (x) (x € G)
NSQQNSI

where ¢(Sy : Sy : -) is the partial c-function which is given by the absolutely convergent
integral

c(Sy: 81 :v)= / agjpsl (n)dn

N52 ﬁﬁsl

in case A\ = —v € af. satisfies (B.4). Hence (B.5) holds with ¢ = ¢(S5; : S; : —Re ).
This proves the proposition. [

Corollary B.5. Let A\ € ai. satisfy (B.4). For every ¢ € Vg, ¢ and every x € G the
integral
/ ¢(nx) dx (B.6)
NSQQNSI
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is absolutely convergent and the function |, Ns. (Vs o(n - ) dx thus obtained is an element
2 1
of Vs, e 1. Moreover, the map

Vs,ea = Vsien; ¢ ~ ¢(n-)dn (B.7)
NSQQNSI
s continuous.

Proof. It follows from Proposition B.4 that ¢ — [ NN ¢(n - ) dn defines a continuous
2 1

map between the spaces of smooth vectors in Lg, ¢\ and Lg, ¢  respectively. It therefore

suffices to show that for every ¢ € Vg, ¢, and x € G the integral (B.6) is absolutely

convergent and the function [ N, (N ¢(n ) dn is smooth. In view of (B.2) it suffices to
2 1

do this for ¢ of the form ¢ = 7(f)y with f € D(G) and ¢ € Vg, ¢ ».
Let f € D(G), ¢ € Vs,¢e and x € G. It follows from Proposition B.4 that the

integral
[ra [ vow)dndy
G Ns,NN g,

is absolutely convergent. Moreover, it depends smoothly on z. By Fubini’s theorem this
integral is equal to

| ) in

This proves the corollary. ]
We define
A(Sy: S1:€:N) = 922/\014(5'1 : Sy :§:A)*ow21/\
The following diagram commutes.

A(S2:51:€:0)

D'(S;: & N) D'(Sy: & N)
weh || 0 wek | 063

A(S71:52:£:N)* ,

(8 - € ) AEEN oo 6y

We recall from (B.3) that every distribution . € D'(S : £ : \) extends to a continuous
linear functional on Vg ¢ 5. Therefore, if A € ag; satisfies (B.4), then in view of Corollary

B.5 the assignment
chu(/ B ¢(n-)dn>
NS2QN51

defines for every i € D'(S; : £ : A) adistribution in D'(G, V).
Proposition B.6. Let \ € af. satisfy (B.4). For every € D'(Sy : £ : \) the distribution
A(Sy:S1:€: N e D'(Sy: & N) is given by

Az 812 €0 (0) = n( [

N52 QNSI

dn-)dn) (6 € D(G, V).
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For the proof of the proposition we need the following lemma.

Lemma B.7. Let ¢ € C(S : £Y : —\) and consider ¢ as an element of D'(S : £ : \).
Then

(were) (f) = /K <¢(k),f(k)> dk (feC®(S:¢:N).
Proof. Let f € C(S : £ : \). Then

(were) (f) = /G (¢(x), Wo(z) f@;)) dz

:/MS /AS /NS a*S1py(man) dndadm/K <¢(k’),f(k:)> dk.

The claim in the lemma now follows from the observation that

/ / / a*S1py(man) dn da dm = / / / / a*Svp(mank) dn da dm dk
Mg JAg J Ng Ms JAs JNg

—/ S(@)o(a) do = 1.
G
O]

Proof of Proposition B.6. Since (B.7) is continuous and C°(S; : £ : —)) is a dense
subspace of D'(S; : & : A), it suffices to prove the identity only for functions p €
C>(5 : fv : —A). Let p be such a function and let ¢ € D(G, V). Then

AS: 5 M)
—wg)\ x — /MS /AS /NS /NS - a MPsig(m™ ) p(mannz) dﬁdndadm).

It follows from Lemma B.7 that the right-hand side is equal to

Since the multiplication maps
(NSI N Ngz) X (NSI N st) — NSQ, (N51 N NS2) X (Ngl HNSQ) — NSl

are diffeomorphisms with Jacobian equal to 1, we can rewrite this repeated integral as

/K /M S /A S /N . /N ) a5 (k). &(m ™ )@(matink) ) dn dr da dim dk
_ /K /M S /A S /N ) ((mank) /N . S(mmank)dn) dn da.dm dk
_ /G (), /N . o(a)dn) dr.

This proves the proposition. O]
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