A non-linear Lie group

Let G be a Lie group and ρ a representation of G. Then ρ is said to be faithful if the map $G \ni g \mapsto \rho(g)$ is injective. A linear Lie group is a Lie group that can be realized as a Lie group consisting of matrices. In other words, a Lie group G is linear if there exists a finite dimensional faithful representation of G. Let

$$G = \begin{pmatrix} 1 & \mathbf{R} & \mathbf{R}/\mathbf{Z} \\ 0 & 1 & \mathbf{R} \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \mathbf{R} & \mathbf{R} \\ 0 & 1 & \mathbf{R} \\ 0 & 0 & 1 \end{pmatrix} / \begin{pmatrix} 1 & 0 & \mathbf{Z} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(i) Show that $\begin{pmatrix} 1 & 0 & \mathbf{Z} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is a closed normal subgroup of $\begin{pmatrix} 1 & \mathbf{R} & \mathbf{R} \\ 0 & 1 & \mathbf{R} \\ 0 & 0 & 1 \end{pmatrix}$. Conclude that G is a Lie group.

In this exercise we will prove that there exists no finite dimensional faithful representation ρ of G and hence that G is not linear. Working towards a contradiction, assume that (ρ, V) is a finite dimensional faithful representation of G. Let $\rho \in \mathbb{N}$ be prime and let

$$x = \begin{pmatrix} 1 & 1 & \mathbf{Z} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad y = \begin{pmatrix} 1 & 0 & \frac{1}{p} + \mathbf{Z} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(ii) Show that V decomposes as a direct sum of eigenspaces for $\rho(y)$. (Hint:

$$T = \left(\begin{array}{ccc} 1 & 0 & \mathbf{R}/\mathbf{Z} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

is a compact abelian subgroup of G.)

(iii) Prove that $\rho(y)$ has at least one eigenvalue α that is a p^{th} root of unity that is not equal to 1.

Let V_{α} be the eigenspace of $\rho(y)$ for the eigenvalue α .

- (iv) Prove that V_{α} is a G-invariant subspace.
- (v) Prove that xy is conjugate to x, i.e. there exists an element $g \in G$ such that $gxyg^{-1} = x$.
- (vi) Prove that the restriction of $\rho(x)$ to V_{α} is conjugate to the restriction of $\alpha\rho(x)$ to V_{α} . In other words, prove that there exists an $A \in \operatorname{Aut}(V_{\alpha})$ such that $\rho(x) = A(\alpha\rho(x))A^{-1}$ on V_{α} .
- (vii) Show that the restriction of $\rho(x)$ to V_{α} has at least p distinct eigenvalues.
- (viii) Prove that the dimension of V is at least p. Use this to reach a contradiction.