PERTURBATION THEOREMS FOR o-TIMES INTEGRATED
SEMIGROUPS

CORNELIA KAISER AND LUTZ WEIS

ABSTRACT. We prove perturbation results for a-times integrated semigroups
assuming relative “smallness” conditions for the perturbation B on a halfplane.
If A is a semigroup generator on a uniformly convex Banach space, then these
conditions on B already imply that A 4+ B generates a once integrated semi-
group. As an illustration we consider Schrédinger operators and higher order
differential operators.

1. INTRODUCTION

Perturbation theory for operator semigroups is an important tool in applications
to differential equations and therefore it is a richly developed field. Most of these
perturbation theorems assume relative boundedness of the perturbation B, and
moreover a “relative smallness” condition that amounts to an estimate

IBOA=A)" <M <1 (1)

or

I = A) ™ Bz|| < M|z 2)
on a certain subset of the complex plane. In all these results one needs further
assumptions either on the generator A or on the perturbation B (e.g., analyticity
or contractivity conditions). Such additional conditions are indeed necessary, since
in general (1) or (2) by themselves do not guarantee that A + B is a semigroup
generator (see Example 7.1). But a somewhat weaker result is true. In this paper
we show that if the relative boundedness condition (1) or (2) holds for A in a
halfplane, then A 4+ B generates an a-times integrated semigroup where the rate of
integration o depends on the geometry of the underlying Banach space X. E.g., if X
is uniformly convex, then A+ B generates a once integrated semigroup. These results
are consequences of a more general perturbation theorem for a-times integrated
semigroups which is of some interest in itself. Aside from some special results in
[9, Section 1.5] and [15] it seems to be the first genuine perturbation theorem for
a-times integrated semigroups.

Integrated semigroups where introduced by Arendt [2, 3] to study resolvent positive
operators. In [2] there is a perturbation theorem for resolvent positive operators that
is closely related to our results. Hieber [9] refined the theory by introducing a-times
integrated semigroups for positive real numbers a.

Integrated semigroups are a natural extension of semigroup theory to deal with
operators that have polynomially bounded resolvents in a halfplane and for which
the Cauchy problem is solvable for z € D(A%), @ > 1. One important example
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is the Schrédinger operator iA on LP-spaces. Hormander [12] proved in 1960 that
iA generates a Cp-semigroup on LP(R™) if and only if p = 2. But Hieber [9, 10]
showed that the Schrodinger operator generates an a-times integrated semigroup
on LP(R™) for a > n|3 — %| Other examples are second order Cauchy problems
[4, 17] and delay equations [1].

We apply our perturbation theorems to the Schrédinger operator in one dimension:
If one adds a potential V' € LP 4+ L°°, the sum idd—;g + V generates a (-times
integrated semigroup. Similar results hold also for higher order differential operators
(see Section 8). For an application to delay equations see [13].

2. a-TIMES INTEGRATED SEMIGROUPS

Let X be a Banach space. By £(X) we denote the space of all bounded linear
operators from X to X. We recall the definition of an a-times integrated semigroup.

Definition 2.1. Let a > 0 and (A, D(A)) be a linear operator on X. A is called
generator of an a-times integrated semigroup if there are nonnegative numbers w, M
and a mapping S : [0,00) — L(X) such that

e (S(t))>0 is strongly continuous and || f(f S(s)ds|| < Me“* for all
t>0,

e (w,00) is contained in the resolvent set p(A) of A, and
o R\ A):=(A=A)~1 =)\ [Te MS(t)dt for A > w.

In this case, the family (S(¢))¢>0 is the a-times integrated semigroup generated by

A.

Remarks (1) If (A, D(A)) generates an a-times integrated semigroup (S(t))¢>o,

then the halfplane {A € C : ReA > w} is contained in p(A) and R\, A) =

A [5C e MS(t)dt for all Re A > w.

(2) By uniqueness of the Laplace transform, (S(t)):>0 is uniquely determined.

(3) If a = 0, the definition above is consistent with the definition of a Cp-semigroup

(see [4, Theorem 3.1.7]). In this case the generator A is densely defined and (S(t)):>0

is exponentially bounded. For o > 0 this may not be true in general.

(4) If A generates an a-times integrated semigroup (Sq(t)):>0, then A also gener-

ates a O-times integrated semigroup (Sg(t)):>o for each > a.

(5) If A generates an o-times integrated semigroup (S(t)):>0, then the abstract

Cauchy problem

u'(t) = Au(t), t e 0,7],

{ _ 3)
u(0) = x,

has a unique classical solution for each x € D(A™*1) where n € Ny such that n—1 <
a < n (]9]). By a classical solution of (3) we mean a function u € C*([0, ), X)
such that u(t) € D(A) for all ¢ > 0 and (3) is satisfied.

3. MAIN RESULTS

Let (A, D(A)) be the generator of an a-times integrated semigroup (S(t))i>0 on X
and let

w(S) :=inf{w € R : 3K > 0 such that ||S(¢)|| < Ke“'}
be the growth bound of S if (S(t))i>0 is exponentially bounded. If not let

w(9) :=inf{w € R: IK > 0 such that ||f0t S(s)ds|| < Ke*'}.
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We consider a linear operator (B, D(B)) in X that satisfies one of the following
conditions:

(C1) D(B) 2 D(A) and there are constants Ag > max{0,w(S)} and M < 1 such
that

[BR(X, A)|| <M
for all A € C with Re A = Aq.

(C2) B is densely defined and there are constants Ao > max{0,w(S)} and M < 1
such that
1B\, A)Bz|| < M|z
for all x € D(B) and all A € C with Re A = .

Our first result is the following perturbation theorem for a-times integrated semi-
groups.

Theorem 3.1. Let (A, D(A)) be the generator of an a-times integrated semigroup
(S(t)i>0 on X and let (B, D(B)) be a linear operator in X. Choose 3 > o+ 1 if
(S(t))i>0 is exponentially bounded and B3 > av+ 2 in the general case.

)

(a) If (C1) holds, then (A+ B, D(A)) generates a 3-times integrated semigroup.

(b) If we assume (C2), then a closed extension (C,D(C)) of (A+ B,D(A)N
D(B)) generates a [3-times integrated semigroup. If A and its adjoint A*
are densely defined, then C' is the part of (A* + B*)* in X, ie., Cx =
(A* + B*)*z forx € D(C) ={z € D((A*+ B*)*)NX : (A*+ B*)* € X }.

Under certain assumptions on the geometry of the Banach space X one can improve
the bound for . For this we need the following definition:

Definition 3.2. A Banach space X has Fourier type p € [1,2] if the Fourier
transform extends to a bounded linear operator from LP(R, X) to L*' (R, X) where
1, 1

=+ 5 =1

p P

Each Banach space has Fourier type 1. A Banach space has Fourier type 2 if and
only if it is isomorphic to a Hilbert space ([16]). If X has Fourier type p, then it
has Fourier type r for each r € [1,p]. Each closed subspace, each quotient space
and the dual space X* of a Banach bpace X has the same Fourier type as X. The
space L" (€, i) has Fourier type min{r ([19]). Each B-convex Banach space
has Fourier type p > 1 ([5, 6]).

’71

If we take the Fourier type of X into consideration, we obtain the following refined
version of our perturbation result with optimal lower bound for 3 (cf. Section 7).

Theorem 3.3. Let X be a Banach space of Fourier type p € [1,2]. Let (A, D(A))
be the generator of an exponentially bounded a-times integrated semigroup (S(t))i>o0
on X and let (B, D(B)) be a linear operator in X. Choose 3 > « + %.

(a) If A is densely defined and (C1) holds, then (A + B, D(A)) generates a
B-times integrated semigroup.

(b) If we assume (C2), then a closed extension (C,D(C)) of (A+ B,D(A)N
D(B)) generates a (B-times integrated semigroup. If A and A* are densely
defined, then C' is the part of (A* + B*)* in X.

As a corollary we obtain the following perturbation result for Cp-semigroups on
B-convex Banach spaces.
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Corollary 3.4. Let (A, D(A)) be the generator of a Cy-semigroup on a B-convex
Banach space X and let (B, D(B)) be a linear operator in X.

(1) If (C1) holds then (A+ B,D(A)) generates a once integrated semigroup.

(2) If we assume (C2) then a closed extension (C,D(C)) of (A+ B,D(A)N
D(B)) generates a once integrated semigroup. If A and A* are densely
defined then C' is the part of (A* + B*)* in X.

4. EXISTENCE AND REPRESENTATION OF THE RESOLVENT OF A + B

In this section we collect some results on the existence and representation of the
resolvent of the sum of two linear operators A and B. We assume that the resolvent
set of A is nonempty. Our first lemma can be used if condition (C1) from Section
3 is satisfied.

Lemma 4.1. Let (A,D(A)) and (B, D(B)) be linear operators in X such that
D(A) C D(B). If there is A € p(A) such that || BR(A, A)|| < 1, then A € p(A+ B)
and

RO\ A+ B) = RO\, A)I — BR(\, A)]~ i BR(), A)]

Proof. Our assumptions yield that I — BR(A, A) is invertible in £(X) and that

[1 = BR(A, A) 7" =Y [BR(), A))*.
k=0
Now it is easy to show that A € p(A+B) and R(\, A+B) = R(\, A)[I-BR(\, A)] !

O

The next lemma is related to condition (C2).

Lemma 4.2. Let (A, D(A)) and (B, D(B)) be linear operators in X. We assume
that there are a nonempty subset G of p(A), a subset D of D(B) that is dense in
X and a constant M < 1 such that |R(\, A)Bz| < M|z|| for all x € D and all
A € G. Then the following assertions hold:

D(C

)) of (A+ B,D(A) N D(B)) such that

(a) There is a closed extension (C,

G C p(C) and
R(A,C) =[I - R(\, A)B]7'R(\, A) = Y [R(\, A)BI*R(), A)
k=0
for all X € G.

(b) If A and B are densely defined, then D(A*) C D(B*) and ||B*R(\, A¥)| <
M for all X € G.

(¢) If moreover D(A*) = X*, then the operator C' from (a) is the part of (A* +
B*)* in X.

Proof. (a) For A\ € G we can extend R(\, A)B to a bounded operator on X with
norm < M. We denote this (unique) extension also by R(A, A)B. Then I—R(\, A)B
is invertible in £(X) and
Ry :=[I — R(\,A)B]"'R(\,A) = > [R()\, A)B*R(), A).
k=0
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We fix A € G and define
D(C) = RanRj,
C = M-R;"
Using the theory on pseudo resolvents ([18, Section 1.9]), one can show that (C, D(C))

does not depend on A € G. Moreover, R, = R(u, C) for all p € G and (C, D(C)) is
a closed extension of (A + B, D(A) N D(B)).

(b) Since A and B are densely defined, the adjoint operators A* and B* are well-
defined. Let y* € D(A*) and A € G. Then there is 2* € X* with y* = R(\, A*)z*
and for all z € D we obtain

(y*, Bz) = (R(\, A%)z*, Bz) = (R(\, A)*2™, Bx) = (z*, R(\, A) Bx).
Therefore y* € D(B*) and ||B*y*|| < M|jz*|.
(¢) From (b) and Lemma 4.1 we obtain that (A* + B*, D(A*)) is closed, G C
p(A* + B*) and R(\, A* + B*) = R(\, A*)[I — B*R(\, A*)]~" for each A € G.
Moreover it is easy to show that R(\, A* + B*) = R(\, C)*.
If D(A*) is dense in X*, then the adjoint (A* + B*)* of (A* + B*, D(A*)) is well-
defined and

D(C) = R\ O)X) = R(A (A" + BY)")(X)
= {zeXND(A"+B")"): (A"+B")"z € X}.
This means that C is the part of (A* + B*)* in X. O

5. PROOF OF THEOREM 3.1

In the proof of Theorem 3.1 we use the following result from ([9, Theorem 5.1]).

Proposition 5.1. Let X be a Banach space and (A, D(A)) a linear operator in X .
If there are numbers w, L > 0 and 7 > —1 such that

e {AeC: ReA>w} Cp(4) and
o ||[R(A A)|| < LIA|™ for Re A > w,

then A generates an «-times integrated semigroup for each o > 7 + 1.

Proof of Theorem 8.1. (a) We first consider the case that (S(¢))¢>0 is exponentially
bounded. Since (A, D(A)) generates an a-times integrated semigroup we obtain the
estimate

[R(A, A < |>\|“/ e eMS()]ldt < KN (ReA —w) ™! (4)
0
for all A € C with Re A > A\g. Here w € (w(S), \g) and K > 0 are chosen such that
IS@) < Ke*'.
For i € C with Repu > A9 we put A := A\g + ¢ Im p. The resolvent equation yields
IBR(u, A)| < [ BROA, AL+ (A= p)R(u, Al
< M[1+|A—pl Klu[*(Rep —w) ]

< M+ Klu)
and BR(u, A) satisfies the assumptions of the Phragmen-Lindel6f theorem (see e.g.

[7]), which then yields that | BR(\, A)|| < M forall A € Hy, = {A € C: Re X > \o}.
By Lemma 4.1, H), is contained in p(A + B) and R(A\, A+ B) = R\, A)[I —
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BR(X\, A)]7! for all A € Hy,. Now by (4) there is a constant L > 0 such that for all
A € Hy, the estimate

IR O < (IR AT = BR( A)7H| < LA
is satisfied. Our claim now follows from Proposition 5.1.

In the general case (where (S(t)):>0 is not exponentially bounded) we use the
estimate

IRO A = |

e} t
Aa“/ e_’\t/ S(s)dsdtH < KIA*T (Re A — w)~?
0 0

instead of (4) where w € (w(S5), A\g) and K > 0 are chosen such that Hfot S(s)ds| <
Ke“t. Then we can proceed in the same way as above.

(b) Since D(B) is dense in X, we can extend R(\, A)B for each A € A\g + iR to a
bounded linear operator on X with norm < M. We denote this operator again by
R(\, A)B. Now the assertion can be proved in the same way as (a) using Lemma
4.2 instead of Lemma 4.1. O

6. PROOF OF THEOREM 3.3

The case p = 1 we have already proved above. Let p € (1,2] and %—i—% = 1. Observe
that for x € X, r > Ay and s € R we have

/ooo(e”lls(t)xﬂ)pdt < el (5)

and
oo
(r—is) " “R(r —is, A)x = / et (e S(t)x)dt. (6)
0
We first prove (b). Since X has Fourier type p, we obtain that
|6+ is) R+ is, A)e] s < ool

for all > Ag and all z € X. As in the proof of Theorem 3.1 we use the Phragmen-
Lindel6f theorem and Lemma 4.2 to show that there exists a closed extension
(C,D(C)) of (A+ B,D(A) N D(B)) such that for ReA > Ao the resolvent can
be written as R(\,C) = [I — R(\, A)B]7'R(\, A). This yields

/ 1(r + i) R(r + is, C)zl|"ds < cs]z].

— 00

Moreover, A~*R(A, C) is holomorphic for Re A > Ao.
Letfy>%.FortZOand:ceXwedeﬁne

1
U(t)z == — MATYIATYR(N, C)xldA.
278 JRe A=A

By Holder’s inequality, U(t) € £(X). Using the Riemann-Lebesgue-Lemma and [11,
Theorem 6.6.1], we obtain that (U(t)):>¢ is strongly continuous and

ATOR(N,C) =\ / e MU(t) dt
0

for each Re A > Ag. The claim now follows with Definition 2.1.
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To prove (a), we first observe that (5) and (6) also hold if we replace S(t) by its
adjoint S(¢)* and = by * € X*. Recall that X* has Fourier type p since X has. So
we obtain in the same way as above that

/ [[(r+is)"*R(r +is, A+ B)*z*||%ds < ¢||=*||9
for all » > Mg and all * € X*.
Again let v > %. For t > 0 and z* € X* define

1
U*(t)x* == — MATTINTYR(N, A + B)*z*]dA.
270 Jre x=o
Then the family (U*(t))i>0 C £(X*) is strongly continuous and

AR\, A+ B)* = m/ e MU*(t) dt
0

for Re A > Ag. For x € D(A) and t € [0,00), the integral in

Ut)z := = AT AR\, A+ B)z]d\
270 JRe x=x0

converges absolutely. Therefore ¢ +— U (t)x is continuous in [0, 00) if 2 € D(A) and
o0
R\, A+ B)x = m+“/ e MU(t)x dt.
0

Now the uniqueness theorem for the Laplace transform and the fact that ¢t —
(U*(t))*z is weakly continuous yields that U(t)x = (U*(¢))*x for all ¢ > 0 and all
x € D(A). Since ((U*(t))*)t>0 is exponentially bounded and D(A) is dense in X,
the family ((U*(¢))*)¢>0 is strongly continuous and the claim follows with Definition
2.1. U

7. AN EXAMPLE

The following example shows that the bound for 8 in Theorem 3.3 is optimal.

Ezample 7.1. Let X = LP(0,00), p € (1,00) and v € C. We define the operators A
and B, by

(AN@) = f@),  (Bf)) = L f(a),
with maximal domains in X. The closure of (A+B,, D(A)ND(By)) in X we denote
by C,. Then:
a) || R(A, A)Byz|l, < pl|y|||lz|l, for all € D(B) and all Re A > 0, i.e. if |y] < % and
a > max{}—lj, 1-— %}, then C., generates an a-times integrated semigroup.
b)If0<a<y< %, then C, does not generate an a-times integrated semigroup.

c) If v > 11—), then there is no o > 0 such that C, generates an a-times integrated
semigroup.

Proof. a) Let 1 < p < o0, |v] < %, %—&—% =1, ReX >0, f € D(B,) and g €
L%(0, 00). It is well known that the operator (A, D(A)) generates the Cop-semigroup
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(T'(t))t>0 given by T'(t) f(xz) = f(z +t). Using this we obtain

/ o) / e MT()B, f(z) dt do
0 0

/ g(x)/ e_)‘tif(m +1t) dt dx
0 0

|<g7 R()‘vA)BVfH =

x+t
- \ / Tt [T el D g dx'

oo t
= ol |22 [yt as af
o] t
h/|/0 |f(tt)|/0 e—RcA(t—m)|g(x)|dx dt

< bl [ el s e

Let G(t) := 1 [ |g(x)| da. Then by Hardy’s inequality ([8, VL1.10.11]) |G|, < pllgllq

— 1
and by Holder’s inequality

(g B(A, A) B )| < 7] /0 [F@OFG@) dt < Iy 1l [1Gllq < o1 F Il [lgllg-

Therefore | R(X, A)B, |, < p|y| || fllp- Since (Cy, D(C,)) is closed and X is reflexive
we have (C3)* = C,. Theorem 3.3 now yields that (C,, D(C,)) generates an a-
times integrated semigroup if o > max{%, 1- ]%}

IN

b)Let 0 < a < v < %. For a test function f € C°(0,00) and ¢t > 0 we define S; f

by ) i
500 =15 (t—s)a-l( ) fa+s) ds.

Part a) and Lemma 4.2 yields that {A € C: ReX > 0} C p(C,). Moreover, for
feC(0,00) and ReA >0

R(A,Cv)f:)\a/ e S, f dt.

0

x4+ s

If (Cy,D(C,)) generates an a-times integrated semigroup, then by uniqueness of
the Laplace transform the a-times integrated semigroup is given by S;f for f €
C2°(0,00). But S; can not be extended to a bounded linear operator on X.

¢) For f € C°(0,00) and A € R we define Ry f by
Ryf(z) = :E*”e’\z/ e MY F(t) dt.

Then R\(A—=Cy)f = f=(A—-Cy)R\f. Butif v > %7 then Ry can not be extended
to a bounded operator on LP(0,00). So R C ¢(C,,). Hence there can be no o > 0
such that (C,, D(C,)) generates an a-times integrated semigroup. O

8. APPLICATION
Let X = LP(R) where 1 < p < oo and let m > 2 be an integer. We define the
operator (A,,, D(A,,)) by
A f =i fm if m is even,

and by
A f = f) if m is odd,
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with domain D(A) := W™P(R) in LP(R).

Then (A,,, D(A;,)) generates a Cy-semigroup on X if and only if p = 2 (]9]). For
m = 2 this was proved first by Hormander [12] in 1960. If p ;é 2, (Am, D(An))
generates an a-times integrated semigroup on X for o > |1 — 5 ([9])-

We consider the Cauchy problem
{u’(t) = (A + Blu(t), >0,

where (B, D(B)) is defined by
Bf:=Vv-f®
with maximal domain
D(B):={f € L’(R): V- fD € L’(R)}
in LP(R). Here, V is a potential and | € NU {0}. We will use Theorem 3.3 to show

the following proposition.

Proposition 8.1. Let X = LP(R) where 1 < p < oco. The operators (Ap, D(An))
and (B, D(B)) are defined as above. If one of the conditions

(1)1 < t(m—1) und Ve LP(R)
or

(ii) 1 =0 und V € LP(R) + L=(R)
are satisfied, then D(B) 2 D(A) and (A, + B, D(A,,)) generates a (3-times inte-
grated semigroup for each 3 > o,. Here

Proof. We only give the proof for the case that m is even, i.e, m = 2k for some
k € N. If m is odd, the proposition can be shown in a similar way.

One can compute that C\ ({R) C p(Asgy) and that for A € C\ (iR) the resolvent of
Ay, is given by

e —Hjle— S|
R(X, Aoy) f zk/ Z Tl ds  weR

where f is a function in LP(R) and p; (j = 1,...,k) are the k solutions of the
equation A — ip?* = 0 with Re p; > 0. Moreover, using Young’s inequality, we
obtain the resolvent estimate

RN, Azi) fllp < I f1lp

A=Y@ min{Rep; : j=1,...,k}

Let A =re’® where r > 0 and ¢ € (=%, ). Then a careful computation yields
min{Re s, : j=1,...,k} = [NY@ cosyy,

where

o = 1T 5 if k even,
-5 if k odd.

Since |A| = we have

cos ga’

cos wk

|>\|1*1/(2k) min{Re/u,j ty=1,... k} =Re\ ——
cosp
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But 2*# is bounded by a positive constant ¢, that depends only on k and not on

0S P
e ( 2, %). This shows the estimate
A
[R(A, Azp)|| < R A (7)
We look at BR(A, Aai). Take f € C°(R). For A € C\ (iR) we compute
.k
T e—/zj(ac—s) o] e/;j(m—s)
BR(\, Agp)f =V (x >2k Z(/ wa(s) ds —/ mf(s) dS)-
=1 —00 Hj z My

Then, if g € C°(R) and % + % =1, we find
(g, BR(X, Azi) f)|

L <o epjlr—s
G Z/ )| |V (z |/ e” Remle=sl| f(s)| ds d

S i PR Ve ®  eRenslo—oly 1/qd
= k[AL-(+D/ER) Z z)| |V (z)| e s T
_ £l 2 Va  poo
—Wg o) [ @IV

k 1/q
c(p) 1 1
—,Ml_(HU/@k)EZ(R% IV lpliglall 1
j=1

where ¢(p) <1 is a constant only depending on p. Therefore D(B) D D(A) and

k 1/q
@V, 1 1

_ c@)IVllp
= A0D/CH) min{(Re ) /e : j =1,..., k}

for all A € C with Re A > 0. As above we see that
min{(Re ;)% :j =1,...,k} = [N D (cos ey ) /9.

So we obtain
‘)\|1f(l+1)/(2k) min{(Reuj)l/q cj=1,...,k} = |/\|17(l+1)/(2k)+1/(2kq)(Cos¢k)1/q
|)\‘1—(lp+1)/(2kp) (Cosqpk)l/q

1
_ (Rea)i-(tprn/(ern) (08 Vi) /4
(COS (p)l*(lP‘H)/(?kp)

1/q
(Re )= (p+1)/(2kp) (M) (cos (p) /a1 1)/ (2kp)
cos ¢

If we assume that [ < + (2k: 1), we obtain 1_1+l1297+1 = lé’Tﬂ—l < %2_%—1 =0.
q P PP P P
So there is a positive constant ¢, > 0 that only depends on k such that

IAYCO min{(Re p )71 j = 1,...,k} > ¢; F(Re A) - UpHD/(2kp),
Hence for all A € C with Re A > 0,

VIl

|BR(X, Agi)|| < (Ro )1t /@) (8)

If we assume (i), the estimate (8) yields that there is Ay > 0 such that | BR(A, Az2g)|| <
M < 1 for all Re A > Ag.
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If (ii) holds, V' can be written as V), + Vi, where V,, € LP(R) and Vo, € L*>(R). Let
B, f :=V, - f with maximal domain D(B,) = D(B). The operator B, defined by
Byof := Vs - f is a bounded on LP(R) and B = B, + By Using (8) to estimate
|1BpR(A, Agg)|| and (7) for ||BooR(A, Ask)||, we again obtain that there is Ay > 0
such that ||BR(), Agi)|| < M < 1 for all Re A > Xo.

Since (Agg, D(Asg)) generates an a-times integrated semigroup for o > !% — % ,
the assumptions of Theorem 3.3 are satisfied in both cases. Hence the operator

(Asr + B, D(Asi)) generates a [-times integrated semigroup for 5 > |% - 1—17| +

max{%,l—%}zap. O

REFERENCES

[1] Mostafa Adimy, Hassane Bouzahir, and Khalil Ezzinbi, Ezistence for a class of partial func-
tional differential equations with infinite delay, Nonlinear Anal., Theory Methods Appl. 46 A
(2001), no. 1, 91-112.
[2] Wolfgang Arendt, Resolvent positive operators, Proc. London Math. Soc. (3) 54 (1987), 321—
349.
, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987),
327-352.
[4] Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued
Laplace transforms and Cauchy problems, Birkhduser Basel Boston Berlin, 2001.
[5] Jean Bourgain, A Hausdorff-Young inequality for B-conver Banach spaces, Pacific J. Math.
101 (1982), no. 2, 255-262.
, Vector-valued Hausdorff-Young inequalities and applications, Geometric aspects of
functional analysis (1986/87), Lecture Notes in Math., 1317, Springer, 1988, pp. 239-249.
[7] John B. Conway, Functions of one complezx variable, Springer Verlag, 1978.
[8] Nelson Dunford and Jacob T. Schwartz, Linear operators, Part I: General theory, Interscience
Publishers, Inc., New york, 1957.
[9] Matthias Hieber, Integrated semigroups and differential operators on LP, Dissertation, Tiibin-
gen, 1989.
, Integrated semigroups and differential operators on LP spaces, Math. Ann. 291
(1991), 1-16.

[11] E. Hille and R. S. Phillips, Functional analysis and semigroups, Am. Math. Soc., 1957.

[12] Lars Hormander, Estimates for translation invariant operators in LP-spaces, Acta Math. 104
(1960), 93-139.

[13] Cornelia Kaiser, Integrated semigroups and linear differential equations with delay, submit-

ted.

[14] Cornelia Kaiser and Lutz Weis, A perturbation theorem for Co-semigroups on Hilbert spaces,

to appear in Semigroup Forum.
[15] Hermann Kellermann and Matthias Hieber, Integrated semigroups, J. Funct. Anal. 84 (1989),
160-180.

[16] S. Kwapien, Isomorphic characterisations of inner product spaces by orthogonal series with
vector valued coefficients, Studia Math. 44 (1972), 583-595.

[17] Frank Neubrander, Integrated semigroups and their application to complete second order
Cauchy problems, Semigroup Forum 38 (1989), 233-251.

[18] A. Pazy, Semigroups of linear operators and applications to partial differential equations,
Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.

[19] Jaak Peetre, Sur la transformation de Fourier des fonctions & valeurs vectorielles, Rend.
Sem. Mat. Univ. Padova 42 (1969), 15-26.

(10]

MATHEMATISCHES INSTITUT I, UNIVERSITAT KARLSRUHE, ENGLERSTRASSE 2, 76128 KARLSRUHE,
GERMANY

E-mail address: cornelia.kaiser@math.uni-karlsruhe.de
MATHEMATISCHES INSTITUT I, UNIVERSITAT KARLSRUHE, ENGLERSTRASSE 2, 76128 KARLSRUHE,
GERMANY

E-mail address: 1lutz.weis@math.uni-karlsruhe.de



