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Abstract. We study existence and uniqueness of solutions for linear partial
differential equations with delay in L

p-spaces using an approach of Batkai and
Piazzera and a recent perturbation result for integrated semigroups. We apply

our result to an equation with delay in the highest-order derivatives.

1. Introduction

Partial differential equations with delay play an important role in different fields,
e.g. in control theory. They have been studied for many years, using different meth-
ods.

We want to study equations that can be written as










u′(t) = Au(t) + Φut, t ≥ 0

u(0) = x

u0 = f.

(1)

We use the standard notations (see [18]): A is an (unbounded) operator on a Banach
space X, Φ is the delay operator, ut is the history function and x ∈ X, f ∈
Lp([−1, 0], Z) are the initial values at time 0. Here Z is a Banach space such that
D(A) →֒ Z →֒ X with continuous embeddings.

Batkai and Piazzera [2, 3] showed that the delay equation (1) is equivalent to an
abstract Cauchy problem

{

U ′(t) = AU(t), t ≥ 0

U(0) =
(

x
f

)

.

on the space X = X × Lp([−1, 0], Z). Then, using perturbation theory of C0-
semigroups, they give sufficient conditions for (A,D(A)) to be the generator of
a C0-semigroup on X . One of these conditions is that (A,D(A)) generates a C0-
semigroup on X. But there are important operators that do not have this property,
e.g. the Schrödinger operator i∆ on Lp(Rn) for p 6= 2 ([14]). A weaker condition
on A is that it generates an α-times integrated semigroup. We use the approach
of Batkai and Piazzera and a new perturbation theorem for α-times integrated
semigroups from [15] to show existence results for solutions of the delay equation
(1).
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Another restriction in the results of Batkai and Piazzera is that one can not treat
equations of the kind

u′(t) = Au(t) + γAu(t − 1) +

∫ 0

−1

a(s)Au(t + s)ds (2)

where A generates an analytic semigroup on X. On the other hand, in [7] there are
wellposedness results for such equations in the case that X is a Hilbert space. With
our approach we also can treat equations of the kind (2) on Banach spaces.

This paper is organized as follows. In Section 2 we recall the definition of α-times
integrated semigroups and state the perturbation result we will use later. In the
third section we prove our main result: If (A,D(A)) is densely defined and generator
of an α-times integrated semigroup on X and if there are numbers M ∈ [0, 1) and
λ0 > 0 such that for all Reλ = λ0

∥

∥Φ(eλ·R(λ,A)x + R(λ,A0)f)
∥

∥

X
≤ M max{‖x‖X , ‖f‖Lp([−1,0],Z)}, (3)

then (A,D(A)) generates a β-times integrated semigroup for some β ≥ α. This
means that the delay equation has a unique solution for all pairs

(

x
f

)

of initial

values in the domain of An for n ∈ N large enough. Finally we give conditions
under which (3) is satisfied. In the last section we apply our result to equation (2).

2. A Perturbation Theorem for α-times Integrated Semigroups

We recall the definition of an α-times integrated semigroup.

Definition 2.1. Let α ≥ 0 and (A,D(A)) be a linear operator on a Banach space
X. A is called generator of an α-times integrated semigroup if there are nonnegative
numbers ω,M and a mapping S : [0,∞) → L(X) such that

• (S(t))t≥0 is strongly continuous and ‖
∫ t

0
S(s) ds‖ ≤ Meωt for all

t ≥ 0,

• (ω,∞) ⊆ ρ(A) and

• R(λ,A) = λα
∫ ∞

0
e−λt S(t) dt for λ > ω.

In this case, the family (S(t))t≥0 is the α-times integrated semigroup generated by
A.

Remarks (1) If (A,D(A)) generates an α-times integrated semigroup (S(t))t≥0,
then the halfplane {λ ∈ C : Re λ > ω} is contained in ρ(A) and R(λ,A) =
λα

∫ ∞

0
e−λtS(t)dt if Reλ > ω.

(2) By uniqueness of the Laplace transform (S(t))t≥0 is uniquely determined.

(3) If α = 0, the definition above is consistent with the definition of a C0-semigroup
(see [1, Theorem 3.1.7]). In this case the generator A is densely defined and (S(t))t≥0

is exponentially bounded. For α > 0 this may not be true in general. If (S(t))t≥0 is
exponentially bounded, then the growth bound of (S(t))t≥0 is defined by

ω(S) := inf{ω ∈ R : ∃K ≥ 0 such that ‖S(t)‖ ≤ Keωt}.

(4) If A generates an α-times integrated semigroup (Sα(t))t≥0 then A also generates
a β-times integrated semigroup (Sβ(t))t≥0 for each β > α.

(5) If A generates an α-times integrated semigroup (S(t))t≥0 then the abstract
Cauchy problem

{

u′(t) = Au(t), t ∈ [0, τ ],

u(0) = x,
(4)
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has a unique classical solution for each x ∈ D(An+1) where n ∈ N0 such that n−1 <

α ≤ n ([12]). By a classical solution of (4) we mean a function u ∈ C1([0,∞),X)
such that u(t) ∈ D(A) for all t ≥ 0 and (4) is satisfied.

We will also need the following definition:

Definition 2.2. A Banach space X has Fourier type p ∈ [1, 2] if the Fourier

transform extends to a bounded linear operator from Lp(R,X) to Lp′

(R,X), where
1
p + 1

p′
= 1.

Each Banach space has Fourier type 1. A Banach space has Fourier type 2 if and
only if it is isomorphic to a Hilbert space ([16]). If X has Fourier type p, then it
has Fourier type r for each r ∈ [1, p]. Each closed subspace, each quotient space
and the dual space X∗ of a Banach space X have the same Fourier type as X. If
X and Y both have Fourier type p, then X × Y also has Fourier type p. The space
Lr(Ω, µ) has Fourier type min{r, r

r−1} ([17]). If X has Fourier type p and q ∈ [p, p′],

then Lq(R,X) has Fourier type p ([10]). Each uniformly convex Banach space has
Fourier type p > 1 ([4, 5]).

Then the following perturbation theorem holds. For the proof we refer to [15].

Theorem 2.3. Let X be a Banach space of Fourier type p ∈ [1, 2]. Let (A,D(A))
be the generator of an exponentially bounded α-times integrated semigroup (S(t))t≥0

on X and let (B,D(B)) be a linear operator in X. Choose β > α+ 1
p . If A is densely

defined, D(B) ⊇ D(A) and there are constants λ0 > max{0, ω(S)} and M < 1 such
that

‖BR(λ,A)‖ ≤ M

for all λ ∈ C with Re λ = λ0, then (A + B,D(A)) generates a β-times integrated
semigroup.

3. Main Results

We consider the equation










u′(t) = Au(t) + Φut, t ≥ 0

u(0) = x

u0 = f.

(5)

where

• X is a Banach space and x ∈ X,
• (A,D(A)) is a closed linear operator in X,
• f ∈ Lp([−1, 0], Z), 1 ≤ p < ∞, where Z is a Banach space such that

D(A) →֒ Z →֒ X with continuous embeddings,
• the delay operator Φ : W 1,p([−1, 0], Z) → X is linear and bounded,
• u : [−1,∞) → X and
• ut : [−1, 0] → X is defined by ut(σ) = u(t + σ) for σ ∈ [−1, 0].

We say that a function u : [−1,∞) → X is a (classical) solution of (5) if

(i) u ∈ C([−1,∞), Z) ∩ C1([0,∞),X),
(ii) u(t) ∈ D(A) and ut ∈ W 1,p([−1, 0], Z) for all t ≥ 0 and
(iii) u satisfies (5) for all t ≥ 0.

We now want to investigate existence and uniqueness of solutions of (5) in the space
X. To do this we introduce, as in [3], the Banach space

X := X × Lp([−1, 0], Z)
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and the operator

A :=

(

A Φ
0 d

dσ

)

(6)

in X with domain

D(A) :=
{(

x
f

)

∈ D(A) × W 1,p([−1, 0], Z) : f(0) = x
}

.

The matrix operator A is closed, since A is, and it is densely defined, if A is. If
(5) has a solution u, then u0 = f ∈ W 1,p([−1, 0], Z) and u(0) = x ∈ D(A) i.e.,
(

x
f

)

∈ D(A).

The problem (5) and the abstract Cauchy problem associated to the operator
(A,D(A))

{

U ′(t) = AU(t), t ≥ 0

U(0) =
(

x
f

)

.
(7)

on the space X are “equivalent”: there is a natural correspondence between the
solutions of the two problems (5) and (7). For a proof of the following Proposition
see [2, Proposition 2.3 and 2.4].

Proposition 3.1. Let
(

x
f

)

∈ D(A).

(a) If u : [−1,∞) → X is a solution of the delay equation (5) then

U :

{

[0,∞) → X

t 7→
(

u(t)
ut

)

is a classical solution of the abstract Cauchy problem (7).

(b) Let

U :

{

[0,∞) → X

t 7→
(

z(t)
v(t)

)

be a classical solution of the abstract Cauchy problem (7) and u : [−1,∞) → X

defined by

u(t) :=

{

z(t), t ≥ 0

f(t), t ∈ [−1, 0].

Then ut = v(t) for all t ≥ 0 and u is a solution of the delay equation (5).

We now want to give sufficient conditions such that (A,D(A)) generates an α-times
integrated semigroup on X. Then the abstract Cauchy problem (7) has a unique
solution for x ∈ D(An+1) where n ≥ α (see [12]). To be able to use the perturbation
result 2.3 we write A as sum A0 + B, where

A0 =

(

A 0
0 d

dσ

)

with domain D(A0) := D(A) and

B =

(

0 Φ
0 0

)

∈ L(D(A0),X ).

We first look at A0.

Proposition 3.2. Let α ≥ 0 and (A,D(A)) be the generator of an α-times inte-
grated semigroup (S(t))t≥0 on X and let D(A) →֒ Z →֒ X. If
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(G) for each t ≥ 0 and each x ∈ X the function s 7→ S(s)x is in Lp([0, t];Z)
and there is a positive constant ct such that

(
∫ t

0

‖S(s)x‖p
Zds

)1/p

≤ ct‖x‖,

then (A0,D(A0)) generates an α-times integrated semigroup on X .

Remarks. (1) Condition (G) in Proposition 3.2 is automatically satisfied if Z = X.

(2) If (A,D(A)) generates an analytic semigroup (T (t))t≥0 on X and if there is
δ > ω(T ) and 0 < θ < 1

p such that D((δ − A)θ) →֒ Z →֒ X with continuous and

dense embeddings, then condition (G) is satisfied for (T (t))t≥0 (see [3]).

(3) Let (A,D(A)) be the generator of an α-times integrated semigroup (S(t))t≥0

on X and consider S̃(t) :=
∫ t

0
S(s)ds. Then condition (G) is always satisfied for

(S̃(t))t≥0: We have that

(
∫ t

0

‖S̃(s)x‖p
Zds

)1/p

≤ C

(
∫ t

0

‖S̃(s)x‖p
D(A)ds

)1/p

≤ C

(
∫ t

0

‖S̃(s)x‖p
Xds

)1/p

+ C

(
∫ t

0

‖AS̃(s)x‖p
Xds

)1/p

.

Now we use the Uniform Boundedness Principle and the formula

AS̃(s)x = S(s)x −
sα

Γ(α + 1)
x

(see [13, Proposition 2.4]). But (S̃(t))t≥0 is the (α + 1)-times integrated semigroup
generated by A. So we always can achieve (G) by enlarging the integration rate α.

For the proof of Proposition 3.2 we first compute the resolvent of (A0,D(A0)). For

λ ∈ C and
(

y
g

)

∈ X we look for
(

x
f

)

∈ D(A0) such that

(λ −A)
(

x
f

)

=
(

y
g

)

.

This is the case if and only if there are x ∈ D(A) and f ∈ W 1,p([−1, 0], Z) such
that

(λ − A)x = y, f(0) = x and λf − f ′ = g.

If (A,D(A)) generates an α-times integrated semigroup on X, then the set {λ ∈
C : Re λ > λ0} is contained in the resolvent set of A for some λ0 ∈ R. Therefore
x = R(λ,A)y for Reλ > λ0. The differential equation λf − f ′ = g with initial
condition f(0) = x has a unique solution f ∈ W 1,p([−1, 0], Z) for all λ ∈ C which
is given by

f(σ) = eλσ

(

x +

∫ 0

σ

e−λtg(t)dt

)

.

On the other hand, the operator

A0f = f ′

with domain D(A0) = {f ∈ W 1,p([−1, 0], Z) : f(0) = 0} has empty spectrum and

(R(λ,A0)g)(σ) = eλσ

∫ 0

σ

e−λtg(t)dt.
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Therefore the resolvent of (A0,D(A0)) is given by

R(λ,A0)
(

y
g

)

=

(

R(λ,A)x

eλ·R(λ,A)y + R(λ,A0)g

)

=

(

R(λ,A) 0
eλ·R(λ,A) R(λ,A0)

)

(

y
g

)

(8)

for Reλ > λ0.

We fix some notations. It is well known ([9, I.4.17, II.2.11]), that (A0,D(A0)) gen-
erates the nilpotent shift semigroup (T0(t))t≥0 in Lp([−1, 0], Z) given by

(T0(t)f)(σ) :=

{

f(σ + t), σ + t ≤ 0,

0, σ + t > 0.

In particular, (A0,D(A0)) generates an α-times integrated semigroup (S0(t))t≥0,
where

S0(t) =

∫ t

0

(t − s)α−1

Γ(α − 1)
T0(t)dt.

Moreover we define

(Stx)(τ) :=

{

S(t + τ)x, −t < τ ≤ 0

0, −1 ≤ τ ≤ −t.

where (S(t))t≥0 is the α-times integrated semigroup generated by (A,D(A)). If (G)
is true, then it easily follows that St : X → Lp([−1, 0], Z) is bounded for all t ≥ 0.

Now we prove Proposition 3.2:

Proof of Proposition 3.2 . Let

S0(t) :=

(

S(t) 0
St S0(t)

)

, t ≥ 0.

For each t ≥ 0, S0(t) ∈ L(X ). Moreover (S0(t))t≥0 is strongly continuous since
(S(t))t≥0 and (S0(t))t≥0 are strongly continuous.

Then, for λ ∈ R large,

λα

∫ ∞

0

e−λtS(t)dt = R(λ,A) bzw. λα

∫ ∞

0

e−λtS0(t)dt = R(λ,A0).

Hence we get for x ∈ X and τ ∈ [−1, 0]

λα

∫ ∞

0

e−λt(Stx)(τ)dt = λα

∫ ∞

−τ

e−λtS(t + τ)xdt

= eλτλα

∫ ∞

0

e−λtS(t)xdt

= eλτR(λ,A)x.

This shows

R(λ,A0) = λα

∫ ∞

0

e−λtS0(t)dt,

i.e., (S0(t))t≥0 the α-times integrated semigroup generated by (A0,D(A0)). ¤

From now on we assume that (A,D(A)) generates an α-times integrated semigroup
(S,D(S)) on X such that condition (G) in Proposition 3.2 holds. We use the per-
turbation results from Section 2 to find conditions on the delay operators Φ such
that (A,D(A)) generates a β-times integrated semigroup on X for some β ≥ α.
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If Reλ > λ0 then

∥

∥

∥

∥

BR(λ,A0)

(

x

f

)∥

∥

∥

∥

X

=

∥

∥

∥

∥

(

0 Φ
0 0

)(

R(λ,A)x
eλ·R(λ,A)x + R(λ,A0)f

)∥

∥

∥

∥

X

=
∥

∥Φ(eλ·R(λ,A)x + R(λ,A0)f)
∥

∥

X

für
(

x
f

)

∈ X . Here ‖ · ‖X is one of the equivalent norms on X ×Lp([−1, 0], Z). Using

Theorem 2.3 we get

Theorem 3.3. Let X be a Banach space and let (A,D(A)) be densely defined
and generator of an α-times integrated semigroup on X, where α is chosen such
that condition (G) in Proposition 3.2 holds. Let D(A) →֒ Z →֒ X and Φ ∈
L(W 1,p([−1, 0], Z),X), 1 ≤ p < ∞. If there are numbers M ∈ [0, 1) and λ0 > 0
such that for all Re λ = λ0

∥

∥Φ(eλ·R(λ,A)x + R(λ,A0)f)
∥

∥

X
≤ M

∥

∥

∥

∥

(

x

f

)∥

∥

∥

∥

X

, (9)

then (A,D(A)) generates a β-times integrated semigroup for all β > α + 1
r , where

X = X × Lp([−1, 0], Z) is of Fourier type r. In particular, if X is of Fourier-type
q ∈ [1, 2], then one can choose r = min{p, 1 − 1

p , q}.

In the following we give examples for delay operators Φ that satisfy the condition
(9).

Example 3.4. Let D(A) →֒ Z →֒ X and Φ ∈ L(Lp([−1, 0], Z),X). Then

‖Φ(eλ·R(λ,A)x + R(λ,A0)f‖X ≤ ‖Φ‖
(

‖R(λ,A)x‖Z +
C

Re λ
‖f‖p

)

for all x ∈ X, all f ∈ Lp([−1, 0], Z) and all Reλ large enough. Hence there is
λ0 ∈ R such that (9) is satisfied for Reλ = λ0 provided that ‖Φ‖ is small enough
and ‖R(λ,A)‖L(X,Z) is uniformly bounded for λ in a half-plane. ¤

Example 3.5. Let D(A) →֒ Z →֒ X and let η : [−1, 0] → L(Z,X) be of bounded
variation. If Φ : C([−1, 0], Z) → X is given by

Φf :=

∫ 0

−1

dηf, f ∈ C([−1, 0], Z)

then Φ ∈ L(C([−1, 0], Z),X). In particular, Φ is bounded from W 1,p([−1, 0], Z) to
X since W 1,p([−1, 0], Z) is continuously embedded C([−1, 0], Z). If the real part of
λ is large enough we get

‖Φ(eλ·R(λ,A)x)‖X =

∥

∥

∥

∥

∫ 0

−1

dη(σ)eλσR(λ,A)x

∥

∥

∥

∥

X

≤

∫ 0

−1

eRe λσd|η|(σ) ‖R(λ,A)x‖Z

≤ |η|([−1, 0])‖R(λ,A)x‖Z
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and

‖ΦR(λ,A0)f‖X =

∥

∥

∥

∥

∫ 0

−1

dη(σ)(R(λ,A0)f)(σ)

∥

∥

∥

∥

X

=

∥

∥

∥

∥

∫ 0

−1

dη(σ)

∫ 0

σ

e−λ(t−σ)f(t)dt

∥

∥

∥

∥

X

≤

∫ 0

−1

∫ 0

σ

e−Re λ(t−σ)‖f(t)‖Zdt d|η|(σ)

≤

∫ 0

−1

(
∫ 0

σ

e−Re λ(t−σ)qdt

)1/q

dt d|η|(σ)‖f‖p

≤ (Re λq)−1/q |η|([−1, 0]) ‖f‖p,

where 1
p + 1

q = 1 and |η| is the positive Borel measure on [−1, 0] defined by η. Hence

there is λ0 ∈ R such that (9) is satisfied for Reλ = λ0 provided that |η|([−1, 0]) is
small enough and ‖R(λ,A)‖L(X,Z) is uniformly bounded for λ in a half-plane. ¤

Example 3.6. Let D(A) →֒ Z →֒ X, Ψ ∈ L(C([−1, 0],X),X) and B ∈ L(Z,X)
such that ‖BR(λ,A)‖ ≤ M < ‖Ψ‖−1 for Re λ large enough. We define the delay
operator Φ ∈ L(C([−1, 0], Z),X) by

Φf = Ψ(s 7→ B(f(s))).

Then, for all x ∈ S, f ∈ Lp([−1, 0], Z) and all Reλ large enough,

‖Φ(eλ·R(λ,A)x)‖X = ‖Ψ(eλ·BR(λ,A)x)‖X ≤ ‖Ψ‖ sup
−1≤s≤1

‖eλsBR(λ,A)x‖X

≤ ‖Ψ‖‖BR(λ,A)x‖ ≤ M‖Ψ‖ < 1

and

‖ΦR(λ,A0)f‖X = ‖Ψ(s 7→ B((R(λ,A0)f)(s))‖X

=

∥

∥

∥

∥

Ψ

(

s 7→ B

∫ 0

s

e−λ(t−s)f(t)dt

)∥

∥

∥

∥

X

≤ ‖Ψ‖ sup
−1≤s≤0

∥

∥

∥

∥

∫ 0

s

e−λ(t−s)B(f(t))dt

∥

∥

∥

∥

X

≤ ‖Ψ‖ sup
−1≤s≤0

∫ 0

s

e−Re λ(t−s)‖B(f(t))‖Xdt

≤ ‖Ψ‖‖B‖ sup
−1≤s≤0

∫ 0

s

e−Re λ(t−s)‖f(t)‖Zdt

≤ ‖Ψ‖‖B‖(Re λq)−1/q‖f‖Lp([−1,0],Z)

Using the triangle inequality we obtain that there is λ0 ∈ R such that (9) is satisfied
for Reλ = λ0. ¤

4. Applications

We consider the equation


















u′(t) = Au(t) + γBu(t − 1) +

∫ 0

−1

a(s)Bu(t + s)ds,

u(0) = x,

u0 = f,

(10)

where γ ∈ C and a ∈ L1([−1, 0]).
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First we assume that (A,D(A)) generates a bounded analytic semigroup on a Ba-
nach space X and that B ∈ L(D(A),X) is relatively bounded with respect to A,
i.e., there are nonnegative α, β with

‖Bx‖ ≤ α‖Ax‖ + β‖x‖, x ∈ D(A).

Let K := supRe λ>0 ‖λR(λ,A)‖. Then

‖BR(λ,A)‖ ≤ α(K + 1) +
βK

|λ|
, Re λ > 0.

Define Ψ ∈ L(C([−1, 0],X),X) by

Ψf := γf(−1) +

∫ 0

−1

a(s)f(s)ds

and let

Φf := Ψ(s 7→ Bf(s)) = γBf(−1) +

∫ 0

−1

a(s)Bf(s)ds.

Now we apply Example 3.6 which yields that condition (9) is satisfied for Reλ large
enough if

α(K + 1) < ‖Ψ‖−1.

In particular, this is the case if α(K + 1) < (|γ| + ‖α‖1)
−1.

Now Theorem 3.3 yields the following proposition:

Proposition 4.1. Let (A,D(A)) be the generator of a bounded analytic semigroup
on a Banach space X with K := supRe λ>0 ‖λR(λ,A)‖ and let B be a linear operator
in X bounded from D(A) to X such that there are numbers α, β > 0 with

‖Bx‖ ≤ α‖Ax‖ + β‖x‖

for all x ∈ D(A). Let γ ∈ C and a ∈ L1([−1, 0]) such that α(K+1) < (|γ|+‖a‖1)
−1.

Then there is n ∈ N such that (10) has a unique solution for all
(

x
f

)

∈ D(An), where

A is the matrix operator associated to (10).

For a second application let X = Lp(R) where 1 < p < ∞ and let m ≥ 2 be an
integer. We define the operator (Am,D(Am)) by

Amf := if (m) if m is even,

and by

Amf := f (m) if m is odd,

with domain D(A) := Wm,p(R) in Lp(R).

Then (Am,D(Am)) generates a C0-semigroup on X if and only if p = 2 ([12]). For
m = 2 this was proved first by Hörmander [14] in 1960. If p 6= 2, (Am,D(Am))
generates an α-times integrated semigroup on X for α >

∣

∣

1
2 − 1

p

∣

∣ ([12]).

We again consider the Delay equation (10) where A = Am and (B,D(B)) is given
by

Bf := V · f (l)

with maximal domain

D(B) := {f ∈ Lp(R) : V · f (l) ∈ Lp(R)}

in Lp(R). Here, V is a potential and l ∈ N ∪ {0}.

We will use the following lemma from [15].
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Lemma 4.2. Let X = Lp(R), 1 < p < ∞, and let one of the conditions

(i) l ≤ 1
p (m − 1) and V ∈ Lp(R)

or
(ii) l = 0 and V ∈ Lp(R) + L∞(R)

hold true. Let (Am,D(Am)) and (B,D(B)) be defined as above. Then D(A) ⊆ D(B)
and for each M ≥ 0 there is a λM ∈ R such that ‖BR(λ,Am)‖ ≤ M for all λ ∈ C

such that Re λ ≥ λM .

In particular, D(A) →֒ D(B) →֒ X and B ∈ L(D(B),X), since B is closed. If we
define Ψ and Φ as above, then Example 3.6 yields that condition (9) is satisfied for
Re λ large enough. We again use Theorem 3.3 and obtain

Proposition 4.3. Let X = Lp(R) and let A = Am and B be defined as above,
where

(i) l ≤ 1
p (m − 1) and V ∈ Lp(R)

or
(ii) l = 0 and V ∈ Lp(R) + L∞(R).

Let γ ∈ C and a ∈ L1([−1, 0]). Then there is n ∈ N such that (10) has a unique
solution for all

(

x
f

)

∈ D(An), where A is the matrix operator associated to (10).
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