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ABSTRACT

We study the continuous and semi-discrete wavelet transform applied to functions with values in Lebesgue spaces.
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1. INTRODUCTION

In this paper we study the continuous and semi-discrete wavelet transform for functions with values in Lebesgue
spaces. What we basically will show is that the classical scalar-valued results carry over to this vector-valued
setting. In this sense our results can be considered as an extension and continuation of the work of T. Figiel.1 In
the late 80’s, he proved that the scalar-valued theory on orthonormal wavelets can be transfered to the vector-
valued setting precisely when the underlying Banach space has the UMD property. (Most reflexive Banach spaces
satisfy this condition.) We2 extended the Figiel result to redundant discrete wavelet transforms (wavelet frames)
and proved boundedness of localization operators with operator-valued symbol connected with the discrete
wavelet transform.

Here we focus on the continuous and the semi-discrete wavelet transform, for which we prove a norm estimate
and a reconstruction formula corresponding to the classical scalar-valued Littlewood-Paley theory (see e.g. [3]).
Our results are also related to square function estimates from [4] and the homogeneous Triebel-Lizorkin spaces
(see e.g. [5]).

Our primary interest is from a theoretical point of view. However, a vector-valued wavelet theory should also
be useful in applications, e.g. to the study of differential operators. In fact, the methods we use have already
been successfully applied in various fields (regularity of solutions of partial differential equations,6 functional
calculus,7 stochastic integration8).

2. DEFINITIONS, NOTATIONS, AND MAIN TOOLS

By B(X,Y ) we denote the space of bounded linear operators from a Banach space X to some Banach space Y
and X ′ = B(X,C) is the dual space of X. If x′ ∈ X ′ and x ∈ X, we also write 〈x′, x〉X for x′(x).

The Schwartz class S(RN , X) is the space of X-valued rapidly decreasing smooth functions on RN .

N = {1, 2, . . . } is the set of natural numbers and N0 = {0} ∪ N. If r is a positive real number, then [r] =
max{n ∈ N0 : n ≤ r}. By R∗ we denote the multiplicative group R+, endowed with its invariant measure dt

t .
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2.1. Some notions from Banach space theory

We will need two notions from the theory of Banach spaces, the notion of Fourier type and the so-called UMD
property.

A Banach space X has Fourier type r ∈ [1, 2] if the Fourier transform F defined by

(Ff)(u) = f̂(u) = (2π)−N/2
∫

RN

e−iuvf(v)dv, f ∈ S(R, X),

extends to a bounded linear operator from Lr(R, X) to Lr′(R, X), where 1
r + 1

r′ = 1.

The notion of Fourier type was introduced by Peetre.9 Each Banach space has Fourier type 1 and the notion
becomes more restrictive as p increases to 2. A Banach space has Fourier type 2 if and only if it is isomorphic to
a Hilbert space.10 The dual space and each closed subspace of a Banach space X has the same Fourier type as
X.

A Banach space X is a UMD space if and only if the Hilbert transform

(Hf)(u) = PV −
∫

f(v)
u− v

dv, f ∈ S(R, X),

extends to a bounded linear operator on Lp(R, X) for some (and thus for each) p ∈ (1,∞).

There are several equivalent definitions of UMD spaces (see [11, p.141-142] and the references given there). One
of these equivalent definitions is the property of unconditionality of martingale differences, where the abbreviation
UMD comes from.

It is clear from our definition that each Hilbert space is a UMD space. The dual space and each closed subspace
of a UMD space is a UMD space. A UMD space X always has a uniformly convex renorming12 and therefore is
super-reflexive.13 In particular, `1 is not finitely representable in X. Hence X is B-convex [14,Theorem 13.6].
Now it follows from a result from Bourgain15, 16 that every UMD-space has some Fourier type r > 1.

2.2. The Lebesgue-Bochner spaces

In this paper we will deal with a special class of Banach spaces, the Lebesgue-Bochner spaces. For convenience
we shortly recall their definition here. For more details we refer to [17].

Let (Ω,Σ, µ) be a σ-finite measure space and let X be a Banach space. For a µ-measurable function f : Ω → X
we write

‖f‖Lp(Ω,µ,X) =
(∫

Ω

‖f(ω)‖pXdµ(ω)
)1/p

, p ∈ [1,∞),

‖f‖L∞(Ω,µ,X) = ess sup{‖f(ω)‖X : ω ∈ Ω}.

Now the symbol Lp(Ω, µ,X) stands for the set of all (equivalence classes of) µ-measurable functions f : Ω → X
such that ‖f‖Lp(Ω,µ,X) is finite. Normed by ‖ · ‖Lp(Ω,µ,X), the vector space Lp(Ω, µ) becomes a Banach space. If
X = C, we write Lp(Ω, µ) for Lp(Ω, µ,C).

If the dual space X ′ of X has the Radon-Nikodym property (in particular, if X is reflexive) and p ∈ [1,∞),
then the dual space of Lp(Ω, µ,X) is isometrically isomorphic to Lp′(Ω, µ,X ′), where p′ is the dual index of p,
i.e. 1

p + 1
p′ = 1.17

IfX has Fourier type r, then Lp(Ω, µ,X) has Fourier type min{r, p, p′}.18 IfX is a UMD space and p ∈ (1,∞),
then Lp(Ω, µ,X) is a UMD space [11,p.145].



2.3. R-boundedness
For the notion of R-boundedness we need the Rademacher functions, defined by

rk(t) = sign sin(2kπt), t ∈ [0, 1], k ∈ N.

The sequence (rk) is orthonormal in L2([0, 1]), as one can easily see from their graphs:
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In the theory of Rademacher sums there is a fundamental principle, the so-called contraction principle.

Lemma 2.1 (Contraction principle). Let X be a Banach space. Then for each n ∈ N, all complex numbers
a1, . . . , an and all x1, . . . , xn ∈ X,∥∥∥ n∑

k=1

akrkxk

∥∥∥
L2([0,1],X)

≤ 2 max
1≤k≤n

|ak|
∥∥∥ n∑
k=1

rkxk

∥∥∥
L2([0,1],X)

The contraction principle basically says that one can “drop out” scalars from Rademacher sums. If X is a
Hilbert space, then the same is true if we replace the scalars ak by bounded linear operators Tk on X. (One only
has to replace the absolute value |ak| by the operator norm ‖Tk‖.) But if X is an arbitrary Banach space this
does not hold in general. So we make the following definition.

Definition 2.2. Let X and Y be Banach spaces. A set of operators τ ⊆ B(X,Y ) is called R-bounded if there is
a constant C <∞ such that for all n ∈ N, all T1, . . . , Tm ∈ τ and all x1, . . . xm ∈ X we have that∥∥∥ n∑

k=1

rkTkxk

∥∥∥
L2([0,1],Y )

≤ C
∥∥∥ n∑
k=1

rkxk

∥∥∥
L2([0,1],X)

. (1)

The infimum over all C such that (1) holds is called the R-bound of τ and is denoted by R(τ).

If X and Y are Hilbert spaces, then τ is R-bounded if and only if τ is uniformly bounded with respect to the
operator norm in B(X,Y ). It turns out that in many situations R-boundedness is the right notion for generalizing
Hilbert space results to Banach spaces. On of these situations is the operator-valued Fourier multiplier theorem
below.

We also recall a classical inequality from the theory of Rademacher sums, which will be very useful in the
proof of our main result on the continuous wavelet transform.

Lemma 2.3 (Kahane’s inequality). For q ∈ [1,∞), there is a constant Kq <∞ such that for each Banach
space X, each n ∈ N and all x1, . . . , xn ∈ X,

1
Kq

∥∥∥ n∑
k=1

rkxk

∥∥∥
L2([0,1],X)

≤
∥∥∥ n∑
k=1

rkxk

∥∥∥
Lq([0,1],X)

≤ Kq

∥∥∥ n∑
k=1

rkxk

∥∥∥
L2([0,1],X)

. (2)

In the case that X is a Hilbert space with scalar product 〈·|·〉, we have that∥∥∥ n∑
k=1

rkxk

∥∥∥2

L2([0,1],X)
=

∫ 1

0

〈 n∑
k=1

rk(t)xk
∣∣∣ n∑
j=1

rj(t)xj
〉
dt =

n∑
k=1

n∑
j=1

〈xk|xj〉
∫ 1

0

rk(t)rj(t)dt =
n∑
k=1

‖xk‖2X .



Hence in this special case Kahane’s inequality reads

1
Kq

( n∑
k=1

‖xk‖2X
)1/2

≤
∥∥∥ n∑
k=1

rkxk

∥∥∥
Lq([0,1],X)

≤ Kq

( n∑
k=1

‖xk‖2X
)1/2

. (3)

2.4. An operator-valued Fourier multiplier theorem of Mihlin type

Here we will state the main tool we will use in the proof of our result on the continuous wavelet transform. For
this we first make the following definition.

Definition 2.4. Let X,Y be Banach spaces, p ∈ (1,∞), and M : RN \ {0} → B(X,Y ) be a bounded measurable
function. For f ∈ S(RN , X) consider

Tf := F−1[M(·)f̂(·)] ∈ L∞(RN , Y ).

Then M is a Fourier multiplier from Lp(RN , X) to Lp(RN , Y ) provided there is a constant Cp <∞ so that

‖Tf‖Lp(RN ,Y ) ≤ Cp‖f‖Lp(RN ,X)

for each f ∈ S(RN , X). The unique extension of T to an operator in B(Lp(RN , X), Lp(RN , Y )) is also denoted
by T .

With this definition the following Mihlin-type fourier multiplier theorem holds. For a proof see [19].

Theorem 2.5. Let X and Y be UMD spaces with Fourier type r ∈ (1, 2], let N ∈ N, and l = [Nr ] + 1. Assume
that M : RN \ {0} → B(X,Y ) is measurable, the distributional derivatives DαM are represented by measurable
functions for each α ∈ NN0 with |α| ≤ l, and the set

τ = {|ξ||α|(DαM)(ξ) : ξ ∈ RN \ {0}, |α| ≤ l}

is R-bounded. Then M is a Fourier multiplier from Lp(RN , X) to Lp(RN , Y ) for p ∈ (1,∞).

If X and Y are Hilbert spaces, then R-boundedness reduces to boundedness. Therefore Theorem 2.5 can be
seen as a generalization of a corresponding result in the Hilbert space case by Schwartz.20

Remark 2.6. Suppose the conditions of Theorem 2.5 are satisfied. Then [M(·)]′ : RN \ {0} → B(Y ′, X ′) also
satisfies the conditions of Theorem 2.5 (cf. e.g. [21, Theorem 2.2.14]).

3. THE CONTINUOUS WAVELET TRANSFORM

In this section we assume that (Ω,Σ, µ) is some σ-finite measure space and q ∈ (1,∞). By X we denote the
Lebesgue space Lq(Ω, µ). Then X is a UMD space with Fourier type r := min{q, q′}. Furthermore, let N ∈ N.

We will show that the continuous wavelet transform is bounded from Lp(RN , X) to Lp(RN , Y ), where we
will choose Y = Lq(Ω, µ, L2(R∗)). For this we need the following two assumptions on the wavelet ψ ∈ L2(RN ):

(C1) For all α ∈ NN0 with |α| ≤ l := [Nr ] + 1, the distributional derivatives Dαψ̂ are represented by measurable
functions and

Cα(ψ) := sup
|ξ|=1

(∫ ∞

0

t2|α||(Dαψ̂)(tξ)|2 dt
t

)1/2

<∞

(C2) c0(ψ) := inf
|ξ|=1

(∫ ∞

0

|ψ̂(tξ)|2 dt
t

)1/2

> 0.



Now we define the continuous wavelet transform, applied to some smooth X-valued function. For t ∈ R \ {0}
we write ψt for the function defined by ψt(s) = |t|−Nψ(t−1s), s ∈ RN .

Definition 3.1. The continuous wavelet transform Wψf of a function f ∈ S(RN , X) with respect to the wavelet
ψ is given by

(Wψf)(t, s) := (ψt ∗ f)(s) =
∫

RN

t−Nψ( s−ut )f(u) du, t > 0, s ∈ RN .

First we will prove that the continuous wavelet transform can be extended to a bounded linear operator from
Lp(RN , X) to Lp(RN , Y ). More precisely, we show that the following theorem holds.

Theorem 3.2. Let (Ω,Σ, µ) be a σ-finite measure space, q ∈ (1,∞), and X = Lq(Ω, µ). If p ∈ (1,∞) and
ψ ∈ L2(RN ) satisfies (C1), then there is a constant C such that for all f ∈ S(RN , X),∥∥∥∥(∫ ∞

0

|(Wψf)(t, ·)|2 dt
t

)1/2∥∥∥∥
Lp(RN ,X)

≤ C‖f‖Lp(RN ,X). (4)

In particular, Wψ can be uniquely extended to a bounded linear operator Wψ,p from Lp(RN , X) to Lp(RN , Y ),
where Y = Lq(Ω, µ, L2(R∗)).

To prove this theorem we will define an operator-valued multiplier function and then apply the Fourier
multiplier theorem 2.5. The following lemma will be used to show that our multiplier function satisfies the
conditions of Theorem 2.5.

Lemma 3.3. Let m : RN \ {0} → C be a measurable function such that m(·ξ) ∈ L2(R∗) for each ξ ∈ RN with
|ξ| = 1. Then the following hold.

(a) ξ 7→ m(·ξ) is measurable as a function from RN \ {0} to L2(R∗). Moreover, for ξ ∈ RN \ {0},

M(ξ)x := m(·ξ)⊗ x, x ∈ X

defines a bounded linear operator M(ξ) : X → Y . The Banach space adjoint M(ξ)′ of M(ξ) is given by

M(ξ)′y′ =
[
ω 7→

∫ ∞

0

m(tξ)y′(ω)(t)
dt

t

]
, y′ ∈ Y ′ = Lq′(Ω, µ, L2(R∗)).

(b) If {m(·ξ) : |ξ| = 1} is bounded in L2(R∗), then {M(ξ) : ξ ∈ RN \ {0}} is R-bounded in B(X,Y ).

Proof. (a) That ξ 7→ m(·ξ) is measurable as a function from RN \{0} to L2(R∗) follows from Pettis’ measura-
bility theorem,17 since L2(R∗) is separable and ξ 7→ m(·ξ) is weakly measurable. The operator M(ξ) is bounded
from X to Y since

‖M(ξ)x‖Y = ‖m(·ξ)‖L2(R∗)‖x‖X
for all x ∈ X. Finally, for x ∈ X and y′ ∈ Y ′, we have that

〈M(ξ)′y′, x〉X = 〈y′,M(ξ)x〉Y =
∫

Ω

〈y′(ω)|(M(ξ)x)(ω)〉L2(R∗)dµ(ω)

=
∫

Ω

〈y′(ω)|m(·ξ)x(ω)〉L2(R∗)dµ(ω) =
∫

Ω

〈y′(ω)|m(·ξ)〉L2(R∗)x(ω)dµ(ω)

and therefore

M(ξ)′y′ =
[
ω 7→ 〈y′(ω)|m(·ξ)〉L2(R∗)

]
=

[
ω 7→

∫ ∞

0

m(tξ)y′(ω)(t)
dt

t

]
.

(b) Observe that the measure dt
t is scale-invariant and therefore, using our assumption,

A := sup
ξ 6=0

∥∥m(·ξ)
∥∥
L2(R∗)

= sup
|ξ|=1

∥∥m(·ξ)
∥∥
L2(R∗)

<∞. (5)



Now for n ∈ N, ξ1, . . . ξn ∈ RN \ {0} and x1, . . . , xn ∈ X we have by Kahane’s inequality and Fubini’s theorem(∫ 1

0

∥∥∥∥ n∑
k=1

rk(t)M(ξk)xk

∥∥∥∥2

Y

dt

)1/2 (2)

≤ Kq

(∫ 1

0

∥∥∥∥ n∑
k=1

rk(t)M(ξk)xk

∥∥∥∥q
Y

dt

)1/q

= Kq

(∫ 1

0

∫
Ω

∥∥∥∥ n∑
k=1

rk(t)m(·ξk)xk(ω)
∥∥∥∥q
L2(R∗)

dµ(ω) dt
)1/q

(Fubini)
= Kq

(∫
Ω

∫ 1

0

∥∥∥∥ n∑
k=1

rk(t)m(·ξk)xk(ω)
∥∥∥∥q
L2(R∗)

dt dµ(ω)
)1/q

.

Since L2(R∗) is a Hilbert space, Kahane’s inequality gives(∫ 1

0

∥∥∥∥ n∑
k=1

rk(t)m(·ξk)xk(ω)
∥∥∥∥q
L2(R∗)

dt

)1/q (3)

≤ Kq

( n∑
k=1

|xk(ω)|2
∥∥m(·ξk)

∥∥2

L2(R∗)

)1/2

(5)

≤ KqA

( n∑
k=1

|xk(ω)|2
)1/2

for almost every ω ∈ Ω. So far we have seen that(∫ 1

0

∥∥∥∥ n∑
k=1

rk(t)M(ξk)xk

∥∥∥∥2

Y

dt

)1/2

≤ K2
qA

(∫
Ω

( n∑
k=1

|xk(ω)|2
)q/2

dµ(ω)
)1/q

But by Kahane’s inequality and Fubini’s theorem we obtain(∫
Ω

( n∑
k=1

|xk(ω)|2
)q/2

dµ(ω)
)1/q (3)

≤ Kq

(∫
Ω

∫ 1

0

∣∣∣∣ n∑
k=1

rk(t)xk(ω)
∣∣∣∣qdt dµ(ω)

)1/q

(Fubini)
= Kq

(∫ 1

0

∥∥∥∥ n∑
k=1

rk(t)xk

∥∥∥∥q
X

dt

)1/q

(2)

≤ K2
q

(∫ 1

0

∥∥∥∥ n∑
k=1

rk(t)xk

∥∥∥∥2

X

dt

)1/2

.

Together we have (∫ 1

0

∥∥∥∥ n∑
k=1

rk(t)M(ξk)xk

∥∥∥∥2

Y

dt

)1/2

≤ K4
qA

(∫ 1

0

∥∥∥∥ n∑
k=1

rk(t)xk

∥∥∥∥2

X

dt

)1/2

But this means that {M(ξ) : ξ ∈ RN \ {0}} is R-bounded with R-bound ≤ K4
qA.

Now we prove Theorem 3.2.

Proof of Theorem 3.2. We define the operator-valued multiplier

Mψ : RN \ {0} → B(X,Y ), Mψ(ξ)x = ψ̂(·ξ)⊗ x, ξ ∈ RN \ {0}, x ∈ X,

and apply the Fourier multiplier theorem 2.5.

Let α be a multiindex with |α| ≤ l and define mα(ξ) = |ξ||α|(Dαψ̂)(ξ). By Lemma 3.3(a) and assump-
tion (C1), ξ 7→ mα(·ξ) is measurable from RN \ {0} to L2(R∗). Moreover, mα(·ξ) = |ξ||α|(Dαm0)(·ξ). Since
|ξ||α|(DαMψ)(ξ)x = |·ξ||α|(Dαm0)(·ξ) ⊗ x = mα(·ξ) ⊗ x, the distributional derivatives DαMψ are measurable
functions from RN\{0} to B(X,Y ). In addition, Lemma 3.3(b) and assumption (C2) yield that {|ξ||α|(DαMψ)(ξ) :
ξ ∈ RN \ {0}} is R-bounded for |α| ≤ l.



Now Theorem 2.5 implies that Mψ is a Fourier multiplier from Lp(RN , X) to Lp(RN , Y ). It remains to show
that, for f ∈ S(RN , X) and s ∈ RN ,

(Wψf)(·, s) = (ψ· ∗ f)(s) = (2π)−N/2
(
F−1[Mψ f̂ ]

)
(s) almost everywhere in R∗.

Since f ∈ S(RN , X), σ 7→ Mψ(σ)f̂(σ) = ψ̂(·σ)f̂(σ) is integrable as a function from RN to L2(R∗, X)). Let
s ∈ RN . By Theorem III.11.17 in [22], the function t 7→

(
F−1[ψ̂(t·)f̂(·)]

)
(s) is an element of the equivalence

class
(
F−1[Mf̂ ]

)
(s) ∈ L2(RN , X). But

(
F−1[ψ̂(t·)f̂(·)]

)
(s) = (2π)N/2(ψt ∗ f)(s). This completes the proof of the

theorem.

Theorem 3.4. Let (Ω,Σ, µ) be a σ-finite measure space, q ∈ (1,∞), X = Lq(Ω, µ), and Y = Lq(Ω, µ, L2(R∗)).
If p ∈ (1,∞) and ψ ∈ L2(RN ) satisfies both (C1) and (C2), then there is a constant C such that for all
f ∈ Lp(RN , X),

1
C
‖f‖Lp(RN ,X) ≤ ‖Wψ,pf‖Lp(RN ,Y ) ≤ C‖f‖Lp(RN ,X).

Proof. Observe first, that if ψ ∈ L2(RN ) satisfies (C1) and (C2), then ϕ, defined by

ϕ̂(ξ) :=
(∫ ∞

0

|ψ̂(tξ)|2 dt
t

)−1

ψ̂(ξ), ξ ∈ RN ,

also satisfies (C1) and (C2). Indeed, using our assumptions on ψ we see immediately that ϕ ∈ L2(RN ) and
satisfies (C2). To show that ϕ satisfies (C1), we look at h, defined by h(ξ) =

∫∞
0
|ψ̂(tξ)|2 dtt , ξ ∈ RN \{0}. By our

assumptions on ψ, it follows that h and its distributional derivatives of order ≤ l are bounded. Moreover, 1
h is

bounded and therefore has bounded distributional derivatives of order ≤ l. Using Leibniz’ formula and the fact
that h is positively homogeneous of degree 0 (i.e. h(tξ) = h(ξ) for all t > 0 and all ξ ∈ RN \ {0}), we obtain that

(tξ)α(Dαϕ̂)(tξ) =
∑
β≤α

(
α

β

)
ξα−β(Dα−β 1

h )(ξ)(tξ)β(Dβψ̂)(tξ).

Hence ϕ satisfies (C2).

We define the multiplier function Mϕ by Mϕ(ξ)x′ = ϕ̂(·ξ)⊗x′. As in the proof of Theorem 3.2 it can be shown
that Mϕ : RN \{0} → B(X ′, Y ′) satisfies the assumptions of the multiplier theorem 2.5. Now let Nϕ(ξ) = Mϕ(ξ)′.
Since X and Y both are reflexive, Nϕ : RN \{0} → B(Y,X). By Remark 2.6, Nϕ satisfies the assumptions of the
multiplier theorem 2.5 and therefore is a Fourier multiplier from Lp(RN , Y ) to Lp(RN , X). Moreover, by Lemma
3.3(a),

Nϕ(ξ)y :=
[
ω 7→

∫ ∞

0

ϕ̂(tξ)y(ω)(t)
dt

t

]
, ξ ∈ RN \ {0}, y ∈ Y. (6)

Now let Mψ : RN \ {0} → B(X,Y ) as in the proof of Theorem 3.2. Then for all x′ ∈ X ′ and x ∈ X,

〈x′, Nϕ(ξ)Mψ(ξ)x〉X =
∫

Ω

x′(ω)
∫ ∞

0

ϕ̂(tξ)ψ̂(tξ)x(ω)
dt

t
dµ(ω) =

∫
Ω

x′(ω)x(ω)
dt

t
dµ(ω) = 〈x′, x〉X .

So Nϕ(ξ)Mψ(ξ) = IdX for all ξ ∈ RN \ {0}. Therefore

f = F−1(Nϕ(·)Mψ(·)f̂(·) = F−1(Nϕ(·)F(Wψf)).

Since Nϕ is a Fourier multiplier from Lp(RN , Y ) to Lp(RN , X), the lower estimate follows. The upper estimate
has been shown in Theorem 3.2. So the theorem is proved.

Remark 3.5. Reconstruction formula
Suppose ψ,ϕ ∈ L2(R) satisfy (C1) and

∫
R ϕ̂(tξ)ψ̂(tξ)dtt = 1 for almost all ξ ∈ RN \{0}. Let us denote by Mϕ the



Fourier multiplier operator associated with the multiplier function Nϕ defined in (6). Then the proof of Theorem
3.4 yields that Mϕ is a bounded linear operator from Lp(RN , Y ) to Lp(RN , X) and that

f = MϕWψf

for all f ∈ Lp(RN , X). If f ∈ S(RN , X), this reconstruction formula can be written as

f = (2π)−N
∫ ∞

0

ϕt ∗ ψt ∗ f
dt

t
.

Indeed, for g ∈ S(RN , X ′), Fubini’s theorem yields∫
RN

〈g(s), f(s)〉X ds =
∫

RN

∫ ∞

0

ϕ̂(tξ) ψ̂(tξ)
dt

t
〈ĝ(−ξ), f̂(ξ)〉X dξ

=
∫ ∞

0

∫
RN

〈ĝ(−ξ), ϕ̂(tξ) ψ̂(tξ) f̂(ξ)〉X dξ
dt

t

=
∫ ∞

0

∫
RN

〈g(s), (2π)−N (ϕt ∗ ψt ∗ f)(s)〉X ds
dt

t

= lim
ε→0

R→∞

∫
RN

〈
g(s), (2π)−N

∫ R

ε

(ϕt ∗ ψt ∗ f)(s)
dt

t

〉
X

ds.

(Observe that ‖ϕt ∗ ψt ∗ f‖L∞ ≤ 1
t ‖ϕ‖2‖ψ‖2‖f‖1.) Now it is not hard to show that for each f ∈ S(RN , X),

f = (2π)−N lim
ε→0

R→∞

∫ R

ε

ϕt ∗ ψt ∗ f
dt

t
, (7)

where the limit is taken in Lp(RN , X). If we assume in addition that ϕ,ψ ∈ L1(RN ), then (7) holds for all
Lp(RN , X).

Remark 3.6. Classical square functions
Let P (x) = cN (1+ |x|2)−(N+1)/2, where cN > 0 is such that P̂ (ξ) = e−|ξ|. Then Pt(x) = t−NP (xt ) is the Poisson
kernel. Let ψ(x) := d

dtPt(x)|t=1. Then ψ satisfies the conditions (C1) and (C2). Indeed, ψ̂(ξ) = d
dt P̂t(ξ)|t=1 =

d
dt P̂ (tξ)|t=1 = −|ξ|e−|ξ|. A direct calculation of the derivatives completes the argument.
In the same way one can show that ϕ(x) = d

dtG
√
t(x)|t=1 satisfies (C1) and (C2). Here G√

t denotes der Gaussian
kernel with G(x) = e−|x|

2/2.
With these choices of ϕ and ψ we obtain vector-valued analogues of the g-function of Littlewood-Paley.4, 23

Remark 3.7. Further results
In [2], L. Weis and the author prove similar results as Theorem 3.2 and Theorem 3.4 for general UMD spaces
X. Here one has to replace the classical square function in (4) by the generalized square function introduced by
N. Kalton and L. Weis.7

4. THE SEMI-DISCRETE WAVELET TRANSFORM

As in the previous section, X denotes the Lebesgue space Lq(Ω, µ), where (Ω,Σ, µ) is some σ-finite measure
space and q ∈ (1,∞). Now we choose Y = Lq(Ω, µ, `2(Z)) and assume that ψ ∈ L2(RN ) and a > 1 are such that

(S1) for all α ∈ NN0 with |α| ≤ l, the distributional derivatives Dαψ̂ are represented by measurable functions
and

C ′
α(ψ) := sup

1≤|ξ|<a

(∑
j∈Z

a2j|α||(Dαψ̂)(ajξ)|2
)1/2

<∞

(S2) c′0(ψ) := inf1≤|ξ|<a
(∑

j∈Z |ψ̂(ajξ)|2
)1/2

> 0.



Remark 4.1. It is not hard to see that (S1) implies (C1), and (S2) implies (C2). Indeed, suppose (S1) holds.
Let ω ∈ C with |ω| = 1 and write ξ = tω. Integrating over 1 ≤ t ≤ a with respect to the measure dt

t yields∫ a

1

∑
j∈Z

a2j|α||(Dαψ̂)(ajtω)|2 dt
t
≤ C ′

α(ψ)2 log a.

But ∫ a

1

∑
j∈Z

a2j|α||(Dαψ̂)(ajtω)|2 dt
t

=
∑
j∈Z

∫ aj+1

aj

a2j|α||(Dαψ̂)(tω)|2 dt
t

≥
∑
j∈Z

∫ aj+1

aj

( ta )2|α||(Dαψ̂)(tω)|2 dt
t

= a−2|α|
∫ ∞

0

t2|α||(Dαψ̂)(tω)|2 dt
t
.

Therefore (C1) holds. For (S2) we proceed in a similar way (see also [24]).

Definition 4.2. Let a > 0. The semi-discrete wavelet transform Wa,ψf of a function f ∈ S(RN , X) with respect
to the wavelet ψ is given by

(Wa,ψf)(j, s) := (Wψf)(aj , s), j ∈ Z, s ∈ RN .

Now we can state our main result on the semi-discrete wavelet transform.

Theorem 4.3. Let p ∈ (1,∞).
(a) If ψ ∈ L2(RN ) and a > 1 satisfy (S1), then then there is a constant C such that for all f ∈ S(RN , X),∥∥∥∥(∑

j∈Z
|(Wa,ψf)(j, ·)|2

)1/2∥∥∥∥
Lp(RN ,X)

≤ C‖f‖Lp(RN ,X).

In particular, Wa,ψ can be uniquely extended to a bounded linear operator Wa,ψ,p from Lp(RN , X) to Lp(RN , Y ),
where Y = Lq(Ω, µ, `2(Z)).
(b) If ψ ∈ L2(RN ) and a > 1 satisfy (S1) and (S2), then there is a constant C such that for all f ∈ Lp(RN , X),

1
C
‖f‖Lp(RN ,X) ≤ ‖Wa,ψ,pf‖Lp(RN ,Y ) ≤ C‖f‖Lp(RN ,X).

The proof of this theorem is very similar to the one in the continuous case and will be omitted here.

Remark 4.4. Reconstruction formula
Suppose that ψ,ϕ ∈ L2(RN ) and a > 1 satisfy (S1) with∑

j∈Z
ϕ̂(ajξ)ψ̂(ajξ) = 1

for almost all ξ ∈ RN \ {0}. As in Remark 3.5 we can show that

f = Ma,ϕWa,ψf,

for all f ∈ Lp(RN , X). If f ∈ S(RN , X), this reconstruction formula can be written as

f = (2π)−N
∑
j∈Z

ϕaj ∗ ψaj ∗ f. (8)

If we assume in addition that ϕ,ψ ∈ L1(RN ), then (8) holds for all Lp(RN , X).

Remark 4.5. Classical square functions
Theorem 4.3 gives a vector-valued version of the fact that for p ∈ (1,∞) the homogeneous Triebel-Lizorkin spaces
Ḟ 0
p,2(RN ) are isomorphic to Lp(RN ).3, 5
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