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Abstract. We give a new proof of the T (1) theorem for the reflexive homo-

geneous Triebel–Lizorkin spaces Ḟ
s,q

p
, which uses neither maximal functions

nor atomic decompositions. The substitute tool is an estimate on translations
in the Lp(ℓq) spaces.
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1. Introduction

After the publication of the remarkable T (1) theorem of G. David and
J.-L. Journé [1] concerning general conditions of L2 boundedness of singular
integral operators

Tf(x) =

∫

RN

K(x, y)f(y)dy,

several authors ([2, 3, 4, 5, 6]) have proved results of similar flavour on various
different function spaces, such as the homogeneous Besov spaces Ḃs,q

p and the

homogeneous Triebel–Lizorkin spaces Ḟ s,q
p (which include the spaces Lp = Ḟ s,2

p

for 1 < p < ∞). In a different direction of generalization, T. Figiel [7] has proved
an analogue of the T (1) theorem for X-valued functions f ∈ Lp(X), where X is a
Banach space with a certain additional property (UMD) but the kernel K is still
scalar-valued. Quite recently, L. Weis and one of the present authors [8] gave a
new proof of Figiel’s T (1) theorem and extended it to operator-valued kernels K.
The two main analytic ingredients in [8] were the well-known Littlewood–Paley
decomposition and a rather less-known, but quite powerful, square-function
estimate, due to J. Bourgain [9], for the translation operators τh : f 7→ f(·−h).
It was subsequently observed by the second-named author [10, 11] that the
approach of [8] was adaptable to obtain proofs of T (1) theorems also for the
vector-valued homogeneous Besov Ḃs,q

p (X) and Bessel potential Ḣs
p(X) spaces.

The latter ones, in the scalar-valued case, coincide with Ḟ s,2
p for 1 < p < ∞.

The purpose of the present note is to show that essentially the same approach
carries over to the whole scale of the (reflexive) Triebel–Lizorkin spaces Ḟ s,q

p ,
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1 < p, q < ∞. Thus, our aim is to give a new proof of the T (1) theorem
for these spaces which makes no use whatsoever of either maximal functions or
atomic decompositions, the methods employed in the earlier proofs of analogous
results. The tool that replaces them in our proof is an appropriate modification
to the present situation of the above mentioned square function estimate for
translations (see Lemma 3.1).

We conclude the introduction with our statement of the T (1) theorem for the
Triebel–Lizorkin spaces. The definitions of these spaces, as well as of the var-
ious conditions appearing in the theorem, are given in Section 2. The crucial
translation lemma is proved in Section 3, and the proof of Theorem 1.1 is then
given in the final Section 4.

Theorem 1.1. Let n ∈ N and ν ∈ (0, 1). Suppose T ∈ CZOn+ν satisfies the
weak boundedness property and the condition T (uα) = 0 for all |α| ≤ n. Then
T extends to a bounded linear operator from Ḟ s,q

p (RN) to Ḟ s,q
p (RN) for each

s ∈ (0, n + ν) and each p, q ∈ (1,∞).

If in addition T ′ ∈ CZOn+ν and T ′(uα) = 0 for all |α| ≤ n, then the assertion
holds for all |s| < n + ν.

2. Spaces and operators

We denote N := {0, 1, 2, . . . } ) Z+ := {1, 2, . . . }. We fix a number N ∈ Z+,
and all our functions and distributions will be defined on RN . By D(RN) ⊂
S(RN) ⊂ S ′(RN) we denote the compactly supported smooth functions, the
rapidly decreasing smooth functions and the corresponding tempered distribu-
tions, respectively. The pairing of S(RN) and S ′(RN) is denoted by 〈·, ·〉. Z(RN)
is the space of all Schwartz functions ϕ ∈ S(RN) such that Dαϕ̂(0) = 0 for all
multiindices α ∈ NN , where ϕ̂ is the Fourier transform of ϕ. Then Z(RN) is a
closed subspace of S(RN). If Z ′(RN) denotes the space of all continuous linear
functionals on Z(RN), then S ′(RN)/P(RN) and Z ′(RN) are isomorphic, where
P(RN) is the space of polynomials in N real variables (cf. [12, 5.1.2]).

Homogeneous Triebel-Lizorkin spaces. Let φ̂ ∈ D(RN) be radial, equal to

1 in B(0, 1), and supported in B(0, 2). Let ϕ̂ = φ̂ − φ̂(2·) and ϕ̂2j = ϕ̂(2j·),
j ∈ Z.

Let p, q ∈ [1,∞) and s ∈ R. The homogeneous Triebel-Lizorkin space Ḟ s,q
p (RN)

is the space consisting of all f ∈ Z ′(RN) such that

∥∥f
∥∥

Ḟ s,q
p (RN )

:=

∥∥∥∥
(∑

j∈Z

(
2−js|f ∗ ϕ2j |

)q
)1/q

∥∥∥∥
Lp(RN )

is finite. One can show that different choices of ϕ lead to equivalent norms and

that Ḟ s,q
p (RN), endowed with ‖·‖Ḟ s,q

p (RN ), is a Banach space. Moreover Z(RN)
d
→֒

Ḟ s,q
p (RN) →֒ Z ′(RN) (cf. [12, 5.1.5]).
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Singular integral operators. Our main object of study is a continuous linear
operator T : S(RN) → S ′(RN). Its adjoint T ′ is a similar operator defined by
〈ψ, T ′ϕ〉 := 〈ϕ, Tψ〉.

Suppose that K : {(u, v) ∈ RN × RN : u 6= v} → C is a locally integrable
function. We say that T is a singular integral operator associated with K if

〈ϕ, Tφ〉 =

∫

RN

ϕ(u)

∫

RN

K(u, v)φ(v)dv du (1)

holds for all ϕ, φ ∈ D(RN) with suppϕ∩ suppφ = ∅. When this is the case, then
T ′ is a singular integral operator with associated kernel K ′ given by K ′(u, v) =
K(v, u) for u 6= v.

Next we introduce some more specific conditions on K and T :

The class CZOn+ν. Let n ∈ N and ν ∈ (0, 1). For a measurable kernel K :
{(u, v) ∈ RN × RN : u 6= v} → C, we consider the standard estimates

(SEn) K is continuously differentiable up to order n with respect to the
first variable and

Cα(K) = sup{|u − v|N+|α||(∂α
u K)(u, v)| : u 6= v}

is finite for all multiindices α ∈ NN with |α| ≤ n;
(SEn+ν) K satisfies (SEn) and

Cα,ν(K) = sup





|u − v|N+n+ν |(∂

α
u K)(u, v) − (∂α

u K)(u0, v)|

|u − u0|ν
:

|u − v| > 2|u − u0| > 0






is finite for some multiindex α ∈ NN with |α| = n.

We say that T ∈ CZOn+ν if T is a singular integral operator associated with a
kernel K satisfying (SEn+ν).

Note that T ∈ CZOn+ν does not imply that T ′ ∈ CZOn+ν .

Definition of T (uα). Let α be a multiindex with |α| ≤ n and uα the associated
monomial. For T ∈ CZOn+ν , it can be shown (see [10]) that uαT ′ϕ agrees with
an integrable function in the exterior of any neighbourhood of suppϕ, provided
that

ϕ ∈ Dn(RN) := {ϕ ∈ D(RN) :

∫

RN

uβϕ(u)du = 0 for all |β| ≤ n}.

Then we define

〈ϕ, T (uα)〉 := 〈χ, uαT ′ϕ〉 + 〈1 − χ, uαT ′ϕ〉,

where χ ∈ D(RN) is any test function equal to unity in a neighbourhood of
suppϕ. The first pairing above is the usual one between a test function and a
distribution, while the second one may be evaluated as a convergent Lebesgue
integral. The definition is independent of χ and produces a well-defined object
T (uα) ∈ (Dn(RN))′.
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The weak boundedness property. We say that ϕ is a normalized bump
function associated with the unit ball if ϕ ∈ D(RN) with suppϕ ⊆ B(0, 1) and
‖Dαϕ‖∞ ≤ 1 for all |α| ≤ M , where M is a large fixed number. φ is a normalized
bump function associated with the ball B(u, r) if φ(·) = r−Nϕ(r−1(·−u)), where
ϕ is a normalized bump function associated with the unit ball. The operator T
has the weak boundedness property if for every pair of normalized bump functions
ϕ, φ associated with any ball B(u, r) we have |〈φ, Tϕ〉| ≤ Cr−N .

The various conditions defined above will be used through the following implied
estimates, which are proved in [10] (see also [8]):

Lemma 2.1. Let k ∈ N, a > 0, w ∈ RN , and let ϕ, φ ∈ D0(RN) be normalized
bump functions associated with B(0, a) and B(w, 2ka) respectively. Suppose T ∈
CZOn+ν satisfies the weak boundedness property. Then:

(a) there is a constant C < ∞ such that for all v ∈ RN

|〈φ(· − v), T [ϕ(· − v)]〉| ≤ C
1 + k

(a2k)N

(
1 +

|w|

a2k

)−N−ν

;

(b) if T (uα) = 0 for all |α| ≤ n, then there are constants C < ∞ and δ > 0
such that for all v ∈ RN ,

|〈φ(· − v), T ′[ϕ(· − v)]〉| ≤ C(a2k)−N−n−ν

(
1 +

|w|

a2k

)−N−δ

.

3. The translation lemma

This section is devoted to the statement and proof of an estimate for translations
in the reflexive Lp(ℓq) spaces. For q = 2, this is a square function estimate which
was proved, apparently independently, by J. Bourgain [9] (with application to
vector-valued singular integrals) and M. Yamazaki [13] (with application to
pseudodifferential operators). In fact, Bourgain’s result covers a much more
general (and deeper) Banach space -valued situation, but this generality is to a
different direction than our present needs. The proof given below is in the same
spirit as Yamazaki’s (i.e., vector-valued Calderón–Zygmund theory), but is not
an immediate modification since we do not have the Hilbert space structure of
ℓ2 available here.

Lemma 3.1. Let 1 < p, q < ∞, and hi = 2iki, where |ki| ≤ K for some K > 2
and for all i ∈ Z. Let ϕ : RN → C be a differentiable function with

‖ϕ‖L1
≤ c, |∇ϕ(x)| ≤ c(1 + |x|)−N−1, c > 0,

and denote ϕ2i = 2−iNϕ(2−i·) for i ∈ Z. Then there is a constant C < ∞
depending only on p, q, N and c, such that

‖
(
τhi

ϕ2i ∗ fi

)
‖Lp(ℓq) ≤ C log K‖

(
fi

)
‖Lp(ℓq).

Here τhi
denotes the translation operator f 7→ f(· − hi).

In particular, if suppf̂i ⊆ {|ξ| ≤ 2−i} for all i ∈ Z, then

‖
(
τhi

fi

)
‖Lp(ℓq) ≤ C log K‖

(
fi

)
‖Lp(ℓq).
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Proof. Note first that, once we have proved the first assertion, the second one
immediately follows by choosing ϕ ∈ S(RN) such that ϕ̂(ξ) = 1 for |ξ| ≤ 1;

then ϕ̂2i(ξ) = ϕ̂(2iξ) = 1 on suppf̂i so that ϕ2i ∗ fi = fi. Let us thus consider
the first assertion.

For p = q, we have Lq(ℓq) = ℓq(Lq) and ‖τhi
ϕ2i ∗ fi‖Lq

= ‖ϕ2i ∗ fi‖Lq
≤

‖ϕ2i‖L1
‖fi‖Lq

, and ‖ϕ2i‖L1
= ‖ϕ‖L1

≤ c, so the assertion holds with c in place
of C log K. The main part of the proof will consist of verifying that the diagonal-
operator-valued kernel K(x) =

(
2−iNϕ(2−ix − ki)

)∞
i=−∞

of the convolution op-

erator (fi) 7→ (τhi
ϕ2i ∗ fi) satisfies the Hörmander integral condition

∫

|x|>2|y|

‖K(x − y) −K(x)‖L(ℓq)dx ≤ C log K. (2)

This then yields the Lp(ℓq) boundedness of our operator for all 1 < p < ∞,
with the desired norm estimate, by the well-known vector-valued extension of
the theory of singular integrals (see [14]).

For the proof of (2), note first that

‖K(x − y) −K(x)‖L(ℓq)

= sup
i∈Z

2−iN |ϕ(2−i(x − y) − ki) − ϕ(2−ix − ki)|

= sup
i∈Z

2−i(N+1)

∣∣∣∣
∫ 1

0

y · ∇ϕ(2−i(x − λy) − ki)dλ

∣∣∣∣ =: sup
i∈Z

Ki(x, y)

≤ sup
2i≤|x|/4K

Ki(x, y) + sup
|x|/4K<2i<|x|

Ki(x, y) + sup
|x|≤2i

Ki(x, y).

(3)

For |x| ≥ max(4K · 2i, 2|y|) we have

|2−i(x − y) − ki| ≥ 2−i(1 − 2−1 − 4−1)|x| = 2−i−2|x|,

and hence

Ki(x, y) ≤ 2−i(N+1)|y|C(2−i|x|)−N−1 = C|y| · |x|−N−1.

For |x| ≤ 2i we may estimate

Ki(x, y) ≤ 2−i(N+1)|y|C ≤ C|y| · |x|−N−1.

Since
∫

|x|>2|y|

|x|−N−1dx = C|y|−1,

we have handled the Hörmander estimate the first and third terms in (3), in
fact with C in place of C log K.
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Concerning the second term in (3), we first consider the integral over |x| > 4K|y|
and estimate the supremum by the sum:

∫

|x|>4K|y|

∑

|x|/4K<2i<|x|

2−i(N+1)|y|

∫ 1

0

|∇ϕ(2−i(x − λy) + ki)|dλ dx

=
∑

2i>|y|

2−i(N+1)|y|

∫ 1

0

∫

2i∨4K|y|<|x|≤4K·2i

|∇ϕ(2−i(x − λy) + ki)|dx dλ

≤
∑

2i>|y|

2−i|y| · ‖∇ϕ‖L1
≤ C,

where in the first equality we could restrict the summation range of the i vari-
able, since for 2i ≤ |y| the x integration is over the empty set.

The remaining part in (3) yet to be estimated will give the principal contribution
to the estimate, and is in particular responsible for the logarithmic factor log K.
As above, we estimate the supremum by the sum and interchange the order of
summation and integration, arriving at

∑

|y|/2K<2i<4K|y|

2−iN

∫
|ϕ(2−i(x − y) − ki) − ϕ(2−ix − ki)|dx

≤
∑

|y|/2K<2i<4K|y|

2‖ϕ‖L1
≤ C log K,

where the last estimate was simply counting the number of terms in the sum.
This completes the proof of the Hörmander condition (2) and of the Lemma. ¤

4. Proof of Theorem 1.1

The proof of Theorem 1.1 is done in three steps.

In the first step we make a decomposition of the operator T . For this purpose,
we choose Φ ∈ Dn(RN) and Ψ ∈ S(RN) such that

• Φ is real and radial,

• Φ̂, Ψ̂ ≥ 0,

• Φ̂(u) ≥ 1 for 1
2
≤ |u| ≤ 2,

• suppΨ̂ ⊆ {1
2
≤ |u| ≤ 2}, and

•
∑

j∈Z
Φ̂(2ju)Ψ̂(2ju) = 1 for all u ∈ RN \ {0}.

The existence of such Φ, Ψ is shown in [10] (see also [8]). For j ∈ Z, we denote
Φ2j(u) := 2−NjΦ(2−ju), Ψ2j(u) := 2−NjΨ(2−ju), Pjf := Φ2j ∗ f , and Qjf =
Ψ2j ∗ f . Now we can write

〈g, Tf〉 =
∑

j,l∈Z

〈PlQlg, TPjQjf〉 =
∑

j,k∈Z

〈Qj+kg, Pj+kTPjQjf〉,
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if f, g ∈ S(RN). The operator Tj+k,j := Pj+kTPj is associated with the kernel
Kj+k,j given by

Kj+k,j(u, v) = 〈Φ2j+k(· − u), T [Φ2j(· − v)]〉.

In the second step we fix k ∈ Z and estimate the sum over j ∈ Z in the above
decomposition.

We first look at the case k ∈ N. For f, g ∈ Z(RN),
∣∣∣∣
∑

j∈Z

〈Qj+kg, Tj+k,jQjf〉

∣∣∣∣ =

∣∣∣∣
∑

j∈Z

〈2(j+k)s(Tj+k,j)
′Qj+kg, 2−(j+k)sQjf〉

∣∣∣∣

≤

∥∥∥∥
(∑

j∈Z

|2(j+k)s(Tj+k,j)
′Qj+kg|

q′
)1/q′

∥∥∥∥
Lp′

∥∥∥∥
(∑

j∈Z

|2−(j+k)sQjf |
q
)1/q

∥∥∥∥
Lp

,

where 1
p
+ 1

p′
= 1 and 1

q
+ 1

q′
= 1. The second factor is bounded by C2−ks‖f‖Ḟ s,q

p

(cf. [12, 5.1.5]). To estimate the first factor, we note that for v ∈ RN

[(Tj+k,j)
′φ](v) =

∫

RN

Kj+k,j(u, v)φ(u)du

=

∫

RN

2jNKj+k,j(v + 2ju, v)φ(v + 2ju)du,

and therefore

A :=

∥∥∥∥
(∑

j∈Z

|2(j+k)s(Tj+k,j)
′Qj+kg|

q′
)1/q′

∥∥∥∥
Lp′

≤

∫

RN

∥∥∥∥
(∑

j∈Z

|2(j+k)s2jNKj+k,j(· + 2ju, ·)(Qj+kg)(· + 2ju)|q
′

)1/q′
∥∥∥∥

Lp′

du.

Using Lemma 2.1 (a), we obtain the estimate

sup
v∈RN

sup
j∈Z

|2jNKj+k,j(v + 2ju, v)| ≤ C
1 + k

(a2k)N

(
1 +

|u|

a2k

)−N−ν

,

where a > 0 is such that suppΦ ⊆ B(0, a). So with Lemma 3.1 we obtain

A ≤ C

∫

RN

1 + k

(a2k)N

(
1 +

|u|

a2k

)−N−ν

log

(
2 +

|u|

2k

)
‖g‖

Ḟ−s,q′

p′

du

≤ C(1 + k)‖g‖
Ḟ−s,q′

p′

.

Combining with the bound for the f factor, we have
∣∣∣∣
∑

j∈Z

〈Qj+kg, Tj+k,jQjf〉

∣∣∣∣ ≤ C(1 + k)2−ks‖f‖Ḟ s,q
p
‖g‖

Ḟ−s,q′

p′

.

If k is negative, we proceed in a similar way. Here we use the integral represen-
tation for Tj+k,j and Lemma 2.1 (b) to obtain

∣∣∣∣
∑

j∈Z

〈Qj+kg, Tj+k,jQjf〉

∣∣∣∣ ≤ C2k(n+ν−s)‖f‖Ḟ s,q
p
‖g‖

Ḟ−s,q′

p′

.
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As the third step, we carry out the summation over k. By our results from the
previous step,

∣∣∣∣
∑

j,k∈Z

〈Qj+kg, Tj+k,jQjf〉

∣∣∣∣ ≤ C‖f‖Ḟ s,q
p
‖g‖

Ḟ−s,q′

p′

if s ∈ (0, n + ν). Since Z(RN) is dense both in Ḟ s,q
p (RN) and in Ḟ−s,q′

p′ , the first
part of the theorem is proved.

For the second part, we observe that our additional assumptions imply that we
can use Lemma 2.1 (b) in Step 2 to show that

∣∣∣∣
∑

j∈Z

〈Qj+kg, Tj+k,jQjf〉

∣∣∣∣ ≤ C2−|k|(n+ν−|s|)‖f‖Ḟ s,q
p
‖g‖

Ḟ−s,q′

p′

.

This completes the proof of the theorem.
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