Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Bildinformationen anzeigen
Dienstag, 26.01.2021 | 14.15 - 15.15 Uhr

Oberseminar Geometrische Analysis und Zahlentheorie (online): Jasmin Matz (University of Copenhagen)

Titel: Quantum ergodicity of compact quotients of SL(n,R)/SO(n) in the level aspect

Abstract: Suppose M is a closed Riemannian manifold with an orthonormal basis B of L2(M) consisting of Laplace eigenfunctions. Berry's Random Wave Conjecture tells us that under suitable conditions on M, in the high energy limit (ie, large Laplace eigenvalue) elements of B should roughly behave like random waves of corresponding wave number. A classical result of Shnirelman and others that M is quantum ergodic if the geodesic flow on the cotangent bundle of M is ergodic, can then be viewed as a special case of this conjecture. We now want to look at a level aspect, namely, instead of taking a fixed manifold and high energy eigenfunctions, we take a sequence of Benjamini-Schramm convergent compact Riemannian manifolds together with Laplace eigenfunctions f whose eigenvalue varies in short intervals. This perspective has been recently studied in the context of graphs by Anantharaman and Le Masson, and for hyperbolic surfaces and manifolds by Abert, Bergeron, Le Masson, and Sahlsten. In my talk I want to discuss joint work with F. Brumley in which we study this question in higher rank, namely sequences of compact quotients of SL(n,R)/SO(n), n>2.

Bei Interesse an einer Teilnahme bitten wir vorab mit Tobias Weich per Mail Kontakt aufzunehmen, damit der Teilnahmelink geteilt werden kann.

Die Universität der Informationsgesellschaft