Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Bildinformationen anzeigen

Dienstag, 10.04.2018 | 16.00 - 18.00 Uhr | D2

Oberseminar: Prof. Dr. J. Mourao (IST Lissabon)

Titel: Complex symplectomorphisms, Kähler geodesics and representation theory

Dieser Vortrag findet statt im Rahmen des Oberseminars "Algebraische Methoden der harmonischen Analysis"

Abstract: The geodesics for the Mabuchi metric on the space H of Kähler metrics on a compact symplectic manifold M correspond to solutions of a homogeneous complex Monge-Ampere (HCMA) equation. The space H is an infinite dimensional analogue of the symmetric spaces of noncompact type G_C/G for compact Lie groups G. In H the role of G is being played by the group of Hamiltonian symplectomorphisms.

We will describe a method for reducing the relevant Cauchy problem for the HCMA equation with analytic initial data to finding a related Hamiltonian flow followed by a "complexification".

For Hamiltonian G-spaces, with G-invariant Kähler structure, the geodesic corresponding to the norm square of the moment map or its Hamiltonian flow in imaginary time (= gradient flow for the changing metric following the geodesic) leads to the convergence of the holomorphic sections to sections supported on Bohr-Sommerfeld leaves.

For M=T*G, starting from the vertical or Schrödinger polarization, one obtains the Segal-Bargmann-Hall coherent state transform.

Die Universität der Informationsgesellschaft