Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Bildinformationen anzeigen

Wednesday, September 27

Minisymposium 10: New hierarchies of SDP relaxations for polynomial systems

Time: 10:30 - 12:30
Room: L1.201, Building L
Chair
and Organiser: Victor Magron, CNRS Verimag Grenoble

Semidefinite programming (SDP) is relevant to a wide range of mathematical fields, including continuous optimization, control theory, matrix completion. In 2001, Lasserre introduced a hierarchy of SDP relaxations for approximating polynomial infima.

The topics of this minisymposium emphasizes new applications of SDP hierarchies to address specific problems in the following fields:

  • floating-point arithmetics, by providing interval enclosures for upper bounds of roundoff errors;
  • dynamical systems, by characterizing invariant measures of polynomial maps, in both discrete-time and continuous-time settings;
  • nearly sparse polynomial optimization, by providing a sparsity-adapted hierarchy for problems with constraints satisfying almost always a certain sparsity pattern;
  • electric power systems, by providing a complex moment/sum-of-squares hierarchy also able to exploit sparsity.

 

Speakers:

10:30 - 11:00Victor Magron (CNRS Verimag Grenoble)
Interval enclosures of upper bounds of round off errors using semidefinite programming
11:00 - 11:30Marcelo Forets (Université Grenoble Alpes)
Semidefinite characterization of invariant measures for polynomial systems
11:30 - 12:00Tillmann Weisser (LAAS-CNRS)
Solving nearly-sparse polynomial optimization problems
12:00 - 12:30Cedric Josz (INRIA)
Moment/sum-of-squares hierarchy for complex polynomial optimization

 

 

 

Die Universität der Informationsgesellschaft