Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Bildinformationen anzeigen

Thursday, September 28

Minisymposium 9: Model order reduction in PDE-constrained optimization

Time: 10:30 - 12:30
Room: L1, Building L
Organiser: Stefan Banholzer, Universität Konstanz, Dörte Jando, Universität Heidelberg, and Stefan Volkwein, Universität Konstanz

Chair: Dörte Jando, Universität Heidelberg

The optimization and control of systems governed by partial differential equations (PDEs) is important for many applications in engineering, natural and medical sciences. However, the discretization of such problems leads to very large-scale optimization problems. To accelerate the solution process different techniques of model order reduction (MOR) have been developed. In contrast to MOR for simulation the crucial point in the optimization context is that apart from the objective also its derivatives have to be approximated appropriately. This minisymposium brings together researchers to discuss new developments and applications in this field. Important topics include MOR for Hessian
approximation, the reduced basis methods for solving large-scale optimization problems arising in data assimilation, controllability preserving MOR for parametrized PDEs and adaptive trust-region proper orthogonal decomposition (TR-POD).

 

Speakers:

10:30 - 11:00Dörte Jando (Ruprecht-Karls-Universität Heidelberg)
Reduced order modeling for time-dependent optimal control problems with variable initial values
11:00 - 11:30Martin Grepl (RWTH Aachen)
Reduced basis approximation and a posteriori error bounds for 4D-var data assimilation
11:30 - 12:00Laura Iapichino (Eindhoven University of Technology)
Greedy controllability of reduced-order linear dynamical systems
12:00 - 12:30Nicolas Scharmacher (Universität Hamburg)
Adaptive trust-region POD for optimal control of the Cahn-Hilliard equation

 

 

 

Die Universität der Informationsgesellschaft