Ober­se­mi­nar "Num­ber Theo­ry and Arith­me­ti­cal Sta­ti­stics"

Wi­Se 25/26

Ort: Medienraum D2 314                                Uhrzeit: 14:00 - 15:30 Uhr

Das Seminar findet ab dem 15.10.2025 regelmäßig mittwochs statt.

Fa­bi­an Gund­lach (Pa­der­born), Fro­be­ni­us and Oc­to­pus

Ort: D2 314
Veranstalter: Prof. Dr. Jürgen Klüners

Title: Frobenius and Octopus

Abstract: We count semisimple nxn-matrices over a finite field F_q that commute with their (p-th power) Frobenius conjugate (for fixed n and for q going to infinity). This involves some linear algebra, algebraic geometry, and graph theory. 

Fa­bi­an Gund­lach (Pa­der­born), Fro­be­ni­us and Oc­to­pus

Ort: D2 314
Veranstalter: Prof. Dr. Jürgen Klüners

Title: Frobenius and Octopus

Abstract: We count semisimple nxn-matrices over a finite field F_q that commute with their (p-th power) Frobenius conjugate (for fixed n and for q going to infinity). This involves some linear algebra, algebraic geometry, and graph theory. 

Fa­bi­an Gund­lach (Pa­der­born), Fro­be­ni­us and Oc­to­pus

Ort: D2 314
Veranstalter: Prof. Dr. Jürgen Klüners

Title: Frobenius and Octopus

Abstract: We count semisimple nxn-matrices over a finite field F_q that commute with their (p-th power) Frobenius conjugate (for fixed n and for q going to infinity). This involves some linear algebra, algebraic geometry, and graph theory. 

Fa­bi­an Gund­lach (Pa­der­born), Fro­be­ni­us and Oc­to­pus

Ort: D2 314
Veranstalter: Prof. Dr. Jürgen Klüners

Title: Frobenius and Octopus

Abstract: We count semisimple nxn-matrices over a finite field F_q that commute with their (p-th power) Frobenius conjugate (for fixed n and for q going to infinity). This involves some linear algebra, algebraic geometry, and graph theory. 

Fa­bi­an Gund­lach (Pa­der­born), Fro­be­ni­us and Oc­to­pus

Ort: D2 314
Veranstalter: Prof. Dr. Jürgen Klüners

Title: Frobenius and Octopus

Abstract: We count semisimple nxn-matrices over a finite field F_q that commute with their (p-th power) Frobenius conjugate (for fixed n and for q going to infinity). This involves some linear algebra, algebraic geometry, and graph theory.