This page is no longer updated. Please refer to


Tobias Black, Mario Fuest, Johannes Lankeit: Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic-elliptic Keller-Segel systems. preprint

Johannes Lankeit: Immediate smoothing and global solutions for initial data in L1 × W1,2 in a Keller–Segel system with logistic terms in 2D. Proc. Roy. Soc. Edinburgh Sect. A. link

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami, Johannes Lankeit: The large diffusion limit for the heat equation in the exterior of the unit ball with a dynamical boundary condition. Discrete Contin. Dyn. Syst. B, 40(11) (2020), 6529-6546. link

Mario Fuest, Johannes Lankeit, Masaaki Mizukami: Long-term behaviour in a parabolic-elliptic chemotaxis-consumption model. J. Differential Equations 271 (2021), 254–279. link

Johannes Lankeit, Giuseppe Viglialoro: Global existence and boundedness of solutions to a chemotaxis-consumption model with singular sensitivity. Acta Appl. Math. 167 (2020), 75–97. link

Marek Fila, Johannes Lankeit: Continuation beyond interior gradient blow-up in a semilinear parabolic equation. Math. Ann. 377 (2020), no. 1-2, 317–333. link

Marek Fila, Johannes Lankeit: Lack of smoothing for bounded solutions of a semilinear parabolic equation. Adv. Nonlinear Anal. 9 (2020), no. 1, 1437–1452. link

Johannes Lankeit, Michael Winkler: Facing low regularity in chemotaxis systems. Jahresber. Dtsch. Math.-Ver. 122 (2020), no. 1, 35–64. link

Johannes Lankeit: Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete Contin. Dyn. Syst. Ser. S 13 (2020), no. 2, 233–255. link

Marcel Braukhoff, Johannes Lankeit: Stationary solutions to a chemotaxis-consumption model with realistic boundary conditions for the oxygen. Math. Models Methods Appl. Sci. 29 (2019), no. 11, 2033–2062. link

Johannes Lankeit, Michael Winkler: Counterintuitive dependence of temporal asymptotics on initial decay in a nonlocal degenerate parabolic equation arising in game theory. Israel J. Math. 233 (2019), no. 1, 249–296. link

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami, Johannes Lankeit: Rate of convergence in the large diffusion limit for the heat equation with a dynamical boundary condition. Asymptot. Anal. 114 (2019), no. 1-2, 37–57. link

Tobias Black, Johannes Lankeit, Masaaki Mizukami: A Keller-Segel-fluid system with singular sensitivity: Generalized solutions. Math. Methods Appl. Sci. 42 (2019), no. 9, 3002–3020. link

Elisa Lankeit, Johannes Lankeit: On the global generalized solvability of a chemotaxis model with signal absorption and logistic growth terms. Nonlinearity 32 (2019), no. 5, 1569–1596. link

Elisa Lankeit, Johannes Lankeit: Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption. Nonlinear Anal. Real World Appl. 46 (2019), 421–445. link

Bingran Hu, Johannes Lankeit: Boundedness of solutions to a virus infection model with saturated chemotaxis. J. Math. Anal. Appl. 468 (2018), no. 1, 344-358. link

Tobias Black, Johannes Lankeit, Masaaki Mizukami: Singular sensitivity in a Keller–Segel-fluid system. J. Evol. Equ. 18 (2018), no. 2, 561–581. link

Johannes Lankeit, Michael Winkler: A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data. NoDEA Nonlinear Differential Equations Appl. 24 (2017), no. 4, Art. 49, 33 pp. link

Johannes Lankeit, Yulan Wang: Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption,  Discrete Contin. Dyn. Syst. 37 (2017), no. 12, 6099–6121. link

Nikos I. Kavallaris, Johannes Lankeit, Michael Winkler: On a degenerate non-local parabolic problem describing infinite dimensional replicator dynamics, SIAM J. Math. Anal., 49(2), 954–983. link

Johannes Lankeit, Masaaki Mizukami: How far does small chemotactic interaction perturb the Fisher–KPP dynamics? J. Math. Anal. Appl. 452 (2017), no. 1, 429–442. link

Johannes Lankeit: Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differential Equations 262 (2017), no. 7, 4052–4084. link

Johannes Lankeit: Long-term behaviour in a chemotaxis-fluid system with logistic source, Math. Models Methods Appl. Sci., 26, 2071 (2016) link

Johannes Lankeit, Patrizio Neff, Frank Osterbrink: Integrability conditions between the first and second Cosserat deformation tensor in geometrically nonlinear micropolar models and existence of minimizers , Z. Angew. Math. Phys. (2017) 68: 11. doi:10.1007/s00033-016-0755-7 link

Tobias Black, Johannes Lankeit, Masaaki Mizukami: On the weakly competitive case in a two-species chemotaxis model, IMA J Appl Math (2016) 81 (5): 860-876. link

Xinru Cao, Johannes Lankeit: Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities , Calculus of Variations and Partial Differential Equations, Volume 55, number 4, August 2016, doi: 10.1007/s00526-016-1027-2. link

Yan Li, Johannes Lankeit: Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, Volume 29, number 5, Pages 1564-1595. link

Johannes Lankeit: Equilibration of unit mass solutions to a degenerate parabolic equation with a nonlocal gradient nonlinearity, Nonlinear Analysis: Theory, Methods & Applications, Volume 135, April 2016, Pages 236–

Johannes Lankeit: A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Mathematical Methods in the Applied Sciences, Volume 39, Issue 3, February 2016, pages 394–404. link

Johannes Lankeit: Chemotaxis can prevent thresholds on population density, Discrete and Continuous Dynamical Systems - Series B, Volume 20, Issue 5, July 2015, Pages: 1499 - 1527. link

Johannes Lankeit: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, Journal of Differential Equations, Volume 258, Issue 4, 15 February 2015, Pages 1158–1191. link

Patrizio Neff, Dumitrel Ghiba, Johannes Lankeit: The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity, Journal of Elasticity, December 2015, Volume 121, Issue 2, pp.

Patrizio Neff, Johannes Lankeit, Ionel-Dumitrel Ghiba, Robert Martin, David Steigmann: The exponentiated Hencky-logarithmic strain energy. Part II: Coercivity, planar polyconvexity and existence of minimizers, Zeitschrift für angewandte Mathematik und Physik, August 2015, Volume 66, Issue 4, pp 1671-1693. link

Patrizio Neff, Angela Madeo, Johannes Lankeit: On Grioli's minimum property and its relation to Cauchy's polar decomposition , International Journal of Engineering Science, Volume 80, July 2014, Pages 209–217. link

Johannes Lankeit, Patrizio Neff, Yuji Nakatsukasa: The minimization of matrix logarithms: On a fundamental property of the unitary polar factor , Linear Algebra and Its Applications, Volume 449, 15 May 2014, Pages 28–42. link

Mircea Bîrsan, Patrizio Neff, Johannes Lankeit: Sum of squared logarithms - an inequality relating positive definite matrices and their matrix logarithm, Journal of Inequalities and Applications, 2013, 2013:168. link

Stephan Lehmich, Patrizio Neff, Johannes Lankeit: On the convexity of the function C --> f(det C) on positive definite matrices, Mathematics of Mechanics and Solids, June 2014, vol. 19, no. 4, pp. 369-375. link

Johannes Lankeit, Patrizio Neff, Dirk Pauly: Uniqueness of integrable solutions to ∇ζ=Gζ,ζ|Γ=0 for integrable tensor coefficients G and applications to elasticity, Zeitschrift für angewandte Mathematik und Physik, Volume 64, Issue 6, December 2013, Pages 1679-1688. link

Johannes Lankeit, Patrizio Neff, Dirk Pauly: Unique continuation for first-order systems with integrable coefficients and applications to elasticity and plasticity, Comptes Rendus Mathematique, Volume 351, Issues 5-6, March 2013, Pages 247-250. link

In case you cannot access one of the above articles:
Preprint versions of the above articles may still be available on (Note, however, that these may slightly differ from the published versions.) 
You can also write me an e-mail to johannes.lankeit[at]

Sie interessieren sich für :