Pu­bli­ka­ti­o­nen

2024



Numerical surgery for mean curvature flow of surfaces

B. Kovács, SIAM Journal on Scientific Computing 46 (2024) A645--A669.




2023

Error analysis for the numerical approximation of the harmonic map heat flow with nodal constraints

S. Bartels, B. Kovács, Z. Wang, IMA Journal of Numerical Analysis (2023).



2022

Viscoelastic Cahn–Hilliard models for tumor growth

H. Garcke, B. Kovács, D. Trautwein, Mathematical Models and Methods in Applied Sciences 32 (2022) 2673–2758.


Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces

C.M. Elliott, H. Garcke, B. Kovács, Numerische Mathematik 151 (2022) 873–925.


Time-dependent electromagnetic scattering from thin layers

J. Nick, B. Kovács, C. Lubich, Numerische Mathematik 150 (2022) 1123–1164.



Bulk–surface Lie splitting for parabolic problems with dynamic boundary conditions

R. Altmann, B. Kovács, C. Zimmer, IMA Journal of Numerical Analysis 43 (2022) 950–975.


Error estimates for a splitting integrator for abstract semilinear boundary coupled systems

P. Csomós, B. Farkas, B. Kovács, IMA Journal of Numerical Analysis (2022).




2021


A convergent finite element algorithm for generalized mean curvature flows of closed surfaces

T. Binz, B. Kovács, IMA Journal of Numerical Analysis 42 (2021) 2545–2588.


Error estimates for the Cahn–Hilliard equation with dynamic boundary conditions

P. Harder, B. Kovács, IMA Journal of Numerical Analysis 42 (2021) 2589–2620.


Correction to: Stable and convergent fully discrete interior–exterior coupling of Maxwell’s equations

J. Nick, B. Kovács, C. Lubich, Numerische Mathematik 147 (2021) 997–1000.


2020

Finite element error analysis of wave equations with dynamic boundary conditions: <i>L</i>2 estimates

D. Hipp, B. Kovács, IMA Journal of Numerical Analysis 41 (2020) 638–728.


Higher-order linearly implicit full discretization of the Landau–Lifshitz–Gilbert equation

G. Akrivis, M. Feischl, B. Kovács, C. Lubich, Mathematics of Computation 90 (2020) 995–1038.


A convergent algorithm for forced mean curvature flow driven by diffusion on the surface

B. Kovács, B. Li, C. Lubich, Interfaces and Free Boundaries 22 (2020) 443–464.


2019

A convergent evolving finite element algorithm for mean curvature flow of closed surfaces

B. Kovács, B. Li, C. Lubich, Numerische Mathematik 143 (2019) 797–853.


2018

Numerical analysis of partial differential equations on and of evolving surfaces

B. Kovács, Numerical Analysis of Partial Differential Equations on and of Evolving Surfaces, Tübingen, Germany, 2018.


Discrete maximum principles for nonlinear elliptic finite element problems on surfaces with boundary

J. Karátson, B. Kovács, S. Korotov, IMA Journal of Numerical Analysis 40 (2018) 1241–1265.


Linearly implicit full discretization of surface evolution

B. Kovács, C. Lubich, Numerische Mathematik 140 (2018) 121–152.


Computing arbitrary Lagrangian Eulerian maps for evolving surfaces

B. Kovács, Numerical Methods for Partial Differential Equations 35 (2018) 1093–1112.


2017

Convergence of finite elements on an evolving surface driven by diffusion on the surface

B. Kovács, B. Li, C. Lubich, C.A. Power Guerra, Numerische Mathematik 137 (2017) 643–689.



Stable and convergent fully discrete interior–exterior coupling of Maxwell’s equations

B. Kovács, C. Lubich, Numerische Mathematik 137 (2017) 91–117.


Maximum norm stability and error estimates for the evolving surface finite element method

B. Kovács, C.A. Power Guerra, Numerical Methods for Partial Differential Equations 34 (2017) 518–554.



2016

Higher order time discretizations with ALE finite elements for parabolic problems on evolving surfaces

B. Kovács, C.A. Power Guerra, IMA Journal of Numerical Analysis 38 (2016) 460–494.


Error analysis for full discretizations of quasilinear parabolic problems on evolving surfaces

B. Kovács, C.A. Power Guerra, Numerical Methods for Partial Differential Equations 32 (2016) 1200–1231.


A-Stable Time Discretizations Preserve Maximal Parabolic Regularity

B. Kovács, B. Li, C. Lubich, SIAM Journal on Numerical Analysis 54 (2016) 3600–3624.


Numerical analysis of parabolic problems with dynamic boundary conditions

B. Kovács, C. Lubich, IMA Journal of Numerical Analysis 37 (2016) 1–39.


A Parallel Numerical Solution Approach for Nonlinear Parabolic Systems Arising in Air Pollution Transport Problems

J. Karátson, B. Kovács, in: Mathematical Problems in Meteorological Modelling, 2016, pp. 57–70.


2015

Efficient numerical methods for elliptic and parabolic partial differential equations

B. Kovács, Efficient Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Budapest, Hungary, 2015.


2014


2012

Variable preconditioning in complex Hilbert space and its application to the nonlinear Schrödinger equation

J. Karátson, B. Kovács, Computers & Mathematics with Applications 65 (2012) 449–459.


2011

A comparison of some efficient numerical methods for a nonlinear elliptic problem

B. Kovács, Central European Journal of Mathematics 10 (2011) 217–230.


Alle Publikationen anzeigen