Publikationen
2025
Error estimates for full discretization by an almost mass conservation technique for Cahn--Hilliard systems with dynamic boundary conditions
N. Bullerjahn, ArXiv (2025).
2024
Numerical analysis of an evolving bulk--surface model of tumour growth
D. Edelmann, B. Kovács, C. Lubich, ArXiv (2024).
Maximal regularity of evolving FEMs for parabolic equations on an evolving surface
G. Bai, B. Kovács, B. Li, ArXiv:2408.14096 (2024).
Numerical surgery for mean curvature flow of surfaces
B. Kovács, SIAM Journal on Scientific Computing 46 (2024) A645--A669.
A posteriori error estimates and space-time adaptivity for parabolic partial differential equations on stationary surfaces
B. Kovács, M.F.R. Lantelme, ArXiv:2407.02101 (2024).
Error estimates for full discretization of Cahn--Hilliard equation with dynamic boundary conditions
N. Bullerjahn, B. Kovács, IMA Journal of Numerical Analysis (n.d.).
2023
Error analysis for the numerical approximation of the harmonic map heat flow with nodal constraints
S. Bartels, B. Kovács, Z. Wang, IMA Journal of Numerical Analysis (2023).
Error analysis of BDF 1-6 time-stepping methods for the transient Stokes problem: velocity and pressure estimates
A. Contri, B. Kovács, A. Massing, ArXiv (2023).
2022
Viscoelastic Cahn–Hilliard models for tumor growth
H. Garcke, B. Kovács, D. Trautwein, Mathematical Models and Methods in Applied Sciences 32 (2022) 2673–2758.
Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces
C.M. Elliott, H. Garcke, B. Kovács, Numerische Mathematik 151 (2022) 873–925.
Time-dependent electromagnetic scattering from thin layers
J. Nick, B. Kovács, C. Lubich, Numerische Mathematik 150 (2022) 1123–1164.
Maximal regularity of backward difference time discretization for evolving surface PDEs and its application to nonlinear problems
B. Kovács, B. Li, IMA Journal of Numerical Analysis (2022).
Bulk–surface Lie splitting for parabolic problems with dynamic boundary conditions
R. Altmann, B. Kovács, C. Zimmer, IMA Journal of Numerical Analysis 43 (2022) 950–975.
Error estimates for a splitting integrator for abstract semilinear boundary coupled systems
P. Csomós, B. Farkas, B. Kovács, IMA Journal of Numerical Analysis (2022).
Stability and error estimates for non-linear Cahn–Hilliard-type equations on evolving surfaces
C.A. Beschle, B. Kovács, Numerische Mathematik 151 (2022) 1–48.
FEM-BEM Coupling for the Maxwell–Landau–Lifshitz–Gilbert Equations via Convolution Quadrature: Weak Form and Numerical Approximation
J. Bohn, M. Feischl, B. Kovács, Computational Methods in Applied Mathematics 23 (2022) 19–48.
2021
A convergent finite element algorithm for mean curvature flow in higher codimension
T. Binz, B. Kovács, ArXiv (2021).
A convergent finite element algorithm for generalized mean curvature flows of closed surfaces
T. Binz, B. Kovács, IMA Journal of Numerical Analysis 42 (2021) 2545–2588.
Error estimates for the Cahn–Hilliard equation with dynamic boundary conditions
P. Harder, B. Kovács, IMA Journal of Numerical Analysis 42 (2021) 2589–2620.
Correction to: Stable and convergent fully discrete interior–exterior coupling of Maxwell’s equations
J. Nick, B. Kovács, C. Lubich, Numerische Mathematik 147 (2021) 997–1000.
2020
Finite element error analysis of wave equations with dynamic boundary conditions: L2 estimates
D. Hipp, B. Kovács, IMA Journal of Numerical Analysis 41 (2020) 638–728.
Higher-order linearly implicit full discretization of the Landau–Lifshitz–Gilbert equation
G. Akrivis, M. Feischl, B. Kovács, C. Lubich, Mathematics of Computation 90 (2020) 995–1038.
A convergent algorithm for forced mean curvature flow driven by diffusion on the surface
B. Kovács, B. Li, C. Lubich, Interfaces and Free Boundaries 22 (2020) 443–464.
2019
A convergent evolving finite element algorithm for mean curvature flow of closed surfaces
B. Kovács, B. Li, C. Lubich, Numerische Mathematik 143 (2019) 797–853.
2018
Numerical analysis of partial differential equations on and of evolving surfaces
B. Kovács, Numerical Analysis of Partial Differential Equations on and of Evolving Surfaces, Tübingen, Germany, 2018.
Discrete maximum principles for nonlinear elliptic finite element problems on surfaces with boundary
J. Karátson, B. Kovács, S. Korotov, IMA Journal of Numerical Analysis 40 (2018) 1241–1265.
Linearly implicit full discretization of surface evolution
B. Kovács, C. Lubich, Numerische Mathematik 140 (2018) 121–152.
Computing arbitrary Lagrangian Eulerian maps for evolving surfaces
B. Kovács, Numerical Methods for Partial Differential Equations 35 (2018) 1093–1112.
2017
Convergence of finite elements on an evolving surface driven by diffusion on the surface
B. Kovács, B. Li, C. Lubich, C.A. Power Guerra, Numerische Mathematik 137 (2017) 643–689.
Stability and convergence of time discretizations of quasi-linear evolution equations of Kato type
B. Kovács, C. Lubich, Numerische Mathematik 138 (2017) 365–388.
Stable and convergent fully discrete interior–exterior coupling of Maxwell’s equations
B. Kovács, C. Lubich, Numerische Mathematik 137 (2017) 91–117.
Maximum norm stability and error estimates for the evolving surface finite element method
B. Kovács, C.A. Power Guerra, Numerical Methods for Partial Differential Equations 34 (2017) 518–554.
High-order evolving surface finite element method for parabolic problems on evolving surfaces
B. Kovács, IMA Journal of Numerical Analysis 38 (2017) 430–459.
2016
Higher order time discretizations with ALE finite elements for parabolic problems on evolving surfaces
B. Kovács, C.A. Power Guerra, IMA Journal of Numerical Analysis 38 (2016) 460–494.
Error analysis for full discretizations of quasilinear parabolic problems on evolving surfaces
B. Kovács, C.A. Power Guerra, Numerical Methods for Partial Differential Equations 32 (2016) 1200–1231.
A-Stable Time Discretizations Preserve Maximal Parabolic Regularity
B. Kovács, B. Li, C. Lubich, SIAM Journal on Numerical Analysis 54 (2016) 3600–3624.
Numerical analysis of parabolic problems with dynamic boundary conditions
B. Kovács, C. Lubich, IMA Journal of Numerical Analysis 37 (2016) 1–39.
A Parallel Numerical Solution Approach for Nonlinear Parabolic Systems Arising in Air Pollution Transport Problems
J. Karátson, B. Kovács, in: Mathematical Problems in Meteorological Modelling, 2016, pp. 57–70.
2015
Efficient numerical methods for elliptic and parabolic partial differential equations
B. Kovács, Efficient Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Budapest, Hungary, 2015.
2014
On the numerical performance of a sharp a posteriori error estimator for some nonlinear elliptic problems
B. Kovács, Applications of Mathematics 59 (2014) 489–508.
2012
Variable preconditioning in complex Hilbert space and its application to the nonlinear Schrödinger equation
J. Karátson, B. Kovács, Computers & Mathematics with Applications 65 (2012) 449–459.
2011
A comparison of some efficient numerical methods for a nonlinear elliptic problem
B. Kovács, Central European Journal of Mathematics 10 (2011) 217–230.
Alle Publikationen anzeigen