For­schungs­the­men

Unsere aktuellen Forschungsschwerpunkte sind:

  • Spektraltheorie von Quantenfeldtheorien
  • Effektive und kritische Grenzwerte von Vielteilchensystemen
  • Pfadintegralmethoden in der Quantenmechanik
  • Dynamische Eigenschaften von Quantensystemen

Pu­bli­ka­ti­o­nen

Konferenzbeiträge

Existence of Ground States in the Infrared-Critial Spin Boson Model

B. Hinrichs, in: F. Hiroshima (Ed.), Mathematical Aspects of Quantum Fields and Related Topics, 2022, pp. 60–73.


Zeitschriftenaufsätze

Non-Fock ground states in the translation-invariant Nelson model revisited non-perturbatively

D. Hasler, B. Hinrichs, O. Siebert, Journal of Functional Analysis 286 (2024).


Super-Gaussian decay of exponentials: A sufficient condition

B. Hinrichs, D.W. Janssen, J. Ziebell, Journal of Mathematical Analysis and Applications 528 (2023).



FKN Formula and Ground State Energy for the Spin Boson Model with External Magnetic Field

D. Hasler, B. Hinrichs, O. Siebert, Annales Henri Poincaré 23 (2022) 2819–2853.


Correlation bound for a one-dimensional continuous long-range Ising model

D. Hasler, B. Hinrichs, O. Siebert, Stochastic Processes and Their Applications 146 (2021) 60–79.


On Existence of Ground States in the Spin Boson Model

D. Hasler, B. Hinrichs, O. Siebert, Communications in Mathematical Physics 388 (2021) 419–433.


Preprint




On Lieb-Robinson bounds for a class of continuum fermions

B. Hinrichs, M. Lemm, O. Siebert, ArXiv:2310.17736 (2023).



Alle Publikationen anzeigen