Imaginary quadratic number fields with small exponent.
Here are lists with imaginary quadratic fields with exponent of the ideal class group up to 8. For exponent 1 the list is complete. For exponents 2,4,8 the lists are complete assuming that there are no Siegel zeros. Without this assumption there might be one missing field. For exponents 3 and 5 the lists are complete assuming the generalized Riemann hypothesis. Without this assumption it is known that there are finitely many fields with exponent 3 or 5. For exponent 6 the list is complete up to discriminant 3.1·1020. It is known that there are finitely many fields with exponent 6. For exponent 7 the list is complete up to discriminant 3.1·1020. It is not known whether there are only finitely many fields with exponent 7. Assuming the generalized Riemann hypothesis the exponent tends to infinity, hence there should be only finitely many fields with given exponent.
The scientific content is given in the paper:
A.-S. Elsenhans, J. Klüners, F. Nicolae, Imaginary quadratic number fields with class groups of small exponent , Acta Arith., 193, 2020, 217-233.
The following table is complete assuming that there are no Siegel zeros. Without any assumption there might be one missing field.
| Discriminant | Factorization | Class group |
| -15 | -3 * 5 | C2 |
| -20 | -2^2 * 5 | C2 |
| -24 | -2^3 * 3 | C2 |
| -35 | -5 * 7 | C2 |
| -40 | -2^3 * 5 | C2 |
| -51 | -3 * 17 | C2 |
| -52 | -2^2 * 13 | C2 |
| -84 | -2^2 * 3 * 7 | C2 x C2 |
| -88 | -2^3 * 11 | C2 |
| -91 | -7 * 13 | C2 |
| -115 | -5 * 23 | C2 |
| -120 | -2^3 * 3 * 5 | C2 x C2 |
| -123 | -3 * 41 | C2 |
| -132 | -2^2 * 3 * 11 | C2 x C2 |
| -148 | -2^2 * 37 | C2 |
| -168 | -2^3 * 3 * 7 | C2 x C2 |
| -187 | -11 * 17 | C2 |
| -195 | -3 * 5 * 13 | C2 x C2 |
| -228 | -2^2 * 3 * 19 | C2 x C2 |
| -232 | -2^3 * 29 | C2 |
| -235 | -5 * 47 | C2 |
| -267 | -3 * 89 | C2 |
| -280 | -2^3 * 5 * 7 | C2 x C2 |
| -312 | -2^3 * 3 * 13 | C2 x C2 |
| -340 | -2^2 * 5 * 17 | C2 x C2 |
| -372 | -2^2 * 3 * 31 | C2 x C2 |
| -403 | -13 * 31 | C2 |
| -408 | -2^3 * 3 * 17 | C2 x C2 |
| -420 | -2^2 * 3 * 5 * 7 | C2 x C2 x C2 |
| -427 | -7 * 61 | C2 |
| -435 | -3 * 5 * 29 | C2 x C2 |
| -483 | -3 * 7 * 23 | C2 x C2 |
| -520 | -2^3 * 5 * 13 | C2 x C2 |
| -532 | -2^2 * 7 * 19 | C2 x C2 |
| -555 | -3 * 5 * 37 | C2 x C2 |
| -595 | -5 * 7 * 17 | C2 x C2 |
| -627 | -3 * 11 * 19 | C2 x C2 |
| -660 | -2^2 * 3 * 5 * 11 | C2 x C2 x C2 |
| -708 | -2^2 * 3 * 59 | C2 x C2 |
| -715 | -5 * 11 * 13 | C2 x C2 |
| -760 | -2^3 * 5 * 19 | C2 x C2 |
| -795 | -3 * 5 * 53 | C2 x C2 |
| -840 | -2^3 * 3 * 5 * 7 | C2 x C2 x C2 |
| -1012 | -2^2 * 11 * 23 | C2 x C2 |
| -1092 | -2^2 * 3 * 7 * 13 | C2 x C2 x C2 |
| -1155 | -3 * 5 * 7 * 11 | C2 x C2 x C2 |
| -1320 | -2^3 * 3 * 5 * 11 | C2 x C2 x C2 |
| -1380 | -2^2 * 3 * 5 * 23 | C2 x C2 x C2 |
| -1428 | -2^2 * 3 * 7 * 17 | C2 x C2 x C2 |
| -1435 | -5 * 7 * 41 | C2 x C2 |
| -1540 | -2^2 * 5 * 7 * 11 | C2 x C2 x C2 |
| -1848 | -2^3 * 3 * 7 * 11 | C2 x C2 x C2 |
| -1995 | -3 * 5 * 7 * 19 | C2 x C2 x C2 |
| -3003 | -3 * 7 * 11 * 13 | C2 x C2 x C2 |
| -3315 | -3 * 5 * 13 * 17 | C2 x C2 x C2 |
| -5460 | -2^2 * 3 * 5 * 7 * 13 | C2 x C2 x C2 x C2 |
The following table is complete assuming that the generalized Riemann hypothesis is true. Without any assumption it is known that the list should be finite.
| Discriminant | Factorization | Class group |
| -23 | -23 | C3 |
| -31 | -31 | C3 |
| -59 | -59 | C3 |
| -83 | -83 | C3 |
| -107 | -107 | C3 |
| -139 | -139 | C3 |
| -211 | -211 | C3 |
| -283 | -283 | C3 |
| -307 | -307 | C3 |
| -331 | -331 | C3 |
| -379 | -379 | C3 |
| -499 | -499 | C3 |
| -547 | -547 | C3 |
| -643 | -643 | C3 |
| -883 | -883 | C3 |
| -907 | -907 | C3 |
| -4027 | -4027 | C3 x C3 |
The following table is complete assuming that there are no Siegel zeros. Without any assumption there might be one missing field.
| Discriminant | Factorization | Class group |
| -39 | -3 * 13 | C4 |
| -55 | -5 * 11 | C4 |
| -56 | -2^3 * 7 | C4 |
| -68 | -2^2 * 17 | C4 |
| -136 | -2^3 * 17 | C4 |
| -155 | -5 * 31 | C4 |
| -184 | -2^3 * 23 | C4 |
| -203 | -7 * 29 | C4 |
| -219 | -3 * 73 | C4 |
| -259 | -7 * 37 | C4 |
| -260 | -2^2 * 5 * 13 | C2 x C4 |
| -264 | -2^3 * 3 * 11 | C2 x C4 |
| -276 | -2^2 * 3 * 23 | C2 x C4 |
| -291 | -3 * 97 | C4 |
| -292 | -2^2 * 73 | C4 |
| -308 | -2^2 * 7 * 11 | C2 x C4 |
| -323 | -17 * 19 | C4 |
| -328 | -2^3 * 41 | C4 |
| -355 | -5 * 71 | C4 |
| -388 | -2^2 * 97 | C4 |
| -456 | -2^3 * 3 * 19 | C2 x C4 |
| -552 | -2^3 * 3 * 23 | C2 x C4 |
| -564 | -2^2 * 3 * 47 | C2 x C4 |
| -568 | -2^3 * 71 | C4 |
| -580 | -2^2 * 5 * 29 | C2 x C4 |
| -616 | -2^3 * 7 * 11 | C2 x C4 |
| -651 | -3 * 7 * 31 | C2 x C4 |
| -667 | -23 * 29 | C4 |
| -723 | -3 * 241 | C4 |
| -763 | -7 * 109 | C4 |
| -772 | -2^2 * 193 | C4 |
| -820 | -2^2 * 5 * 41 | C2 x C4 |
| -852 | -2^2 * 3 * 71 | C2 x C4 |
| -868 | -2^2 * 7 * 31 | C2 x C4 |
| -915 | -3 * 5 * 61 | C2 x C4 |
| -952 | -2^3 * 7 * 17 | C2 x C4 |
| -955 | -5 * 191 | C4 |
| -987 | -3 * 7 * 47 | C2 x C4 |
| -1003 | -17 * 59 | C4 |
| -1027 | -13 * 79 | C4 |
| -1032 | -2^3 * 3 * 43 | C2 x C4 |
| -1060 | -2^2 * 5 * 53 | C2 x C4 |
| -1128 | -2^3 * 3 * 47 | C2 x C4 |
| -1131 | -3 * 13 * 29 | C2 x C4 |
| -1140 | -2^2 * 3 * 5 * 19 | C2 x C2 x C4 |
| -1204 | -2^2 * 7 * 43 | C2 x C4 |
| -1227 | -3 * 409 | C4 |
| -1240 | -2^3 * 5 * 31 | C2 x C4 |
| -1243 | -11 * 113 | C4 |
| -1288 | -2^3 * 7 * 23 | C2 x C4 |
| -1387 | -19 * 73 | C4 |
| -1411 | -17 * 83 | C4 |
| -1443 | -3 * 13 * 37 | C2 x C4 |
| -1507 | -11 * 137 | C4 |
| -1555 | -5 * 311 | C4 |
| -1560 | -2^3 * 3 * 5 * 13 | C2 x C2 x C4 |
| -1635 | -3 * 5 * 109 | C2 x C4 |
| -1659 | -3 * 7 * 79 | C2 x C4 |
| -1672 | -2^3 * 11 * 19 | C2 x C4 |
| -1716 | -2^2 * 3 * 11 * 13 | C2 x C2 x C4 |
| -1752 | -2^3 * 3 * 73 | C2 x C4 |
| -1768 | -2^3 * 13 * 17 | C2 x C4 |
| -1771 | -7 * 11 * 23 | C2 x C4 |
| -1780 | -2^2 * 5 * 89 | C2 x C4 |
| -1860 | -2^2 * 3 * 5 * 31 | C2 x C2 x C4 |
| -1947 | -3 * 11 * 59 | C2 x C4 |
| -1992 | -2^3 * 3 * 83 | C2 x C4 |
| -2020 | -2^2 * 5 * 101 | C2 x C4 |
| -2035 | -5 * 11 * 37 | C2 x C4 |
| -2040 | -2^3 * 3 * 5 * 17 | C2 x C2 x C4 |
| -2067 | -3 * 13 * 53 | C2 x C4 |
| -2139 | -3 * 23 * 31 | C2 x C4 |
| -2163 | -3 * 7 * 103 | C2 x C4 |
| -2212 | -2^2 * 7 * 79 | C2 x C4 |
| -2244 | -2^2 * 3 * 11 * 17 | C2 x C2 x C4 |
| -2280 | -2^3 * 3 * 5 * 19 | C2 x C2 x C4 |
| -2379 | -3 * 13 * 61 | C4 x C4 |
| -2392 | -2^3 * 13 * 23 | C2 x C4 |
| -2436 | -2^2 * 3 * 7 * 29 | C2 x C2 x C4 |
| -2451 | -3 * 19 * 43 | C2 x C4 |
| -2580 | -2^2 * 3 * 5 * 43 | C2 x C2 x C4 |
| -2632 | -2^3 * 7 * 47 | C2 x C4 |
| -2667 | -3 * 7 * 127 | C2 x C4 |
| -2715 | -3 * 5 * 181 | C2 x C4 |
| -2755 | -5 * 19 * 29 | C2 x C4 |
| -2760 | -2^3 * 3 * 5 * 23 | C2 x C2 x C4 |
| -2788 | -2^2 * 17 * 41 | C2 x C4 |
| -2968 | -2^3 * 7 * 53 | C2 x C4 |
| -3108 | -2^2 * 3 * 7 * 37 | C2 x C2 x C4 |
| -3172 | -2^2 * 13 * 61 | C2 x C4 |
| -3192 | -2^3 * 3 * 7 * 19 | C2 x C2 x C4 |
| -3220 | -2^2 * 5 * 7 * 23 | C2 x C2 x C4 |
| -3243 | -3 * 23 * 47 | C2 x C4 |
| -3355 | -5 * 11 * 61 | C2 x C4 |
| -3432 | -2^3 * 3 * 11 * 13 | C2 x C2 x C4 |
| -3480 | -2^3 * 3 * 5 * 29 | C2 x C2 x C4 |
| -3507 | -3 * 7 * 167 | C2 x C4 |
| -3588 | -2^2 * 3 * 13 * 23 | C2 x C2 x C4 |
| -3640 | -2^3 * 5 * 7 * 13 | C2 x C2 x C4 |
| -3795 | -3 * 5 * 11 * 23 | C2 x C2 x C4 |
| -3828 | -2^2 * 3 * 11 * 29 | C2 x C2 x C4 |
| -4020 | -2^2 * 3 * 5 * 67 | C2 x C2 x C4 |
| -4123 | -7 * 19 * 31 | C2 x C4 |
| -4180 | -2^2 * 5 * 11 * 19 | C2 x C2 x C4 |
| -4260 | -2^2 * 3 * 5 * 71 | C2 x C2 x C4 |
| -4323 | -3 * 11 * 131 | C2 x C4 |
| -4420 | -2^2 * 5 * 13 * 17 | C2 x C2 x C4 |
| -4440 | -2^3 * 3 * 5 * 37 | C2 x C2 x C4 |
| -4452 | -2^2 * 3 * 7 * 53 | C2 x C2 x C4 |
| -4488 | -2^3 * 3 * 11 * 17 | C2 x C2 x C4 |
| -4515 | -3 * 5 * 7 * 43 | C2 x C2 x C4 |
| -4740 | -2^2 * 3 * 5 * 79 | C2 x C2 x C4 |
| -5083 | -13 * 17 * 23 | C2 x C4 |
| -5115 | -3 * 5 * 11 * 31 | C2 x C2 x C4 |
| -5160 | -2^3 * 3 * 5 * 43 | C2 x C2 x C4 |
| -5187 | -3 * 7 * 13 * 19 | C2 x C2 x C4 |
| -5208 | -2^3 * 3 * 7 * 31 | C2 x C2 x C4 |
| -5412 | -2^2 * 3 * 11 * 41 | C2 x C2 x C4 |
| -5467 | -7 * 11 * 71 | C2 x C4 |
| -6052 | -2^2 * 17 * 89 | C4 x C4 |
| -6123 | -3 * 13 * 157 | C4 x C4 |
| -6195 | -3 * 5 * 7 * 59 | C2 x C2 x C4 |
| -6307 | -7 * 17 * 53 | C2 x C4 |
| -6328 | -2^3 * 7 * 113 | C4 x C4 |
| -6355 | -5 * 31 * 41 | C4 x C4 |
| -6360 | -2^3 * 3 * 5 * 53 | C2 x C4 x C4 |
| -6420 | -2^2 * 3 * 5 * 107 | C2 x C2 x C4 |
| -6580 | -2^2 * 5 * 7 * 47 | C2 x C2 x C4 |
| -6612 | -2^2 * 3 * 19 * 29 | C2 x C2 x C4 |
| -6708 | -2^2 * 3 * 13 * 43 | C2 x C2 x C4 |
| -6820 | -2^2 * 5 * 11 * 31 | C2 x C2 x C4 |
| -7035 | -3 * 5 * 7 * 67 | C2 x C2 x C4 |
| -7140 | -2^2 * 3 * 5 * 7 * 17 | C2 x C2 x C2 x C4 |
| -7315 | -5 * 7 * 11 * 19 | C2 x C2 x C4 |
| -7395 | -3 * 5 * 17 * 29 | C2 x C2 x C4 |
| -7480 | -2^3 * 5 * 11 * 17 | C2 x C2 x C4 |
| -7540 | -2^2 * 5 * 13 * 29 | C2 x C2 x C4 |
| -7672 | -2^3 * 7 * 137 | C4 x C4 |
| -7755 | -3 * 5 * 11 * 47 | C2 x C2 x C4 |
| -7995 | -3 * 5 * 13 * 41 | C2 x C2 x C4 |
| -8008 | -2^3 * 7 * 11 * 13 | C2 x C2 x C4 |
| -8052 | -2^2 * 3 * 11 * 61 | C2 x C2 x C4 |
| -8547 | -3 * 7 * 11 * 37 | C2 x C2 x C4 |
| -8580 | -2^2 * 3 * 5 * 11 * 13 | C2 x C2 x C2 x C4 |
| -8680 | -2^3 * 5 * 7 * 31 | C2 x C2 x C4 |
| -8715 | -3 * 5 * 7 * 83 | C2 x C2 x C4 |
| -8835 | -3 * 5 * 19 * 31 | C2 x C2 x C4 |
| -8932 | -2^2 * 7 * 11 * 29 | C2 x C2 x C4 |
| -9240 | -2^3 * 3 * 5 * 7 * 11 | C2 x C2 x C2 x C4 |
| -9595 | -5 * 19 * 101 | C4 x C4 |
| -9867 | -3 * 11 * 13 * 23 | C2 x C2 x C4 |
| -9955 | -5 * 11 * 181 | C4 x C4 |
| -10168 | -2^3 * 31 * 41 | C4 x C4 |
| -10803 | -3 * 13 * 277 | C4 x C4 |
| -10920 | -2^3 * 3 * 5 * 7 * 13 | C2 x C2 x C2 x C4 |
| -10948 | -2^2 * 7 * 17 * 23 | C2 x C2 x C4 |
| -11067 | -3 * 7 * 17 * 31 | C2 x C2 x C4 |
| -11715 | -3 * 5 * 11 * 71 | C2 x C2 x C4 |
| -12180 | -2^2 * 3 * 5 * 7 * 29 | C2 x C2 x C2 x C4 |
| -12595 | -5 * 11 * 229 | C4 x C4 |
| -13195 | -5 * 7 * 13 * 29 | C2 x C2 x C4 |
| -14008 | -2^3 * 17 * 103 | C4 x C4 |
| -14155 | -5 * 19 * 149 | C4 x C4 |
| -14280 | -2^3 * 3 * 5 * 7 * 17 | C2 x C2 x C2 x C4 |
| -14547 | -3 * 13 * 373 | C4 x C4 |
| -14763 | -3 * 7 * 19 * 37 | C2 x C2 x C4 |
| -14820 | -2^2 * 3 * 5 * 13 * 19 | C2 x C2 x C2 x C4 |
| -16555 | -5 * 7 * 11 * 43 | C2 x C2 x C4 |
| -17220 | -2^2 * 3 * 5 * 7 * 41 | C2 x C2 x C2 x C4 |
| -17427 | -3 * 37 * 157 | C4 x C4 |
| -19240 | -2^3 * 5 * 13 * 37 | C2 x C4 x C4 |
| -19320 | -2^3 * 3 * 5 * 7 * 23 | C2 x C2 x C2 x C4 |
| -19380 | -2^2 * 3 * 5 * 17 * 19 | C2 x C2 x C2 x C4 |
| -19635 | -3 * 5 * 7 * 11 * 17 | C2 x C2 x C2 x C4 |
| -19947 | -3 * 61 * 109 | C4 x C4 |
| -20020 | -2^2 * 5 * 7 * 11 * 13 | C2 x C2 x C2 x C4 |
| -20148 | -2^2 * 3 * 23 * 73 | C2 x C4 x C4 |
| -20155 | -5 * 29 * 139 | C4 x C4 |
| -23640 | -2^3 * 3 * 5 * 197 | C2 x C4 x C4 |
| -25608 | -2^3 * 3 * 11 * 97 | C2 x C4 x C4 |
| -30340 | -2^2 * 5 * 37 * 41 | C2 x C4 x C4 |
| -31395 | -3 * 5 * 7 * 13 * 23 | C2 x C2 x C2 x C4 |
| -33915 | -3 * 5 * 7 * 17 * 19 | C2 x C2 x C2 x C4 |
| -34840 | -2^3 * 5 * 13 * 67 | C2 x C4 x C4 |
| -40755 | -3 * 5 * 11 * 13 * 19 | C2 x C2 x C2 x C4 |
| -42420 | -2^2 * 3 * 5 * 7 * 101 | C2 x C2 x C4 x C4 |
| -43435 | -5 * 7 * 17 * 73 | C2 x C4 x C4 |
| -44115 | -3 * 5 * 17 * 173 | C2 x C4 x C4 |
| -46852 | -2^2 * 13 * 17 * 53 | C2 x C4 x C4 |
| -53592 | -2^3 * 3 * 7 * 11 * 29 | C2 x C2 x C4 x C4 |
| -57387 | -3 * 11 * 37 * 47 | C2 x C4 x C4 |
| -57715 | -5 * 7 * 17 * 97 | C2 x C4 x C4 |
| -58548 | -2^2 * 3 * 7 * 17 * 41 | C2 x C2 x C4 x C4 |
| -73140 | -2^2 * 3 * 5 * 23 * 53 | C2 x C2 x C4 x C4 |
| -82555 | -5 * 11 * 19 * 79 | C2 x C4 x C4 |
| -92568 | -2^3 * 3 * 7 * 19 * 29 | C2 x C2 x C4 x C4 |
| -105315 | -3 * 5 * 7 * 17 * 59 | C2 x C2 x C4 x C4 |
| -111435 | -3 * 5 * 17 * 19 * 23 | C2 x C2 x C4 x C4 |
| -198660 | -2^2 * 3 * 5 * 7 * 11 * 43 | C2 x C2 x C2 x C4 x C4 |
| -207480 | -2^3 * 3 * 5 * 7 * 13 * 19 | C2 x C2 x C2 x C4 x C4 |
| -228228 | -2^2 * 3 * 7 * 11 * 13 * 19 | C2 x C2 x C2 x C4 x C4 |
| -264180 | -2^2 * 3 * 5 * 7 * 17 * 37 | C2 x C2 x C2 x C4 x C4 |
| -435435 | -3 * 5 * 7 * 11 * 13 * 29 | C2 x C2 x C2 x C4 x C4 |
The following table is complete assuming that the generalized Riemann hypothesis is true. Without any assumption it is known that the list should be finite.
| Discriminant | Factorization | Class group |
| -47 | -47 | C5 |
| -79 | -79 | C5 |
| -103 | -103 | C5 |
| -127 | -127 | C5 |
| -131 | -131 | C5 |
| -179 | -179 | C5 |
| -227 | -227 | C5 |
| -347 | -347 | C5 |
| -443 | -443 | C5 |
| -523 | -523 | C5 |
| -571 | -571 | C5 |
| -619 | -619 | C5 |
| -683 | -683 | C5 |
| -691 | -691 | C5 |
| -739 | -739 | C5 |
| -787 | -787 | C5 |
| -947 | -947 | C5 |
| -1051 | -1051 | C5 |
| -1123 | -1123 | C5 |
| -1723 | -1723 | C5 |
| -1747 | -1747 | C5 |
| -1867 | -1867 | C5 |
| -2203 | -2203 | C5 |
| -2347 | -2347 | C5 |
| -2683 | -2683 | C5 |
| -12451 | -12451 | C5 x C5 |
| -37363 | -37363 | C5 x C5 |
The following table is only complete up to discriminant 3.1*10^20. It is unconditionally known that there is only a finite number of fields with exponent 6.
| Discriminant | Factorization | Class group |
| -87 | -3 * 29 | C6 |
| -104 | -2^3 * 13 | C6 |
| -116 | -2^2 * 29 | C6 |
| -152 | -2^3 * 19 | C6 |
| -212 | -2^2 * 53 | C6 |
| -231 | -3 * 7 * 11 | C2 x C6 |
| -244 | -2^2 * 61 | C6 |
| -247 | -13 * 19 | C6 |
| -255 | -3 * 5 * 17 | C2 x C6 |
| -339 | -3 * 113 | C6 |
| -411 | -3 * 137 | C6 |
| -424 | -2^3 * 53 | C6 |
| -436 | -2^2 * 109 | C6 |
| -440 | -2^3 * 5 * 11 | C2 x C6 |
| -451 | -11 * 41 | C6 |
| -472 | -2^3 * 59 | C6 |
| -515 | -5 * 103 | C6 |
| -516 | -2^2 * 3 * 43 | C2 x C6 |
| -628 | -2^2 * 157 | C6 |
| -680 | -2^3 * 5 * 17 | C2 x C6 |
| -696 | -2^3 * 3 * 29 | C2 x C6 |
| -707 | -7 * 101 | C6 |
| -728 | -2^3 * 7 * 13 | C2 x C6 |
| -744 | -2^3 * 3 * 31 | C2 x C6 |
| -771 | -3 * 257 | C6 |
| -804 | -2^2 * 3 * 67 | C2 x C6 |
| -808 | -2^3 * 101 | C6 |
| -835 | -5 * 167 | C6 |
| -843 | -3 * 281 | C6 |
| -856 | -2^3 * 107 | C6 |
| -888 | -2^3 * 3 * 37 | C2 x C6 |
| -948 | -2^2 * 3 * 79 | C2 x C6 |
| -984 | -2^3 * 3 * 41 | C2 x C6 |
| -996 | -2^2 * 3 * 83 | C2 x C6 |
| -1048 | -2^3 * 131 | C6 |
| -1059 | -3 * 353 | C6 |
| -1099 | -7 * 157 | C6 |
| -1108 | -2^2 * 277 | C6 |
| -1144 | -2^3 * 11 * 13 | C2 x C6 |
| -1147 | -31 * 37 | C6 |
| -1192 | -2^3 * 149 | C6 |
| -1203 | -3 * 401 | C6 |
| -1219 | -23 * 53 | C6 |
| -1235 | -5 * 13 * 19 | C2 x C6 |
| -1236 | -2^2 * 3 * 103 | C2 x C6 |
| -1267 | -7 * 181 | C6 |
| -1272 | -2^3 * 3 * 53 | C2 x C6 |
| -1315 | -5 * 263 | C6 |
| -1347 | -3 * 449 | C6 |
| -1363 | -29 * 47 | C6 |
| -1419 | -3 * 11 * 43 | C2 x C6 |
| -1432 | -2^3 * 179 | C6 |
| -1464 | -2^3 * 3 * 61 | C2 x C6 |
| -1480 | -2^3 * 5 * 37 | C2 x C6 |
| -1491 | -3 * 7 * 71 | C2 x C6 |
| -1515 | -3 * 5 * 101 | C2 x C6 |
| -1547 | -7 * 13 * 17 | C2 x C6 |
| -1563 | -3 * 521 | C6 |
| -1572 | -2^2 * 3 * 131 | C2 x C6 |
| -1588 | -2^2 * 397 | C6 |
| -1603 | -7 * 229 | C6 |
| -1668 | -2^2 * 3 * 139 | C2 x C6 |
| -1720 | -2^3 * 5 * 43 | C2 x C6 |
| -1812 | -2^2 * 3 * 151 | C2 x C6 |
| -1843 | -19 * 97 | C6 |
| -1892 | -2^2 * 11 * 43 | C2 x C6 |
| -1915 | -5 * 383 | C6 |
| -1955 | -5 * 17 * 23 | C2 x C6 |
| -1963 | -13 * 151 | C6 |
| -1972 | -2^2 * 17 * 29 | C2 x C6 |
| -2068 | -2^2 * 11 * 47 | C2 x C6 |
| -2091 | -3 * 17 * 41 | C2 x C6 |
| -2132 | -2^2 * 13 * 41 | C2 x C6 |
| -2148 | -2^2 * 3 * 179 | C2 x C6 |
| -2184 | -2^3 * 3 * 7 * 13 | C2 x C2 x C6 |
| -2227 | -17 * 131 | C6 |
| -2235 | -3 * 5 * 149 | C2 x C6 |
| -2260 | -2^2 * 5 * 113 | C2 x C6 |
| -2283 | -3 * 761 | C6 |
| -2355 | -3 * 5 * 157 | C2 x C6 |
| -2387 | -7 * 11 * 31 | C2 x C6 |
| -2388 | -2^2 * 3 * 199 | C2 x C6 |
| -2424 | -2^3 * 3 * 101 | C2 x C6 |
| -2440 | -2^3 * 5 * 61 | C2 x C6 |
| -2443 | -7 * 349 | C6 |
| -2472 | -2^3 * 3 * 103 | C2 x C6 |
| -2515 | -5 * 503 | C6 |
| -2555 | -5 * 7 * 73 | C2 x C6 |
| -2563 | -11 * 233 | C6 |
| -2595 | -3 * 5 * 173 | C2 x C6 |
| -2635 | -5 * 17 * 31 | C2 x C6 |
| -2660 | -2^2 * 5 * 7 * 19 | C2 x C2 x C6 |
| -2676 | -2^2 * 3 * 223 | C2 x C6 |
| -2680 | -2^3 * 5 * 67 | C2 x C6 |
| -2728 | -2^3 * 11 * 31 | C2 x C6 |
| -2740 | -2^2 * 5 * 137 | C2 x C6 |
| -2787 | -3 * 929 | C6 |
| -2795 | -5 * 13 * 43 | C2 x C6 |
| -2820 | -2^2 * 3 * 5 * 47 | C2 x C2 x C6 |
| -2856 | -2^3 * 3 * 7 * 17 | C2 x C2 x C6 |
| -2920 | -2^3 * 5 * 73 | C2 x C6 |
| -2923 | -37 * 79 | C6 |
| -2955 | -3 * 5 * 197 | C2 x C6 |
| -2964 | -2^2 * 3 * 13 * 19 | C2 x C2 x C6 |
| -3012 | -2^2 * 3 * 251 | C2 x C6 |
| -3048 | -2^3 * 3 * 127 | C2 x C6 |
| -3115 | -5 * 7 * 89 | C2 x C6 |
| -3235 | -5 * 647 | C6 |
| -3252 | -2^2 * 3 * 271 | C2 x C6 |
| -3256 | -2^3 * 11 * 37 | C2 x C6 |
| -3268 | -2^2 * 19 * 43 | C2 x C6 |
| -3304 | -2^3 * 7 * 59 | C2 x C6 |
| -3427 | -23 * 149 | C6 |
| -3444 | -2^2 * 3 * 7 * 41 | C2 x C2 x C6 |
| -3451 | -7 * 17 * 29 | C2 x C6 |
| -3523 | -13 * 271 | C6 |
| -3540 | -2^2 * 3 * 5 * 59 | C2 x C2 x C6 |
| -3619 | -7 * 11 * 47 | C2 x C6 |
| -3652 | -2^2 * 11 * 83 | C2 x C6 |
| -3720 | -2^3 * 3 * 5 * 31 | C2 x C2 x C6 |
| -3723 | -3 * 17 * 73 | C2 x C6 |
| -3763 | -53 * 71 | C6 |
| -3768 | -2^3 * 3 * 157 | C2 x C6 |
| -3796 | -2^2 * 13 * 73 | C2 x C6 |
| -3835 | -5 * 13 * 59 | C2 x C6 |
| -3864 | -2^3 * 3 * 7 * 23 | C2 x C2 x C6 |
| -3876 | -2^2 * 3 * 17 * 19 | C2 x C2 x C6 |
| -3880 | -2^3 * 5 * 97 | C2 x C6 |
| -3892 | -2^2 * 7 * 139 | C2 x C6 |
| -3955 | -5 * 7 * 113 | C2 x C6 |
| -3972 | -2^2 * 3 * 331 | C2 x C6 |
| -4035 | -3 * 5 * 269 | C2 x C6 |
| -4120 | -2^3 * 5 * 103 | C2 x C6 |
| -4147 | -11 * 13 * 29 | C2 x C6 |
| -4152 | -2^3 * 3 * 173 | C2 x C6 |
| -4155 | -3 * 5 * 277 | C2 x C6 |
| -4360 | -2^3 * 5 * 109 | C2 x C6 |
| -4587 | -3 * 11 * 139 | C2 x C6 |
| -4648 | -2^3 * 7 * 83 | C2 x C6 |
| -4692 | -2^2 * 3 * 17 * 23 | C2 x C2 x C6 |
| -4708 | -2^2 * 11 * 107 | C2 x C6 |
| -4755 | -3 * 5 * 317 | C2 x C6 |
| -4795 | -5 * 7 * 137 | C2 x C6 |
| -4872 | -2^3 * 3 * 7 * 29 | C2 x C2 x C6 |
| -4888 | -2^3 * 13 * 47 | C2 x C6 |
| -4920 | -2^3 * 3 * 5 * 41 | C2 x C2 x C6 |
| -4947 | -3 * 17 * 97 | C2 x C6 |
| -5016 | -2^3 * 3 * 11 * 19 | C2 x C2 x C6 |
| -5032 | -2^3 * 17 * 37 | C2 x C6 |
| -5035 | -5 * 19 * 53 | C2 x C6 |
| -5124 | -2^2 * 3 * 7 * 61 | C2 x C2 x C6 |
| -5140 | -2^2 * 5 * 257 | C2 x C6 |
| -5236 | -2^2 * 7 * 11 * 17 | C2 x C2 x C6 |
| -5307 | -3 * 29 * 61 | C2 x C6 |
| -5320 | -2^3 * 5 * 7 * 19 | C2 x C2 x C6 |
| -5395 | -5 * 13 * 83 | C2 x C6 |
| -5523 | -3 * 7 * 263 | C2 x C6 |
| -5595 | -3 * 5 * 373 | C2 x C6 |
| -5763 | -3 * 17 * 113 | C2 x C6 |
| -5811 | -3 * 13 * 149 | C2 x C6 |
| -5835 | -3 * 5 * 389 | C2 x C6 |
| -5928 | -2^3 * 3 * 13 * 19 | C2 x C2 x C6 |
| -6072 | -2^3 * 3 * 11 * 23 | C2 x C2 x C6 |
| -6132 | -2^2 * 3 * 7 * 73 | C2 x C2 x C6 |
| -6180 | -2^2 * 3 * 5 * 103 | C2 x C2 x C6 |
| -6216 | -2^3 * 3 * 7 * 37 | C2 x C2 x C6 |
| -6232 | -2^3 * 19 * 41 | C2 x C6 |
| -6235 | -5 * 29 * 43 | C2 x C6 |
| -6555 | -3 * 5 * 19 * 23 | C2 x C2 x C6 |
| -6603 | -3 * 31 * 71 | C2 x C6 |
| -6643 | -7 * 13 * 73 | C2 x C6 |
| -6699 | -3 * 7 * 11 * 29 | C2 x C2 x C6 |
| -6715 | -5 * 17 * 79 | C2 x C6 |
| -6888 | -2^3 * 3 * 7 * 41 | C2 x C2 x C6 |
| -6916 | -2^2 * 7 * 13 * 19 | C2 x C2 x C6 |
| -6955 | -5 * 13 * 107 | C2 x C6 |
| -6963 | -3 * 11 * 211 | C2 x C6 |
| -6987 | -3 * 17 * 137 | C2 x C6 |
| -7107 | -3 * 23 * 103 | C2 x C6 |
| -7320 | -2^3 * 3 * 5 * 61 | C2 x C2 x C6 |
| -7332 | -2^2 * 3 * 13 * 47 | C2 x C2 x C6 |
| -7620 | -2^2 * 3 * 5 * 127 | C2 x C2 x C6 |
| -7683 | -3 * 13 * 197 | C2 x C6 |
| -7912 | -2^3 * 23 * 43 | C2 x C6 |
| -8148 | -2^2 * 3 * 7 * 97 | C2 x C2 x C6 |
| -8155 | -5 * 7 * 233 | C2 x C6 |
| -8211 | -3 * 7 * 17 * 23 | C2 x C2 x C6 |
| -8260 | -2^2 * 5 * 7 * 59 | C2 x C2 x C6 |
| -8323 | -7 * 29 * 41 | C2 x C6 |
| -8395 | -5 * 23 * 73 | C2 x C6 |
| -8740 | -2^2 * 5 * 19 * 23 | C2 x C2 x C6 |
| -8760 | -2^3 * 3 * 5 * 73 | C2 x C2 x C6 |
| -8772 | -2^2 * 3 * 17 * 43 | C2 x C2 x C6 |
| -8787 | -3 * 29 * 101 | C2 x C6 |
| -8827 | -7 * 13 * 97 | C2 x C6 |
| -9048 | -2^3 * 3 * 13 * 29 | C2 x C2 x C6 |
| -9139 | -13 * 19 * 37 | C2 x C6 |
| -9384 | -2^3 * 3 * 17 * 23 | C2 x C2 x C6 |
| -9480 | -2^3 * 3 * 5 * 79 | C2 x C2 x C6 |
| -9492 | -2^2 * 3 * 7 * 113 | C2 x C2 x C6 |
| -9672 | -2^3 * 3 * 13 * 31 | C2 x C2 x C6 |
| -9748 | -2^2 * 2437 | C3 x C6 |
| -9843 | -3 * 17 * 193 | C2 x C6 |
| -9940 | -2^2 * 5 * 7 * 71 | C2 x C2 x C6 |
| -10120 | -2^3 * 5 * 11 * 23 | C2 x C2 x C6 |
| -10212 | -2^2 * 3 * 23 * 37 | C2 x C2 x C6 |
| -10248 | -2^3 * 3 * 7 * 61 | C2 x C2 x C6 |
| -10360 | -2^3 * 5 * 7 * 37 | C2 x C2 x C6 |
| -10452 | -2^2 * 3 * 13 * 67 | C2 x C2 x C6 |
| -10488 | -2^3 * 3 * 19 * 23 | C2 x C2 x C6 |
| -10707 | -3 * 43 * 83 | C2 x C6 |
| -10740 | -2^2 * 3 * 5 * 179 | C2 x C2 x C6 |
| -10788 | -2^2 * 3 * 29 * 31 | C2 x C2 x C6 |
| -10795 | -5 * 17 * 127 | C2 x C6 |
| -10915 | -5 * 37 * 59 | C2 x C6 |
| -11155 | -5 * 23 * 97 | C2 x C6 |
| -11220 | -2^2 * 3 * 5 * 11 * 17 | C2 x C2 x C2 x C6 |
| -11235 | -3 * 5 * 7 * 107 | C2 x C2 x C6 |
| -11620 | -2^2 * 5 * 7 * 83 | C2 x C2 x C6 |
| -11748 | -2^2 * 3 * 11 * 89 | C2 x C2 x C6 |
| -11803 | -11 * 29 * 37 | C2 x C6 |
| -11928 | -2^3 * 3 * 7 * 71 | C2 x C2 x C6 |
| -12067 | -11 * 1097 | C3 x C6 |
| -12243 | -3 * 7 * 11 * 53 | C2 x C2 x C6 |
| -12376 | -2^3 * 7 * 13 * 17 | C2 x C2 x C6 |
| -12408 | -2^3 * 3 * 11 * 47 | C2 x C2 x C6 |
| -12628 | -2^2 * 7 * 11 * 41 | C2 x C2 x C6 |
| -12760 | -2^3 * 5 * 11 * 29 | C2 x C2 x C6 |
| -13035 | -3 * 5 * 11 * 79 | C2 x C2 x C6 |
| -13080 | -2^3 * 3 * 5 * 109 | C2 x C2 x C6 |
| -13395 | -3 * 5 * 19 * 47 | C2 x C2 x C6 |
| -13668 | -2^2 * 3 * 17 * 67 | C2 x C2 x C6 |
| -13780 | -2^2 * 5 * 13 * 53 | C2 x C2 x C6 |
| -14212 | -2^2 * 11 * 17 * 19 | C2 x C2 x C6 |
| -14235 | -3 * 5 * 13 * 73 | C2 x C2 x C6 |
| -14260 | -2^2 * 5 * 23 * 31 | C2 x C2 x C6 |
| -14443 | -11 * 13 * 101 | C2 x C6 |
| -14532 | -2^2 * 3 * 7 * 173 | C2 x C2 x C6 |
| -14595 | -3 * 5 * 7 * 139 | C2 x C2 x C6 |
| -14835 | -3 * 5 * 23 * 43 | C2 x C2 x C6 |
| -14952 | -2^3 * 3 * 7 * 89 | C2 x C2 x C6 |
| -14980 | -2^2 * 5 * 7 * 107 | C2 x C2 x C6 |
| -15283 | -17 * 29 * 31 | C2 x C6 |
| -15540 | -2^2 * 3 * 5 * 7 * 37 | C2 x C2 x C2 x C6 |
| -15544 | -2^3 * 29 * 67 | C6 x C6 |
| -15555 | -3 * 5 * 17 * 61 | C2 x C2 x C6 |
| -15640 | -2^3 * 5 * 17 * 23 | C2 x C2 x C6 |
| -15652 | -2^2 * 7 * 13 * 43 | C2 x C2 x C6 |
| -15960 | -2^3 * 3 * 5 * 7 * 19 | C2 x C2 x C2 x C6 |
| -16107 | -3 * 7 * 13 * 59 | C2 x C2 x C6 |
| -16627 | -13 * 1279 | C3 x C6 |
| -16872 | -2^3 * 3 * 19 * 37 | C2 x C2 x C6 |
| -17043 | -3 * 13 * 19 * 23 | C2 x C2 x C6 |
| -17131 | -37 * 463 | C3 x C6 |
| -17160 | -2^3 * 3 * 5 * 11 * 13 | C2 x C2 x C2 x C6 |
| -17556 | -2^2 * 3 * 7 * 11 * 19 | C2 x C2 x C2 x C6 |
| -17940 | -2^2 * 3 * 5 * 13 * 23 | C2 x C2 x C2 x C6 |
| -18040 | -2^3 * 5 * 11 * 41 | C2 x C2 x C6 |
| -18088 | -2^3 * 7 * 17 * 19 | C2 x C2 x C6 |
| -18340 | -2^2 * 5 * 7 * 131 | C2 x C2 x C6 |
| -18555 | -3 * 5 * 1237 | C6 x C6 |
| -18795 | -3 * 5 * 7 * 179 | C2 x C2 x C6 |
| -18915 | -3 * 5 * 13 * 97 | C2 x C2 x C6 |
| -19140 | -2^2 * 3 * 5 * 11 * 29 | C2 x C2 x C2 x C6 |
| -19651 | -43 * 457 | C3 x C6 |
| -19803 | -3 * 7 * 23 * 41 | C2 x C2 x C6 |
| -20355 | -3 * 5 * 23 * 59 | C2 x C2 x C6 |
| -20568 | -2^3 * 3 * 857 | C6 x C6 |
| -20955 | -3 * 5 * 11 * 127 | C2 x C2 x C6 |
| -20995 | -5 * 13 * 17 * 19 | C2 x C2 x C6 |
| -21112 | -2^3 * 7 * 13 * 29 | C2 x C2 x C6 |
| -21252 | -2^2 * 3 * 7 * 11 * 23 | C2 x C2 x C2 x C6 |
| -22260 | -2^2 * 3 * 5 * 7 * 53 | C2 x C2 x C2 x C6 |
| -22395 | -3 * 5 * 1493 | C6 x C6 |
| -22440 | -2^3 * 3 * 5 * 11 * 17 | C2 x C2 x C2 x C6 |
| -22443 | -3 * 7481 | C3 x C6 |
| -23115 | -3 * 5 * 23 * 67 | C2 x C2 x C6 |
| -23188 | -2^2 * 11 * 17 * 31 | C2 x C2 x C6 |
| -23683 | -11 * 2153 | C3 x C6 |
| -24115 | -5 * 7 * 13 * 53 | C2 x C2 x C6 |
| -24123 | -3 * 11 * 17 * 43 | C2 x C2 x C6 |
| -24180 | -2^2 * 3 * 5 * 13 * 31 | C2 x C2 x C2 x C6 |
| -24340 | -2^2 * 5 * 1217 | C6 x C6 |
| -24360 | -2^3 * 3 * 5 * 7 * 29 | C2 x C2 x C2 x C6 |
| -24388 | -2^2 * 7 * 13 * 67 | C2 x C2 x C6 |
| -24420 | -2^2 * 3 * 5 * 11 * 37 | C2 x C2 x C2 x C6 |
| -24915 | -3 * 5 * 11 * 151 | C2 x C2 x C6 |
| -24955 | -5 * 7 * 23 * 31 | C2 x C2 x C6 |
| -25347 | -3 * 7 * 17 * 71 | C2 x C2 x C6 |
| -25707 | -3 * 11 * 19 * 41 | C2 x C2 x C6 |
| -25755 | -3 * 5 * 17 * 101 | C2 x C2 x C6 |
| -25795 | -5 * 7 * 11 * 67 | C2 x C2 x C6 |
| -26040 | -2^3 * 3 * 5 * 7 * 31 | C2 x C2 x C2 x C6 |
| -26187 | -3 * 7 * 29 * 43 | C2 x C2 x C6 |
| -26520 | -2^3 * 3 * 5 * 13 * 17 | C2 x C2 x C2 x C6 |
| -26760 | -2^3 * 3 * 5 * 223 | C2 x C6 x C6 |
| -27060 | -2^2 * 3 * 5 * 11 * 41 | C2 x C2 x C2 x C6 |
| -27115 | -5 * 11 * 17 * 29 | C2 x C2 x C6 |
| -27156 | -2^2 * 3 * 31 * 73 | C2 x C6 x C6 |
| -27435 | -3 * 5 * 31 * 59 | C2 x C2 x C6 |
| -27640 | -2^3 * 5 * 691 | C6 x C6 |
| -28644 | -2^2 * 3 * 7 * 11 * 31 | C2 x C2 x C2 x C6 |
| -29172 | -2^2 * 3 * 11 * 13 * 17 | C2 x C2 x C2 x C6 |
| -29640 | -2^3 * 3 * 5 * 13 * 19 | C2 x C2 x C2 x C6 |
| -30360 | -2^3 * 3 * 5 * 11 * 23 | C2 x C2 x C2 x C6 |
| -30660 | -2^2 * 3 * 5 * 7 * 73 | C2 x C2 x C2 x C6 |
| -31620 | -2^2 * 3 * 5 * 17 * 31 | C2 x C2 x C2 x C6 |
| -31908 | -2^2 * 3 * 2659 | C6 x C6 |
| -32968 | -2^3 * 13 * 317 | C6 x C6 |
| -33060 | -2^2 * 3 * 5 * 19 * 29 | C2 x C2 x C2 x C6 |
| -34027 | -7 * 4861 | C3 x C6 |
| -34507 | -11 * 3137 | C3 x C6 |
| -34827 | -3 * 13 * 19 * 47 | C2 x C2 x C6 |
| -34867 | -7 * 17 * 293 | C6 x C6 |
| -34980 | -2^2 * 3 * 5 * 11 * 53 | C2 x C2 x C2 x C6 |
| -35112 | -2^3 * 3 * 7 * 11 * 19 | C2 x C2 x C2 x C6 |
| -36120 | -2^3 * 3 * 5 * 7 * 43 | C2 x C2 x C2 x C6 |
| -36708 | -2^2 * 3 * 7 * 19 * 23 | C2 x C2 x C2 x C6 |
| -37128 | -2^3 * 3 * 7 * 13 * 17 | C2 x C2 x C2 x C6 |
| -37219 | -7 * 13 * 409 | C6 x C6 |
| -37555 | -5 * 7 * 29 * 37 | C2 x C2 x C6 |
| -38280 | -2^3 * 3 * 5 * 11 * 29 | C2 x C2 x C2 x C6 |
| -39480 | -2^3 * 3 * 5 * 7 * 47 | C2 x C2 x C2 x C6 |
| -39732 | -2^2 * 3 * 7 * 11 * 43 | C2 x C2 x C2 x C6 |
| -40299 | -3 * 7 * 19 * 101 | C2 x C6 x C6 |
| -40692 | -2^2 * 3 * 3391 | C6 x C6 |
| -41412 | -2^2 * 3 * 7 * 17 * 29 | C2 x C2 x C2 x C6 |
| -41860 | -2^2 * 5 * 7 * 13 * 23 | C2 x C2 x C2 x C6 |
| -42315 | -3 * 5 * 7 * 13 * 31 | C2 x C2 x C2 x C6 |
| -42427 | -7 * 11 * 19 * 29 | C2 x C2 x C6 |
| -42619 | -17 * 23 * 109 | C6 x C6 |
| -43428 | -2^2 * 3 * 7 * 11 * 47 | C2 x C2 x C2 x C6 |
| -43827 | -3 * 7 * 2087 | C6 x C6 |
| -44004 | -2^2 * 3 * 19 * 193 | C2 x C6 x C6 |
| -45220 | -2^2 * 5 * 7 * 17 * 19 | C2 x C2 x C2 x C6 |
| -45835 | -5 * 89 * 103 | C6 x C6 |
| -46587 | -3 * 53 * 293 | C6 x C6 |
| -46740 | -2^2 * 3 * 5 * 19 * 41 | C2 x C2 x C2 x C6 |
| -47355 | -3 * 5 * 7 * 11 * 41 | C2 x C2 x C2 x C6 |
| -48052 | -2^2 * 41 * 293 | C6 x C6 |
| -48472 | -2^3 * 73 * 83 | C6 x C6 |
| -49128 | -2^3 * 3 * 23 * 89 | C2 x C6 x C6 |
| -49812 | -2^2 * 3 * 7 * 593 | C2 x C6 x C6 |
| -50388 | -2^2 * 3 * 13 * 17 * 19 | C2 x C2 x C2 x C6 |
| -51051 | -3 * 7 * 11 * 13 * 17 | C2 x C2 x C2 x C6 |
| -51348 | -2^2 * 3 * 11 * 389 | C2 x C6 x C6 |
| -52360 | -2^3 * 5 * 7 * 11 * 17 | C2 x C2 x C2 x C6 |
| -54195 | -3 * 5 * 3613 | C6 x C6 |
| -58920 | -2^3 * 3 * 5 * 491 | C2 x C6 x C6 |
| -60099 | -3 * 13 * 23 * 67 | C2 x C6 x C6 |
| -63492 | -2^2 * 3 * 11 * 13 * 37 | C2 x C2 x C2 x C6 |
| -64155 | -3 * 5 * 7 * 13 * 47 | C2 x C2 x C2 x C6 |
| -67480 | -2^3 * 5 * 7 * 241 | C2 x C6 x C6 |
| -70035 | -3 * 5 * 7 * 23 * 29 | C2 x C2 x C2 x C6 |
| -72435 | -3 * 5 * 11 * 439 | C2 x C6 x C6 |
| -78180 | -2^2 * 3 * 5 * 1303 | C2 x C6 x C6 |
| -78708 | -2^2 * 3 * 7 * 937 | C2 x C6 x C6 |
| -81867 | -3 * 29 * 941 | C6 x C6 |
| -83395 | -5 * 13 * 1283 | C6 x C6 |
| -84072 | -2^3 * 3 * 31 * 113 | C2 x C6 x C6 |
| -86955 | -3 * 5 * 11 * 17 * 31 | C2 x C2 x C2 x C6 |
| -87720 | -2^3 * 3 * 5 * 17 * 43 | C2 x C2 x C6 x C6 |
| -87780 | -2^2 * 3 * 5 * 7 * 11 * 19 | C2 x C2 x C2 x C2 x C6 |
| -92827 | -7 * 89 * 149 | C6 x C6 |
| -94395 | -3 * 5 * 7 * 29 * 31 | C2 x C2 x C2 x C6 |
| -95448 | -2^3 * 3 * 41 * 97 | C2 x C6 x C6 |
| -100488 | -2^3 * 3 * 53 * 79 | C2 x C6 x C6 |
| -106260 | -2^2 * 3 * 5 * 7 * 11 * 23 | C2 x C2 x C2 x C2 x C6 |
| -107848 | -2^3 * 13 * 17 * 61 | C2 x C6 x C6 |
| -112795 | -5 * 17 * 1327 | C6 x C6 |
| -115780 | -2^2 * 5 * 7 * 827 | C2 x C6 x C6 |
| -116083 | -11 * 61 * 173 | C6 x C6 |
| -117480 | -2^3 * 3 * 5 * 11 * 89 | C2 x C2 x C6 x C6 |
| -119112 | -2^3 * 3 * 7 * 709 | C2 x C6 x C6 |
| -121720 | -2^3 * 5 * 17 * 179 | C2 x C6 x C6 |
| -125652 | -2^2 * 3 * 37 * 283 | C2 x C6 x C6 |
| -132328 | -2^3 * 7 * 17 * 139 | C2 x C6 x C6 |
| -137067 | -3 * 7 * 61 * 107 | C2 x C6 x C6 |
| -138468 | -2^2 * 3 * 11 * 1049 | C2 x C6 x C6 |
| -145860 | -2^2 * 3 * 5 * 11 * 13 * 17 | C2 x C2 x C2 x C2 x C6 |
| -148852 | -2^2 * 11 * 17 * 199 | C2 x C6 x C6 |
| -152355 | -3 * 5 * 7 * 1451 | C2 x C6 x C6 |
| -154212 | -2^2 * 3 * 71 * 181 | C2 x C6 x C6 |
| -180840 | -2^3 * 3 * 5 * 11 * 137 | C2 x C2 x C6 x C6 |
| -183012 | -2^2 * 3 * 101 * 151 | C2 x C6 x C6 |
| -183768 | -2^3 * 3 * 13 * 19 * 31 | C2 x C2 x C6 x C6 |
| -192003 | -3 * 7 * 41 * 223 | C2 x C6 x C6 |
| -195960 | -2^3 * 3 * 5 * 23 * 71 | C2 x C2 x C6 x C6 |
| -198795 | -3 * 5 * 29 * 457 | C2 x C6 x C6 |
| -199348 | -2^2 * 19 * 43 * 61 | C2 x C6 x C6 |
| -204568 | -2^3 * 7 * 13 * 281 | C2 x C6 x C6 |
| -211432 | -2^3 * 13 * 19 * 107 | C2 x C6 x C6 |
| -214008 | -2^3 * 3 * 37 * 241 | C2 x C6 x C6 |
| -224580 | -2^2 * 3 * 5 * 19 * 197 | C2 x C2 x C6 x C6 |
| -231240 | -2^3 * 3 * 5 * 41 * 47 | C2 x C2 x C6 x C6 |
| -287155 | -5 * 11 * 23 * 227 | C2 x C6 x C6 |
| -303160 | -2^3 * 5 * 11 * 13 * 53 | C2 x C2 x C6 x C6 |
| -315723 | -3 * 19 * 29 * 191 | C2 x C6 x C6 |
| -341715 | -3 * 5 * 11 * 19 * 109 | C2 x C2 x C6 x C6 |
| -343380 | -2^2 * 3 * 5 * 59 * 97 | C2 x C2 x C6 x C6 |
| -352968 | -2^3 * 3 * 7 * 11 * 191 | C2 x C2 x C6 x C6 |
| -393108 | -2^2 * 3 * 17 * 41 * 47 | C2 x C2 x C6 x C6 |
| -394420 | -2^2 * 5 * 13 * 37 * 41 | C2 x C2 x C6 x C6 |
| -397155 | -3 * 5 * 11 * 29 * 83 | C2 x C2 x C6 x C6 |
| -404547 | -3 * 11 * 13 * 23 * 41 | C2 x C2 x C6 x C6 |
| -419640 | -2^3 * 3 * 5 * 13 * 269 | C2 x C2 x C6 x C6 |
| -423640 | -2^3 * 5 * 7 * 17 * 89 | C2 x C2 x C6 x C6 |
| -453435 | -3 * 5 * 19 * 37 * 43 | C2 x C2 x C6 x C6 |
| -458920 | -2^3 * 5 * 7 * 11 * 149 | C2 x C2 x C6 x C6 |
| -507892 | -2^2 * 7 * 11 * 17 * 97 | C2 x C2 x C6 x C6 |
| -512715 | -3 * 5 * 7 * 19 * 257 | C2 x C2 x C6 x C6 |
| -522795 | -3 * 5 * 7 * 13 * 383 | C2 x C2 x C6 x C6 |
| -603460 | -2^2 * 5 * 11 * 13 * 211 | C2 x C2 x C6 x C6 |
| -668980 | -2^2 * 5 * 13 * 31 * 83 | C2 x C2 x C6 x C6 |
| -680043 | -3 * 7 * 13 * 47 * 53 | C2 x C2 x C6 x C6 |
| -697620 | -2^2 * 3 * 5 * 7 * 11 * 151 | C2 x C2 x C2 x C6 x C6 |
| -740355 | -3 * 5 * 7 * 11 * 641 | C2 x C2 x C6 x C6 |
| -740532 | -2^2 * 3 * 13 * 47 * 101 | C2 x C2 x C6 x C6 |
| -742980 | -2^2 * 3 * 5 * 7 * 29 * 61 | C2 x C2 x C2 x C6 x C6 |
| -820120 | -2^3 * 5 * 7 * 29 * 101 | C2 x C2 x C6 x C6 |
| -899283 | -3 * 7 * 11 * 17 * 229 | C2 x C2 x C6 x C6 |
| -941640 | -2^3 * 3 * 5 * 7 * 19 * 59 | C2 x C2 x C2 x C6 x C6 |
| -1162392 | -2^3 * 3 * 7 * 11 * 17 * 37 | C2 x C2 x C2 x C6 x C6 |
| -1172395 | -5 * 7 * 19 * 41 * 43 | C2 x C2 x C6 x C6 |
| -1185240 | -2^3 * 3 * 5 * 7 * 17 * 83 | C2 x C2 x C2 x C6 x C6 |
| -1196052 | -2^2 * 3 * 11 * 13 * 17 * 41 | C2 x C2 x C2 x C6 x C6 |
| -1199220 | -2^2 * 3 * 5 * 11 * 23 * 79 | C2 x C2 x C2 x C6 x C6 |
| -1282260 | -2^2 * 3 * 5 * 7 * 43 * 71 | C2 x C2 x C2 x C6 x C6 |
| -1702155 | -3 * 5 * 7 * 13 * 29 * 43 | C2 x C2 x C2 x C6 x C6 |
| -3892980 | -2^2 * 3 * 5 * 7 * 13 * 23 * 31 | C2 x C2 x C2 x C2 x C6 x C6 |
| -4696692 | -2^2 * 3 * 7 * 11 * 13 * 17 * 23 | C2 x C2 x C2 x C2 x C6 x C6 |
| -5761140 | -2^2 * 3 * 5 * 7 * 11 * 29 * 43 | C2 x C2 x C2 x C2 x C6 x C6 |
The following table is only complete up to discriminant 3.1*10^20.
| Discriminant | Factorization | Class group |
| -71 | -71 | C7 |
| -151 | -151 | C7 |
| -223 | -223 | C7 |
| -251 | -251 | C7 |
| -463 | -463 | C7 |
| -467 | -467 | C7 |
| -487 | -487 | C7 |
| -587 | -587 | C7 |
| -811 | -811 | C7 |
| -827 | -827 | C7 |
| -859 | -859 | C7 |
| -1163 | -1163 | C7 |
| -1171 | -1171 | C7 |
| -1483 | -1483 | C7 |
| -1523 | -1523 | C7 |
| -1627 | -1627 | C7 |
| -1787 | -1787 | C7 |
| -1987 | -1987 | C7 |
| -2011 | -2011 | C7 |
| -2083 | -2083 | C7 |
| -2179 | -2179 | C7 |
| -2251 | -2251 | C7 |
| -2467 | -2467 | C7 |
| -2707 | -2707 | C7 |
| -3019 | -3019 | C7 |
| -3067 | -3067 | C7 |
| -3187 | -3187 | C7 |
| -3907 | -3907 | C7 |
| -4603 | -4603 | C7 |
| -5107 | -5107 | C7 |
| -5923 | -5923 | C7 |
| -63499 | -63499 | C7 x C7 |
| -118843 | -118843 | C7 x C7 |
The following table is complete assuming that there are no Siegel zeros. Without any assumption there might be one missing field.
| Discriminant | Factorization | Class group |
| -95 | -5 * 19 | C8 |
| -111 | -3 * 37 | C8 |
| -164 | -2^2 * 41 | C8 |
| -183 | -3 * 61 | C8 |
| -248 | -2^3 * 31 | C8 |
| -295 | -5 * 59 | C8 |
| -299 | -13 * 23 | C8 |
| -371 | -7 * 53 | C8 |
| -376 | -2^3 * 47 | C8 |
| -395 | -5 * 79 | C8 |
| -399 | -3 * 7 * 19 | C2 x C8 |
| -452 | -2^2 * 113 | C8 |
| -548 | -2^2 * 137 | C8 |
| -579 | -3 * 193 | C8 |
| -583 | -11 * 53 | C8 |
| -632 | -2^3 * 79 | C8 |
| -644 | -2^2 * 7 * 23 | C2 x C8 |
| -663 | -3 * 13 * 17 | C2 x C8 |
| -712 | -2^3 * 89 | C8 |
| -740 | -2^2 * 5 * 37 | C2 x C8 |
| -884 | -2^2 * 13 * 17 | C2 x C8 |
| -903 | -3 * 7 * 43 | C2 x C8 |
| -904 | -2^3 * 113 | C8 |
| -939 | -3 * 313 | C8 |
| -979 | -11 * 89 | C8 |
| -995 | -5 * 199 | C8 |
| -1015 | -5 * 7 * 29 | C2 x C8 |
| -1023 | -3 * 11 * 31 | C2 x C8 |
| -1043 | -7 * 149 | C8 |
| -1195 | -5 * 239 | C8 |
| -1220 | -2^2 * 5 * 61 | C2 x C8 |
| -1252 | -2^2 * 313 | C8 |
| -1299 | -3 * 433 | C8 |
| -1339 | -13 * 103 | C8 |
| -1348 | -2^2 * 337 | C8 |
| -1416 | -2^3 * 3 * 59 | C2 x C8 |
| -1508 | -2^2 * 13 * 29 | C2 x C8 |
| -1528 | -2^3 * 191 | C8 |
| -1595 | -5 * 11 * 29 | C2 x C8 |
| -1608 | -2^3 * 3 * 67 | C2 x C8 |
| -1624 | -2^3 * 7 * 29 | C2 x C8 |
| -1640 | -2^3 * 5 * 41 | C2 x C8 |
| -1651 | -13 * 127 | C8 |
| -1731 | -3 * 577 | C8 |
| -1795 | -5 * 359 | C8 |
| -1803 | -3 * 601 | C8 |
| -1828 | -2^2 * 457 | C8 |
| -1864 | -2^3 * 233 | C8 |
| -1876 | -2^2 * 7 * 67 | C2 x C8 |
| -1912 | -2^3 * 239 | C8 |
| -1924 | -2^2 * 13 * 37 | C2 x C8 |
| -1939 | -7 * 277 | C8 |
| -2004 | -2^2 * 3 * 167 | C2 x C8 |
| -2059 | -29 * 71 | C8 |
| -2072 | -2^3 * 7 * 37 | C2 x C8 |
| -2211 | -3 * 11 * 67 | C2 x C8 |
| -2248 | -2^3 * 281 | C8 |
| -2292 | -2^2 * 3 * 191 | C2 x C8 |
| -2296 | -2^3 * 7 * 41 | C2 x C8 |
| -2307 | -3 * 769 | C8 |
| -2308 | -2^2 * 577 | C8 |
| -2323 | -23 * 101 | C8 |
| -2328 | -2^3 * 3 * 97 | C2 x C8 |
| -2356 | -2^2 * 19 * 31 | C2 x C8 |
| -2395 | -5 * 479 | C8 |
| -2419 | -41 * 59 | C8 |
| -2568 | -2^3 * 3 * 107 | C2 x C8 |
| -2584 | -2^3 * 17 * 19 | C2 x C8 |
| -2587 | -13 * 199 | C8 |
| -2611 | -7 * 373 | C8 |
| -2739 | -3 * 11 * 83 | C2 x C8 |
| -2827 | -11 * 257 | C8 |
| -2868 | -2^2 * 3 * 239 | C2 x C8 |
| -2884 | -2^2 * 7 * 103 | C2 x C8 |
| -2947 | -7 * 421 | C8 |
| -2980 | -2^2 * 5 * 149 | C2 x C8 |
| -2995 | -5 * 599 | C8 |
| -3080 | -2^3 * 5 * 7 * 11 | C2 x C2 x C8 |
| -3140 | -2^2 * 5 * 157 | C2 x C8 |
| -3144 | -2^3 * 3 * 131 | C2 x C8 |
| -3160 | -2^3 * 5 * 79 | C2 x C8 |
| -3171 | -3 * 7 * 151 | C2 x C8 |
| -3336 | -2^3 * 3 * 139 | C2 x C8 |
| -3363 | -3 * 19 * 59 | C2 x C8 |
| -3403 | -41 * 83 | C8 |
| -3435 | -3 * 5 * 229 | C2 x C8 |
| -3448 | -2^3 * 431 | C8 |
| -3460 | -2^2 * 5 * 173 | C2 x C8 |
| -3531 | -3 * 11 * 107 | C2 x C8 |
| -3556 | -2^2 * 7 * 127 | C2 x C8 |
| -3595 | -5 * 719 | C8 |
| -3732 | -2^2 * 3 * 311 | C2 x C8 |
| -3752 | -2^3 * 7 * 67 | C2 x C8 |
| -3784 | -2^3 * 11 * 43 | C2 x C8 |
| -3787 | -7 * 541 | C8 |
| -3819 | -3 * 19 * 67 | C2 x C8 |
| -3883 | -11 * 353 | C8 |
| -3939 | -3 * 13 * 101 | C2 x C8 |
| -3963 | -3 * 1321 | C8 |
| -3976 | -2^3 * 7 * 71 | C2 x C8 |
| -4008 | -2^3 * 3 * 167 | C2 x C8 |
| -4179 | -3 * 7 * 199 | C2 x C8 |
| -4195 | -5 * 839 | C8 |
| -4216 | -2^3 * 17 * 31 | C2 x C8 |
| -4228 | -2^2 * 7 * 151 | C2 x C8 |
| -4251 | -3 * 13 * 109 | C2 x C8 |
| -4267 | -17 * 251 | C8 |
| -4324 | -2^2 * 23 * 47 | C2 x C8 |
| -4340 | -2^2 * 5 * 7 * 31 | C2 x C2 x C8 |
| -4387 | -41 * 107 | C8 |
| -4596 | -2^2 * 3 * 383 | C2 x C8 |
| -4683 | -3 * 7 * 223 | C2 x C8 |
| -4712 | -2^3 * 19 * 31 | C2 x C8 |
| -4747 | -47 * 101 | C8 |
| -4843 | -29 * 167 | C8 |
| -4867 | -31 * 157 | C8 |
| -4884 | -2^2 * 3 * 11 * 37 | C2 x C2 x C8 |
| -4899 | -3 * 23 * 71 | C2 x C8 |
| -4980 | -2^2 * 3 * 5 * 83 | C2 x C2 x C8 |
| -4984 | -2^3 * 7 * 89 | C2 x C8 |
| -5380 | -2^2 * 5 * 269 | C2 x C8 |
| -5428 | -2^2 * 23 * 59 | C2 x C8 |
| -5572 | -2^2 * 7 * 199 | C2 x C8 |
| -5587 | -37 * 151 | C8 |
| -5640 | -2^3 * 3 * 5 * 47 | C2 x C2 x C8 |
| -5668 | -2^2 * 13 * 109 | C2 x C8 |
| -5707 | -13 * 439 | C8 |
| -5720 | -2^3 * 5 * 11 * 13 | C2 x C2 x C8 |
| -5795 | -5 * 19 * 61 | C4 x C8 |
| -5848 | -2^3 * 17 * 43 | C2 x C8 |
| -5860 | -2^2 * 5 * 293 | C2 x C8 |
| -5883 | -3 * 37 * 53 | C2 x C8 |
| -5896 | -2^3 * 11 * 67 | C2 x C8 |
| -5907 | -3 * 11 * 179 | C2 x C8 |
| -5908 | -2^2 * 7 * 211 | C2 x C8 |
| -5947 | -19 * 313 | C8 |
| -5992 | -2^3 * 7 * 107 | C2 x C8 |
| -5995 | -5 * 11 * 109 | C2 x C8 |
| -6040 | -2^3 * 5 * 151 | C2 x C8 |
| -6099 | -3 * 19 * 107 | C2 x C8 |
| -6148 | -2^2 * 29 * 53 | C2 x C8 |
| -6312 | -2^3 * 3 * 263 | C2 x C8 |
| -6315 | -3 * 5 * 421 | C2 x C8 |
| -6392 | -2^3 * 17 * 47 | C4 x C8 |
| -6440 | -2^3 * 5 * 7 * 23 | C2 x C2 x C8 |
| -6532 | -2^2 * 23 * 71 | C2 x C8 |
| -6747 | -3 * 13 * 173 | C2 x C8 |
| -6771 | -3 * 37 * 61 | C2 x C8 |
| -6792 | -2^3 * 3 * 283 | C2 x C8 |
| -6868 | -2^2 * 17 * 101 | C2 x C8 |
| -6923 | -7 * 23 * 43 | C2 x C8 |
| -6952 | -2^3 * 11 * 79 | C2 x C8 |
| -7059 | -3 * 13 * 181 | C4 x C8 |
| -7176 | -2^3 * 3 * 13 * 23 | C2 x C2 x C8 |
| -7347 | -3 * 31 * 79 | C2 x C8 |
| -7368 | -2^3 * 3 * 307 | C2 x C8 |
| -7491 | -3 * 11 * 227 | C2 x C8 |
| -7579 | -11 * 13 * 53 | C2 x C8 |
| -7588 | -2^2 * 7 * 271 | C2 x C8 |
| -7707 | -3 * 7 * 367 | C2 x C8 |
| -7752 | -2^3 * 3 * 17 * 19 | C2 x C2 x C8 |
| -7780 | -2^2 * 5 * 389 | C2 x C8 |
| -7828 | -2^2 * 19 * 103 | C2 x C8 |
| -7843 | -11 * 23 * 31 | C2 x C8 |
| -7896 | -2^3 * 3 * 7 * 47 | C2 x C2 x C8 |
| -7923 | -3 * 19 * 139 | C2 x C8 |
| -8040 | -2^3 * 3 * 5 * 67 | C2 x C2 x C8 |
| -8043 | -3 * 7 * 383 | C2 x C8 |
| -8184 | -2^3 * 3 * 11 * 31 | C2 x C2 x C8 |
| -8283 | -3 * 11 * 251 | C2 x C8 |
| -8308 | -2^2 * 31 * 67 | C2 x C8 |
| -8340 | -2^2 * 3 * 5 * 139 | C2 x C2 x C8 |
| -8515 | -5 * 13 * 131 | C2 x C8 |
| -8520 | -2^3 * 3 * 5 * 71 | C2 x C2 x C8 |
| -8555 | -5 * 29 * 59 | C4 x C8 |
| -8635 | -5 * 11 * 157 | C2 x C8 |
| -8643 | -3 * 43 * 67 | C2 x C8 |
| -8968 | -2^3 * 19 * 59 | C2 x C8 |
| -9060 | -2^2 * 3 * 5 * 151 | C2 x C2 x C8 |
| -9156 | -2^2 * 3 * 7 * 109 | C2 x C2 x C8 |
| -9219 | -3 * 7 * 439 | C2 x C8 |
| -9316 | -2^2 * 17 * 137 | C4 x C8 |
| -9348 | -2^2 * 3 * 19 * 41 | C2 x C2 x C8 |
| -9412 | -2^2 * 13 * 181 | C2 x C8 |
| -9435 | -3 * 5 * 17 * 37 | C2 x C2 x C8 |
| -9460 | -2^2 * 5 * 11 * 43 | C2 x C2 x C8 |
| -9483 | -3 * 29 * 109 | C2 x C8 |
| -9588 | -2^2 * 3 * 17 * 47 | C2 x C2 x C8 |
| -9640 | -2^3 * 5 * 241 | C2 x C8 |
| -9768 | -2^3 * 3 * 11 * 37 | C2 x C2 x C8 |
| -9780 | -2^2 * 3 * 5 * 163 | C2 x C2 x C8 |
| -9835 | -5 * 7 * 281 | C2 x C8 |
| -9860 | -2^2 * 5 * 17 * 29 | C2 x C2 x C8 |
| -9880 | -2^3 * 5 * 13 * 19 | C2 x C2 x C8 |
| -9912 | -2^3 * 3 * 7 * 59 | C2 x C2 x C8 |
| -9960 | -2^3 * 3 * 5 * 83 | C2 x C2 x C8 |
| -10132 | -2^2 * 17 * 149 | C2 x C8 |
| -10203 | -3 * 19 * 179 | C2 x C8 |
| -10227 | -3 * 7 * 487 | C2 x C8 |
| -10387 | -13 * 17 * 47 | C2 x C8 |
| -10420 | -2^2 * 5 * 521 | C2 x C8 |
| -10563 | -3 * 7 * 503 | C2 x C8 |
| -10635 | -3 * 5 * 709 | C2 x C8 |
| -10660 | -2^2 * 5 * 13 * 41 | C2 x C2 x C8 |
| -10824 | -2^3 * 3 * 11 * 41 | C2 x C2 x C8 |
| -10868 | -2^2 * 11 * 13 * 19 | C2 x C2 x C8 |
| -11092 | -2^2 * 47 * 59 | C2 x C8 |
| -11284 | -2^2 * 7 * 13 * 31 | C2 x C2 x C8 |
| -11316 | -2^2 * 3 * 23 * 41 | C2 x C2 x C8 |
| -11460 | -2^2 * 3 * 5 * 191 | C2 x C2 x C8 |
| -11523 | -3 * 23 * 167 | C2 x C8 |
| -11571 | -3 * 7 * 19 * 29 | C2 x C2 x C8 |
| -11572 | -2^2 * 11 * 263 | C2 x C8 |
| -11635 | -5 * 13 * 179 | C2 x C8 |
| -11739 | -3 * 7 * 13 * 43 | C2 x C2 x C8 |
| -11832 | -2^3 * 3 * 17 * 29 | C2 x C2 x C8 |
| -11940 | -2^2 * 3 * 5 * 199 | C2 x C2 x C8 |
| -12027 | -3 * 19 * 211 | C2 x C8 |
| -12040 | -2^3 * 5 * 7 * 43 | C2 x C2 x C8 |
| -12084 | -2^2 * 3 * 19 * 53 | C2 x C2 x C8 |
| -12259 | -13 * 23 * 41 | C2 x C8 |
| -12580 | -2^2 * 5 * 17 * 37 | C2 x C2 x C8 |
| -12660 | -2^2 * 3 * 5 * 211 | C2 x C2 x C8 |
| -12747 | -3 * 7 * 607 | C2 x C8 |
| -12772 | -2^2 * 31 * 103 | C2 x C8 |
| -12792 | -2^3 * 3 * 13 * 41 | C2 x C2 x C8 |
| -12804 | -2^2 * 3 * 11 * 97 | C2 x C2 x C8 |
| -12835 | -5 * 17 * 151 | C2 x C8 |
| -12840 | -2^3 * 3 * 5 * 107 | C2 x C2 x C8 |
| -12859 | -7 * 11 * 167 | C2 x C8 |
| -12948 | -2^2 * 3 * 13 * 83 | C2 x C2 x C8 |
| -13048 | -2^3 * 7 * 233 | C4 x C8 |
| -13192 | -2^3 * 17 * 97 | C2 x C8 |
| -13272 | -2^3 * 3 * 7 * 79 | C2 x C2 x C8 |
| -13288 | -2^3 * 11 * 151 | C2 x C8 |
| -13332 | -2^2 * 3 * 11 * 101 | C2 x C2 x C8 |
| -13363 | -7 * 23 * 83 | C2 x C8 |
| -13432 | -2^3 * 23 * 73 | C4 x C8 |
| -13515 | -3 * 5 * 17 * 53 | C2 x C2 x C8 |
| -13560 | -2^3 * 3 * 5 * 113 | C2 x C2 x C8 |
| -13755 | -3 * 5 * 7 * 131 | C2 x C2 x C8 |
| -13795 | -5 * 31 * 89 | C2 x C8 |
| -13827 | -3 * 11 * 419 | C2 x C8 |
| -13908 | -2^2 * 3 * 19 * 61 | C2 x C2 x C8 |
| -14388 | -2^2 * 3 * 11 * 109 | C2 x C2 x C8 |
| -14707 | -7 * 11 * 191 | C2 x C8 |
| -14795 | -5 * 11 * 269 | C4 x C8 |
| -15067 | -13 * 19 * 61 | C2 x C8 |
| -15387 | -3 * 23 * 223 | C2 x C8 |
| -15715 | -5 * 7 * 449 | C2 x C8 |
| -15736 | -2^3 * 7 * 281 | C4 x C8 |
| -16008 | -2^3 * 3 * 23 * 29 | C2 x C2 x C8 |
| -16027 | -11 * 31 * 47 | C2 x C8 |
| -16195 | -5 * 41 * 79 | C2 x C8 |
| -16212 | -2^2 * 3 * 7 * 193 | C2 x C2 x C8 |
| -16440 | -2^3 * 3 * 5 * 137 | C2 x C2 x C8 |
| -16548 | -2^2 * 3 * 7 * 197 | C2 x C2 x C8 |
| -16692 | -2^2 * 3 * 13 * 107 | C2 x C2 x C8 |
| -16779 | -3 * 7 * 17 * 47 | C2 x C2 x C8 |
| -16835 | -5 * 7 * 13 * 37 | C2 x C2 x C8 |
| -16995 | -3 * 5 * 11 * 103 | C2 x C2 x C8 |
| -17080 | -2^3 * 5 * 7 * 61 | C2 x C2 x C8 |
| -17112 | -2^3 * 3 * 23 * 31 | C2 x C2 x C8 |
| -17115 | -3 * 5 * 7 * 163 | C2 x C2 x C8 |
| -17227 | -7 * 23 * 107 | C2 x C8 |
| -17272 | -2^3 * 17 * 127 | C4 x C8 |
| -17347 | -11 * 19 * 83 | C2 x C8 |
| -17355 | -3 * 5 * 13 * 89 | C2 x C2 x C8 |
| -17515 | -5 * 31 * 113 | C2 x C8 |
| -17688 | -2^3 * 3 * 11 * 67 | C2 x C2 x C8 |
| -17880 | -2^3 * 3 * 5 * 149 | C2 x C2 x C8 |
| -18291 | -3 * 7 * 13 * 67 | C2 x C2 x C8 |
| -18403 | -7 * 11 * 239 | C2 x C8 |
| -18408 | -2^3 * 3 * 13 * 59 | C2 x C2 x C8 |
| -18532 | -2^2 * 41 * 113 | C4 x C8 |
| -18564 | -2^2 * 3 * 7 * 13 * 17 | C2 x C2 x C2 x C8 |
| -18676 | -2^2 * 7 * 23 * 29 | C2 x C2 x C8 |
| -18715 | -5 * 19 * 197 | C2 x C8 |
| -18760 | -2^3 * 5 * 7 * 67 | C2 x C2 x C8 |
| -18907 | -7 * 37 * 73 | C2 x C8 |
| -19108 | -2^2 * 17 * 281 | C4 x C8 |
| -19195 | -5 * 11 * 349 | C2 x C8 |
| -19227 | -3 * 13 * 17 * 29 | C2 x C2 x C8 |
| -19272 | -2^3 * 3 * 11 * 73 | C2 x C2 x C8 |
| -19560 | -2^3 * 3 * 5 * 163 | C2 x C2 x C8 |
| -19608 | -2^3 * 3 * 19 * 43 | C2 x C2 x C8 |
| -19720 | -2^3 * 5 * 17 * 29 | C2 x C2 x C8 |
| -19812 | -2^2 * 3 * 13 * 127 | C2 x C2 x C8 |
| -19987 | -11 * 23 * 79 | C2 x C8 |
| -19995 | -3 * 5 * 31 * 43 | C2 x C2 x C8 |
| -20091 | -3 * 37 * 181 | C4 x C8 |
| -20163 | -3 * 11 * 13 * 47 | C2 x C2 x C8 |
| -20235 | -3 * 5 * 19 * 71 | C2 x C2 x C8 |
| -20740 | -2^2 * 5 * 17 * 61 | C2 x C2 x C8 |
| -20760 | -2^3 * 3 * 5 * 173 | C2 x C4 x C8 |
| -20868 | -2^2 * 3 * 37 * 47 | C2 x C2 x C8 |
| -21147 | -3 * 7 * 19 * 53 | C2 x C2 x C8 |
| -21243 | -3 * 73 * 97 | C4 x C8 |
| -21571 | -11 * 37 * 53 | C4 x C8 |
| -21715 | -5 * 43 * 101 | C2 x C8 |
| -21736 | -2^3 * 11 * 13 * 19 | C2 x C2 x C8 |
| -21828 | -2^2 * 3 * 17 * 107 | C2 x C2 x C8 |
| -21835 | -5 * 11 * 397 | C2 x C8 |
| -21912 | -2^3 * 3 * 11 * 83 | C2 x C2 x C8 |
| -22152 | -2^3 * 3 * 13 * 71 | C2 x C2 x C8 |
| -22155 | -3 * 5 * 7 * 211 | C2 x C2 x C8 |
| -22243 | -13 * 29 * 59 | C2 x C8 |
| -22360 | -2^3 * 5 * 13 * 43 | C2 x C2 x C8 |
| -22372 | -2^2 * 7 * 17 * 47 | C2 x C2 x C8 |
| -22420 | -2^2 * 5 * 19 * 59 | C2 x C2 x C8 |
| -22456 | -2^3 * 7 * 401 | C4 x C8 |
| -22515 | -3 * 5 * 19 * 79 | C2 x C2 x C8 |
| -22632 | -2^3 * 3 * 23 * 41 | C2 x C2 x C8 |
| -22740 | -2^2 * 3 * 5 * 379 | C2 x C2 x C8 |
| -22763 | -13 * 17 * 103 | C4 x C8 |
| -22792 | -2^3 * 7 * 11 * 37 | C2 x C2 x C8 |
| -22971 | -3 * 13 * 19 * 31 | C2 x C2 x C8 |
| -23028 | -2^2 * 3 * 19 * 101 | C2 x C2 x C8 |
| -23140 | -2^2 * 5 * 13 * 89 | C2 x C2 x C8 |
| -23155 | -5 * 11 * 421 | C4 x C8 |
| -23268 | -2^2 * 3 * 7 * 277 | C2 x C2 x C8 |
| -23380 | -2^2 * 5 * 7 * 167 | C2 x C2 x C8 |
| -23460 | -2^2 * 3 * 5 * 17 * 23 | C2 x C2 x C2 x C8 |
| -23835 | -3 * 5 * 7 * 227 | C2 x C2 x C8 |
| -23892 | -2^2 * 3 * 11 * 181 | C2 x C2 x C8 |
| -23944 | -2^3 * 41 * 73 | C4 x C8 |
| -24004 | -2^2 * 17 * 353 | C4 x C8 |
| -24024 | -2^3 * 3 * 7 * 11 * 13 | C2 x C2 x C2 x C8 |
| -24035 | -5 * 11 * 19 * 23 | C2 x C2 x C8 |
| -24168 | -2^3 * 3 * 19 * 53 | C2 x C2 x C8 |
| -24472 | -2^3 * 7 * 19 * 23 | C2 x C2 x C8 |
| -25080 | -2^3 * 3 * 5 * 11 * 19 | C2 x C2 x C2 x C8 |
| -25419 | -3 * 37 * 229 | C4 x C8 |
| -25620 | -2^2 * 3 * 5 * 7 * 61 | C2 x C2 x C2 x C8 |
| -25960 | -2^3 * 5 * 11 * 59 | C2 x C2 x C8 |
| -25988 | -2^2 * 73 * 89 | C8 x C8 |
| -26180 | -2^2 * 5 * 7 * 11 * 17 | C2 x C2 x C2 x C8 |
| -26488 | -2^3 * 7 * 11 * 43 | C2 x C2 x C8 |
| -26772 | -2^2 * 3 * 23 * 97 | C2 x C2 x C8 |
| -26980 | -2^2 * 5 * 19 * 71 | C2 x C2 x C8 |
| -27307 | -7 * 47 * 83 | C2 x C8 |
| -27412 | -2^2 * 7 * 11 * 89 | C2 x C2 x C8 |
| -28083 | -3 * 11 * 23 * 37 | C2 x C2 x C8 |
| -28120 | -2^3 * 5 * 19 * 37 | C2 x C2 x C8 |
| -28203 | -3 * 7 * 17 * 79 | C2 x C2 x C8 |
| -28308 | -2^2 * 3 * 7 * 337 | C2 x C2 x C8 |
| -28840 | -2^3 * 5 * 7 * 103 | C2 x C2 x C8 |
| -29380 | -2^2 * 5 * 13 * 113 | C2 x C2 x C8 |
| -29512 | -2^3 * 7 * 17 * 31 | C2 x C2 x C8 |
| -29523 | -3 * 13 * 757 | C4 x C8 |
| -29667 | -3 * 11 * 29 * 31 | C2 x C2 x C8 |
| -29892 | -2^2 * 3 * 47 * 53 | C2 x C2 x C8 |
| -30328 | -2^3 * 17 * 223 | C4 x C8 |
| -30552 | -2^3 * 3 * 19 * 67 | C2 x C2 x C8 |
| -30580 | -2^2 * 5 * 11 * 139 | C2 x C2 x C8 |
| -31080 | -2^3 * 3 * 5 * 7 * 37 | C2 x C2 x C2 x C8 |
| -31515 | -3 * 5 * 11 * 191 | C2 x C2 x C8 |
| -31668 | -2^2 * 3 * 7 * 13 * 29 | C2 x C2 x C2 x C8 |
| -31864 | -2^3 * 7 * 569 | C8 x C8 |
| -32235 | -3 * 5 * 7 * 307 | C2 x C2 x C8 |
| -32331 | -3 * 13 * 829 | C8 x C8 |
| -32395 | -5 * 11 * 19 * 31 | C2 x C2 x C8 |
| -33288 | -2^3 * 3 * 19 * 73 | C2 x C4 x C8 |
| -33540 | -2^2 * 3 * 5 * 13 * 43 | C2 x C2 x C2 x C8 |
| -33592 | -2^3 * 13 * 17 * 19 | C2 x C2 x C8 |
| -33672 | -2^3 * 3 * 23 * 61 | C2 x C2 x C8 |
| -33748 | -2^2 * 11 * 13 * 59 | C2 x C2 x C8 |
| -34552 | -2^3 * 7 * 617 | C4 x C8 |
| -34755 | -3 * 5 * 7 * 331 | C2 x C2 x C8 |
| -34804 | -2^2 * 7 * 11 * 113 | C2 x C4 x C8 |
| -35155 | -5 * 79 * 89 | C4 x C8 |
| -35160 | -2^3 * 3 * 5 * 293 | C2 x C4 x C8 |
| -35380 | -2^2 * 5 * 29 * 61 | C2 x C2 x C8 |
| -35512 | -2^3 * 23 * 193 | C4 x C8 |
| -35763 | -3 * 7 * 13 * 131 | C2 x C2 x C8 |
| -36355 | -5 * 11 * 661 | C4 x C8 |
| -36363 | -3 * 17 * 23 * 31 | C2 x C2 x C8 |
| -36472 | -2^3 * 47 * 97 | C4 x C8 |
| -36660 | -2^2 * 3 * 5 * 13 * 47 | C2 x C2 x C2 x C8 |
| -36915 | -3 * 5 * 23 * 107 | C2 x C2 x C8 |
| -36955 | -5 * 19 * 389 | C4 x C8 |
| -37380 | -2^2 * 3 * 5 * 7 * 89 | C2 x C2 x C2 x C8 |
| -37492 | -2^2 * 7 * 13 * 103 | C2 x C2 x C8 |
| -37515 | -3 * 5 * 41 * 61 | C2 x C2 x C8 |
| -37587 | -3 * 11 * 17 * 67 | C2 x C2 x C8 |
| -37720 | -2^3 * 5 * 23 * 41 | C2 x C2 x C8 |
| -37947 | -3 * 7 * 13 * 139 | C2 x C2 x C8 |
| -38040 | -2^3 * 3 * 5 * 317 | C2 x C4 x C8 |
| -38595 | -3 * 5 * 31 * 83 | C2 x C2 x C8 |
| -38760 | -2^3 * 3 * 5 * 17 * 19 | C2 x C2 x C2 x C8 |
| -38883 | -3 * 13 * 997 | C4 x C8 |
| -38995 | -5 * 11 * 709 | C4 x C8 |
| -39235 | -5 * 7 * 19 * 59 | C2 x C2 x C8 |
| -39435 | -3 * 5 * 11 * 239 | C2 x C2 x C8 |
| -39928 | -2^3 * 7 * 23 * 31 | C2 x C2 x C8 |
| -39955 | -5 * 61 * 131 | C4 x C8 |
| -40020 | -2^2 * 3 * 5 * 23 * 29 | C2 x C2 x C2 x C8 |
| -40227 | -3 * 11 * 23 * 53 | C2 x C2 x C8 |
| -40296 | -2^3 * 3 * 23 * 73 | C2 x C4 x C8 |
| -40443 | -3 * 13 * 17 * 61 | C2 x C2 x C8 |
| -40467 | -3 * 7 * 41 * 47 | C2 x C2 x C8 |
| -40803 | -3 * 7 * 29 * 67 | C2 x C2 x C8 |
| -41496 | -2^3 * 3 * 7 * 13 * 19 | C2 x C2 x C2 x C8 |
| -41923 | -7 * 53 * 113 | C4 x C8 |
| -42180 | -2^2 * 3 * 5 * 19 * 37 | C2 x C2 x C2 x C8 |
| -42196 | -2^2 * 7 * 11 * 137 | C2 x C4 x C8 |
| -42211 | -13 * 17 * 191 | C4 x C8 |
| -42627 | -3 * 13 * 1093 | C4 x C8 |
| -43555 | -5 * 31 * 281 | C4 x C8 |
| -43563 | -3 * 13 * 1117 | C4 x C8 |
| -43795 | -5 * 19 * 461 | C4 x C8 |
| -44020 | -2^2 * 5 * 31 * 71 | C2 x C2 x C8 |
| -44067 | -3 * 37 * 397 | C4 x C8 |
| -44251 | -17 * 19 * 137 | C4 x C8 |
| -44520 | -2^3 * 3 * 5 * 7 * 53 | C2 x C2 x C2 x C8 |
| -44772 | -2^2 * 3 * 7 * 13 * 41 | C2 x C2 x C2 x C8 |
| -45595 | -5 * 11 * 829 | C4 x C8 |
| -45780 | -2^2 * 3 * 5 * 7 * 109 | C2 x C2 x C2 x C8 |
| -45843 | -3 * 7 * 37 * 59 | C2 x C2 x C8 |
| -46020 | -2^2 * 3 * 5 * 13 * 59 | C2 x C2 x C2 x C8 |
| -47307 | -3 * 13 * 1213 | C4 x C8 |
| -47523 | -3 * 7 * 31 * 73 | C2 x C2 x C8 |
| -47595 | -3 * 5 * 19 * 167 | C2 x C2 x C8 |
| -47940 | -2^2 * 3 * 5 * 17 * 47 | C2 x C2 x C2 x C8 |
| -48360 | -2^3 * 3 * 5 * 13 * 31 | C2 x C2 x C2 x C8 |
| -49476 | -2^2 * 3 * 7 * 19 * 31 | C2 x C2 x C2 x C8 |
| -49560 | -2^3 * 3 * 5 * 7 * 59 | C2 x C2 x C2 x C8 |
| -50020 | -2^2 * 5 * 41 * 61 | C2 x C4 x C8 |
| -50232 | -2^3 * 3 * 7 * 13 * 23 | C2 x C2 x C2 x C8 |
| -50235 | -3 * 5 * 17 * 197 | C2 x C4 x C8 |
| -50955 | -3 * 5 * 43 * 79 | C2 x C2 x C8 |
| -51060 | -2^2 * 3 * 5 * 23 * 37 | C2 x C2 x C2 x C8 |
| -51748 | -2^2 * 17 * 761 | C4 x C8 |
| -52003 | -7 * 17 * 19 * 23 | C2 x C2 x C8 |
| -52059 | -3 * 7 * 37 * 67 | C2 x C4 x C8 |
| -52440 | -2^3 * 3 * 5 * 19 * 23 | C2 x C2 x C2 x C8 |
| -53268 | -2^2 * 3 * 23 * 193 | C2 x C4 x C8 |
| -53515 | -5 * 7 * 11 * 139 | C2 x C2 x C8 |
| -54340 | -2^2 * 5 * 11 * 13 * 19 | C2 x C2 x C2 x C8 |
| -54516 | -2^2 * 3 * 7 * 11 * 59 | C2 x C2 x C2 x C8 |
| -54595 | -5 * 61 * 179 | C4 x C8 |
| -54708 | -2^2 * 3 * 47 * 97 | C2 x C4 x C8 |
| -54712 | -2^3 * 7 * 977 | C4 x C8 |
| -54723 | -3 * 17 * 29 * 37 | C2 x C2 x C8 |
| -55315 | -5 * 13 * 23 * 37 | C2 x C2 x C8 |
| -56155 | -5 * 11 * 1021 | C4 x C8 |
| -56667 | -3 * 13 * 1453 | C4 x C8 |
| -56760 | -2^3 * 3 * 5 * 11 * 43 | C2 x C2 x C2 x C8 |
| -56980 | -2^2 * 5 * 7 * 11 * 37 | C2 x C2 x C2 x C8 |
| -57043 | -7 * 29 * 281 | C4 x C8 |
| -57540 | -2^2 * 3 * 5 * 7 * 137 | C2 x C2 x C2 x C8 |
| -57720 | -2^3 * 3 * 5 * 13 * 37 | C2 x C2 x C2 x C8 |
| -58123 | -13 * 17 * 263 | C4 x C8 |
| -58888 | -2^3 * 17 * 433 | C4 x C8 |
| -60027 | -3 * 11 * 17 * 107 | C2 x C2 x C8 |
| -61908 | -2^2 * 3 * 7 * 11 * 67 | C2 x C2 x C2 x C8 |
| -62580 | -2^2 * 3 * 5 * 7 * 149 | C2 x C2 x C2 x C8 |
| -63220 | -2^2 * 5 * 29 * 109 | C2 x C4 x C8 |
| -63240 | -2^3 * 3 * 5 * 17 * 31 | C2 x C2 x C2 x C8 |
| -63427 | -7 * 13 * 17 * 41 | C2 x C2 x C8 |
| -63640 | -2^3 * 5 * 37 * 43 | C2 x C4 x C8 |
| -63960 | -2^3 * 3 * 5 * 13 * 41 | C2 x C2 x C2 x C8 |
| -64491 | -3 * 7 * 37 * 83 | C2 x C4 x C8 |
| -64515 | -3 * 5 * 11 * 17 * 23 | C2 x C2 x C2 x C8 |
| -64740 | -2^2 * 3 * 5 * 13 * 83 | C2 x C2 x C2 x C8 |
| -65076 | -2^2 * 3 * 11 * 17 * 29 | C2 x C2 x C2 x C8 |
| -65395 | -5 * 11 * 29 * 41 | C2 x C2 x C8 |
| -66595 | -5 * 19 * 701 | C4 x C8 |
| -66840 | -2^3 * 3 * 5 * 557 | C2 x C4 x C8 |
| -67483 | -13 * 29 * 179 | C4 x C8 |
| -68068 | -2^2 * 7 * 11 * 13 * 17 | C2 x C2 x C2 x C8 |
| -69160 | -2^3 * 5 * 7 * 13 * 19 | C2 x C2 x C2 x C8 |
| -69540 | -2^2 * 3 * 5 * 19 * 61 | C2 x C2 x C2 x C8 |
| -69960 | -2^3 * 3 * 5 * 11 * 53 | C2 x C2 x C2 x C8 |
| -71395 | -5 * 109 * 131 | C4 x C8 |
| -71940 | -2^2 * 3 * 5 * 11 * 109 | C2 x C2 x C2 x C8 |
| -73315 | -5 * 11 * 31 * 43 | C2 x C2 x C8 |
| -73320 | -2^3 * 3 * 5 * 13 * 47 | C2 x C2 x C2 x C8 |
| -73723 | -13 * 53 * 107 | C4 x C8 |
| -73780 | -2^2 * 5 * 7 * 17 * 31 | C2 x C2 x C2 x C8 |
| -74347 | -7 * 13 * 19 * 43 | C2 x C2 x C8 |
| -74635 | -5 * 11 * 23 * 59 | C2 x C2 x C8 |
| -74820 | -2^2 * 3 * 5 * 29 * 43 | C2 x C2 x C2 x C8 |
| -75012 | -2^2 * 3 * 7 * 19 * 47 | C2 x C2 x C2 x C8 |
| -76323 | -3 * 13 * 19 * 103 | C2 x C2 x C8 |
| -76755 | -3 * 5 * 7 * 17 * 43 | C2 x C2 x C2 x C8 |
| -76843 | -13 * 23 * 257 | C4 x C8 |
| -77140 | -2^2 * 5 * 7 * 19 * 29 | C2 x C2 x C2 x C8 |
| -77995 | -5 * 19 * 821 | C4 x C8 |
| -79048 | -2^3 * 41 * 241 | C8 x C8 |
| -80067 | -3 * 13 * 2053 | C4 x C8 |
| -80808 | -2^3 * 3 * 7 * 13 * 37 | C2 x C2 x C2 x C8 |
| -80835 | -3 * 5 * 17 * 317 | C2 x C4 x C8 |
| -81403 | -7 * 29 * 401 | C4 x C8 |
| -81592 | -2^3 * 7 * 31 * 47 | C2 x C4 x C8 |
| -81780 | -2^2 * 3 * 5 * 29 * 47 | C2 x C2 x C4 x C8 |
| -82212 | -2^2 * 3 * 13 * 17 * 31 | C2 x C2 x C2 x C8 |
| -82632 | -2^3 * 3 * 11 * 313 | C2 x C4 x C8 |
| -83028 | -2^2 * 3 * 11 * 17 * 37 | C2 x C2 x C2 x C8 |
| -83220 | -2^2 * 3 * 5 * 19 * 73 | C2 x C2 x C2 x C8 |
| -84315 | -3 * 5 * 7 * 11 * 73 | C2 x C2 x C2 x C8 |
| -84760 | -2^3 * 5 * 13 * 163 | C2 x C4 x C8 |
| -85195 | -5 * 11 * 1549 | C8 x C8 |
| -85540 | -2^2 * 5 * 7 * 13 * 47 | C2 x C2 x C2 x C8 |
| -86020 | -2^2 * 5 * 11 * 17 * 23 | C2 x C2 x C2 x C8 |
| -87283 | -7 * 37 * 337 | C4 x C8 |
| -89284 | -2^2 * 13 * 17 * 101 | C2 x C8 x C8 |
| -89355 | -3 * 5 * 7 * 23 * 37 | C2 x C2 x C2 x C8 |
| -89947 | -11 * 13 * 17 * 37 | C2 x C2 x C8 |
| -90948 | -2^2 * 3 * 11 * 13 * 53 | C2 x C2 x C2 x C8 |
| -92235 | -3 * 5 * 11 * 13 * 43 | C2 x C2 x C2 x C8 |
| -92820 | -2^2 * 3 * 5 * 7 * 13 * 17 | C2 x C2 x C2 x C2 x C8 |
| -93940 | -2^2 * 5 * 7 * 11 * 61 | C2 x C2 x C2 x C8 |
| -94963 | -11 * 89 * 97 | C4 x C8 |
| -95640 | -2^3 * 3 * 5 * 797 | C2 x C8 x C8 |
| -95880 | -2^3 * 3 * 5 * 17 * 47 | C2 x C2 x C2 x C8 |
| -95979 | -3 * 13 * 23 * 107 | C2 x C4 x C8 |
| -96915 | -3 * 5 * 7 * 13 * 71 | C2 x C2 x C2 x C8 |
| -98427 | -3 * 7 * 43 * 109 | C2 x C4 x C8 |
| -99528 | -2^3 * 3 * 11 * 13 * 29 | C2 x C2 x C2 x C8 |
| -100104 | -2^3 * 3 * 43 * 97 | C2 x C8 x C8 |
| -100195 | -5 * 29 * 691 | C8 x C8 |
| -100947 | -3 * 7 * 11 * 19 * 23 | C2 x C2 x C2 x C8 |
| -101752 | -2^3 * 7 * 23 * 79 | C2 x C4 x C8 |
| -102795 | -3 * 5 * 7 * 11 * 89 | C2 x C2 x C2 x C8 |
| -104052 | -2^2 * 3 * 13 * 23 * 29 | C2 x C2 x C2 x C8 |
| -104091 | -3 * 13 * 17 * 157 | C2 x C4 x C8 |
| -104403 | -3 * 13 * 2677 | C8 x C8 |
| -104980 | -2^2 * 5 * 29 * 181 | C2 x C4 x C8 |
| -106536 | -2^3 * 3 * 23 * 193 | C2 x C8 x C8 |
| -108003 | -3 * 7 * 37 * 139 | C2 x C4 x C8 |
| -108915 | -3 * 5 * 53 * 137 | C2 x C4 x C8 |
| -110523 | -3 * 7 * 19 * 277 | C2 x C4 x C8 |
| -110635 | -5 * 7 * 29 * 109 | C2 x C4 x C8 |
| -111112 | -2^3 * 17 * 19 * 43 | C2 x C4 x C8 |
| -112035 | -3 * 5 * 7 * 11 * 97 | C2 x C2 x C2 x C8 |
| -112884 | -2^2 * 3 * 23 * 409 | C2 x C8 x C8 |
| -112980 | -2^2 * 3 * 5 * 7 * 269 | C2 x C2 x C4 x C8 |
| -113883 | -3 * 7 * 11 * 17 * 29 | C2 x C2 x C2 x C8 |
| -116932 | -2^2 * 23 * 31 * 41 | C2 x C4 x C8 |
| -117028 | -2^2 * 17 * 1721 | C8 x C8 |
| -117096 | -2^3 * 3 * 7 * 17 * 41 | C2 x C2 x C4 x C8 |
| -117507 | -3 * 13 * 23 * 131 | C2 x C4 x C8 |
| -119595 | -3 * 5 * 7 * 17 * 67 | C2 x C2 x C2 x C8 |
| -120120 | -2^3 * 3 * 5 * 7 * 11 * 13 | C2 x C2 x C2 x C2 x C8 |
| -121560 | -2^3 * 3 * 5 * 1013 | C2 x C8 x C8 |
| -123123 | -3 * 7 * 11 * 13 * 41 | C2 x C2 x C2 x C8 |
| -123508 | -2^2 * 7 * 11 * 401 | C2 x C4 x C8 |
| -124392 | -2^3 * 3 * 71 * 73 | C2 x C4 x C8 |
| -124683 | -3 * 13 * 23 * 139 | C2 x C4 x C8 |
| -125643 | -3 * 7 * 31 * 193 | C2 x C4 x C8 |
| -126555 | -3 * 5 * 11 * 13 * 59 | C2 x C2 x C2 x C8 |
| -128472 | -2^3 * 3 * 53 * 101 | C2 x C4 x C8 |
| -128632 | -2^3 * 7 * 2297 | C8 x C8 |
| -130515 | -3 * 5 * 7 * 11 * 113 | C2 x C2 x C2 x C8 |
| -131560 | -2^3 * 5 * 11 * 13 * 23 | C2 x C2 x C2 x C8 |
| -132483 | -3 * 13 * 43 * 79 | C2 x C4 x C8 |
| -133315 | -5 * 7 * 13 * 293 | C2 x C4 x C8 |
| -138292 | -2^2 * 7 * 11 * 449 | C2 x C4 x C8 |
| -139780 | -2^2 * 5 * 29 * 241 | C2 x C4 x C8 |
| -139867 | -7 * 13 * 29 * 53 | C2 x C4 x C8 |
| -140595 | -3 * 5 * 7 * 13 * 103 | C2 x C2 x C2 x C8 |
| -143115 | -3 * 5 * 7 * 29 * 47 | C2 x C2 x C2 x C8 |
| -143220 | -2^2 * 3 * 5 * 7 * 11 * 31 | C2 x C2 x C2 x C2 x C8 |
| -147940 | -2^2 * 5 * 13 * 569 | C2 x C4 x C8 |
| -150052 | -2^2 * 7 * 23 * 233 | C2 x C4 x C8 |
| -152395 | -5 * 29 * 1051 | C8 x C8 |
| -155155 | -5 * 7 * 11 * 13 * 31 | C2 x C2 x C2 x C8 |
| -157080 | -2^3 * 3 * 5 * 7 * 11 * 17 | C2 x C2 x C2 x C2 x C8 |
| -157795 | -5 * 11 * 19 * 151 | C2 x C4 x C8 |
| -159960 | -2^3 * 3 * 5 * 31 * 43 | C2 x C2 x C4 x C8 |
| -160563 | -3 * 13 * 23 * 179 | C2 x C4 x C8 |
| -163947 | -3 * 7 * 37 * 211 | C2 x C4 x C8 |
| -172635 | -3 * 5 * 17 * 677 | C2 x C4 x C8 |
| -173128 | -2^3 * 17 * 19 * 67 | C2 x C4 x C8 |
| -173667 | -3 * 13 * 61 * 73 | C2 x C4 x C8 |
| -173755 | -5 * 19 * 31 * 59 | C2 x C4 x C8 |
| -175483 | -7 * 11 * 43 * 53 | C2 x C4 x C8 |
| -175560 | -2^3 * 3 * 5 * 7 * 11 * 19 | C2 x C2 x C2 x C2 x C8 |
| -175960 | -2^3 * 5 * 53 * 83 | C2 x C4 x C8 |
| -183540 | -2^2 * 3 * 5 * 7 * 19 * 23 | C2 x C2 x C2 x C2 x C8 |
| -184008 | -2^3 * 3 * 11 * 17 * 41 | C2 x C2 x C4 x C8 |
| -185235 | -3 * 5 * 53 * 233 | C2 x C4 x C8 |
| -185640 | -2^3 * 3 * 5 * 7 * 13 * 17 | C2 x C2 x C2 x C2 x C8 |
| -186235 | -5 * 7 * 17 * 313 | C2 x C4 x C8 |
| -187224 | -2^3 * 3 * 29 * 269 | C2 x C8 x C8 |
| -189267 | -3 * 13 * 23 * 211 | C2 x C4 x C8 |
| -189987 | -3 * 7 * 83 * 109 | C2 x C4 x C8 |
| -193323 | -3 * 13 * 4957 | C8 x C8 |
| -193620 | -2^2 * 3 * 5 * 7 * 461 | C2 x C2 x C4 x C8 |
| -196168 | -2^3 * 7 * 31 * 113 | C2 x C4 x C8 |
| -198835 | -5 * 7 * 13 * 19 * 23 | C2 x C2 x C2 x C8 |
| -199563 | -3 * 7 * 13 * 17 * 43 | C2 x C2 x C2 x C8 |
| -199795 | -5 * 31 * 1289 | C8 x C8 |
| -205620 | -2^2 * 3 * 5 * 23 * 149 | C2 x C2 x C4 x C8 |
| -207955 | -5 * 11 * 19 * 199 | C2 x C4 x C8 |
| -209352 | -2^3 * 3 * 11 * 13 * 61 | C2 x C2 x C4 x C8 |
| -212520 | -2^3 * 3 * 5 * 7 * 11 * 23 | C2 x C2 x C2 x C2 x C8 |
| -212667 | -3 * 7 * 13 * 19 * 41 | C2 x C2 x C2 x C8 |
| -213060 | -2^2 * 3 * 5 * 53 * 67 | C2 x C2 x C4 x C8 |
| -213780 | -2^2 * 3 * 5 * 7 * 509 | C2 x C2 x C4 x C8 |
| -218395 | -5 * 31 * 1409 | C8 x C8 |
| -219219 | -3 * 7 * 11 * 13 * 73 | C2 x C2 x C4 x C8 |
| -220915 | -5 * 17 * 23 * 113 | C2 x C4 x C8 |
| -220980 | -2^2 * 3 * 5 * 29 * 127 | C2 x C2 x C4 x C8 |
| -221995 | -5 * 29 * 1531 | C8 x C8 |
| -227032 | -2^3 * 13 * 37 * 59 | C2 x C4 x C8 |
| -230280 | -2^3 * 3 * 5 * 19 * 101 | C2 x C2 x C4 x C8 |
| -230395 | -5 * 11 * 59 * 71 | C2 x C4 x C8 |
| -230763 | -3 * 13 * 61 * 97 | C2 x C4 x C8 |
| -232932 | -2^2 * 3 * 7 * 47 * 59 | C2 x C2 x C4 x C8 |
| -236467 | -7 * 11 * 37 * 83 | C2 x C4 x C8 |
| -237595 | -5 * 19 * 41 * 61 | C2 x C4 x C8 |
| -243507 | -3 * 11 * 47 * 157 | C2 x C8 x C8 |
| -244920 | -2^3 * 3 * 5 * 13 * 157 | C2 x C2 x C4 x C8 |
| -247080 | -2^3 * 3 * 5 * 29 * 71 | C2 x C2 x C4 x C8 |
| -253995 | -3 * 5 * 7 * 41 * 59 | C2 x C2 x C4 x C8 |
| -257748 | -2^2 * 3 * 47 * 457 | C2 x C8 x C8 |
| -259435 | -5 * 11 * 53 * 89 | C2 x C4 x C8 |
| -263112 | -2^3 * 3 * 19 * 577 | C2 x C8 x C8 |
| -265560 | -2^3 * 3 * 5 * 2213 | C2 x C8 x C8 |
| -266532 | -2^2 * 3 * 7 * 19 * 167 | C2 x C2 x C4 x C8 |
| -272283 | -3 * 11 * 37 * 223 | C2 x C4 x C8 |
| -275352 | -2^3 * 3 * 7 * 11 * 149 | C2 x C2 x C4 x C8 |
| -280635 | -3 * 5 * 53 * 353 | C2 x C8 x C8 |
| -283195 | -5 * 11 * 19 * 271 | C2 x C8 x C8 |
| -286180 | -2^2 * 5 * 41 * 349 | C2 x C8 x C8 |
| -289912 | -2^3 * 7 * 31 * 167 | C2 x C8 x C8 |
| -296835 | -3 * 5 * 7 * 11 * 257 | C2 x C2 x C4 x C8 |
| -298452 | -2^2 * 3 * 7 * 11 * 17 * 19 | C2 x C2 x C2 x C2 x C8 |
| -304152 | -2^3 * 3 * 19 * 23 * 29 | C2 x C2 x C4 x C8 |
| -304612 | -2^2 * 7 * 11 * 23 * 43 | C2 x C2 x C4 x C8 |
| -304843 | -7 * 11 * 37 * 107 | C2 x C4 x C8 |
| -304980 | -2^2 * 3 * 5 * 13 * 17 * 23 | C2 x C2 x C2 x C2 x C8 |
| -308760 | -2^3 * 3 * 5 * 31 * 83 | C2 x C2 x C4 x C8 |
| -319515 | -3 * 5 * 7 * 17 * 179 | C2 x C2 x C4 x C8 |
| -320307 | -3 * 13 * 43 * 191 | C2 x C4 x C8 |
| -321123 | -3 * 11 * 37 * 263 | C2 x C8 x C8 |
| -321763 | -13 * 53 * 467 | C8 x C8 |
| -323323 | -7 * 11 * 13 * 17 * 19 | C2 x C2 x C2 x C8 |
| -337755 | -3 * 5 * 11 * 23 * 89 | C2 x C2 x C4 x C8 |
| -340195 | -5 * 19 * 3581 | C8 x C8 |
| -353860 | -2^2 * 5 * 13 * 1361 | C2 x C8 x C8 |
| -357627 | -3 * 23 * 71 * 73 | C2 x C8 x C8 |
| -361284 | -2^2 * 3 * 7 * 11 * 17 * 23 | C2 x C2 x C2 x C4 x C8 |
| -366360 | -2^3 * 3 * 5 * 43 * 71 | C2 x C2 x C4 x C8 |
| -366760 | -2^3 * 5 * 53 * 173 | C2 x C8 x C8 |
| -369835 | -5 * 17 * 19 * 229 | C2 x C4 x C8 |
| -374088 | -2^3 * 3 * 11 * 13 * 109 | C2 x C2 x C4 x C8 |
| -374595 | -3 * 5 * 13 * 17 * 113 | C2 x C2 x C4 x C8 |
| -383380 | -2^2 * 5 * 29 * 661 | C2 x C8 x C8 |
| -385795 | -5 * 19 * 31 * 131 | C2 x C4 x C8 |
| -386628 | -2^2 * 3 * 11 * 29 * 101 | C2 x C2 x C4 x C8 |
| -409960 | -2^3 * 5 * 37 * 277 | C2 x C8 x C8 |
| -417435 | -3 * 5 * 17 * 1637 | C2 x C8 x C8 |
| -428835 | -3 * 5 * 11 * 23 * 113 | C2 x C2 x C4 x C8 |
| -433540 | -2^2 * 5 * 53 * 409 | C2 x C8 x C8 |
| -443667 | -3 * 7 * 37 * 571 | C2 x C8 x C8 |
| -448035 | -3 * 5 * 7 * 17 * 251 | C2 x C2 x C4 x C8 |
| -457620 | -2^2 * 3 * 5 * 29 * 263 | C2 x C2 x C4 x C8 |
| -474628 | -2^2 * 7 * 11 * 23 * 67 | C2 x C2 x C4 x C8 |
| -480907 | -7 * 23 * 29 * 103 | C2 x C4 x C8 |
| -488523 | -3 * 7 * 43 * 541 | C2 x C8 x C8 |
| -489787 | -17 * 47 * 613 | C8 x C8 |
| -492388 | -2^2 * 13 * 17 * 557 | C2 x C8 x C8 |
| -502660 | -2^2 * 5 * 41 * 613 | C2 x C8 x C8 |
| -503659 | -13 * 17 * 43 * 53 | C4 x C4 x C8 |
| -505960 | -2^3 * 5 * 7 * 13 * 139 | C2 x C2 x C4 x C8 |
| -514228 | -2^2 * 11 * 13 * 29 * 31 | C2 x C2 x C4 x C8 |
| -516243 | -3 * 7 * 13 * 31 * 61 | C2 x C2 x C4 x C8 |
| -518635 | -5 * 13 * 79 * 101 | C2 x C8 x C8 |
| -519915 | -3 * 5 * 11 * 23 * 137 | C2 x C2 x C4 x C8 |
| -549915 | -3 * 5 * 61 * 601 | C2 x C8 x C8 |
| -553540 | -2^2 * 5 * 13 * 2129 | C2 x C8 x C8 |
| -557832 | -2^3 * 3 * 11 * 2113 | C2 x C8 x C8 |
| -559083 | -3 * 7 * 79 * 337 | C2 x C8 x C8 |
| -563640 | -2^3 * 3 * 5 * 7 * 11 * 61 | C2 x C2 x C2 x C4 x C8 |
| -563955 | -3 * 5 * 7 * 41 * 131 | C2 x C2 x C4 x C8 |
| -566040 | -2^3 * 3 * 5 * 53 * 89 | C2 x C2 x C8 x C8 |
| -568888 | -2^3 * 17 * 47 * 89 | C4 x C4 x C8 |
| -585915 | -3 * 5 * 11 * 53 * 67 | C2 x C2 x C4 x C8 |
| -590835 | -3 * 5 * 7 * 17 * 331 | C2 x C2 x C4 x C8 |
| -603988 | -2^2 * 7 * 11 * 37 * 53 | C2 x C2 x C4 x C8 |
| -611403 | -3 * 13 * 61 * 257 | C2 x C8 x C8 |
| -630147 | -3 * 7 * 37 * 811 | C2 x C8 x C8 |
| -644280 | -2^3 * 3 * 5 * 7 * 13 * 59 | C2 x C2 x C2 x C4 x C8 |
| -646195 | -5 * 11 * 31 * 379 | C2 x C8 x C8 |
| -674520 | -2^3 * 3 * 5 * 7 * 11 * 73 | C2 x C2 x C2 x C4 x C8 |
| -688755 | -3 * 5 * 17 * 37 * 73 | C2 x C2 x C4 x C8 |
| -692692 | -2^2 * 7 * 11 * 13 * 173 | C2 x C2 x C4 x C8 |
| -703560 | -2^3 * 3 * 5 * 11 * 13 * 41 | C2 x C2 x C2 x C4 x C8 |
| -705432 | -2^3 * 3 * 7 * 13 * 17 * 19 | C2 x C2 x C2 x C4 x C8 |
| -713883 | -3 * 47 * 61 * 83 | C2 x C8 x C8 |
| -743028 | -2^2 * 3 * 11 * 13 * 433 | C2 x C2 x C8 x C8 |
| -788307 | -3 * 13 * 17 * 29 * 41 | C2 x C2 x C4 x C8 |
| -806520 | -2^3 * 3 * 5 * 11 * 13 * 47 | C2 x C2 x C2 x C4 x C8 |
| -809115 | -3 * 5 * 17 * 19 * 167 | C2 x C2 x C8 x C8 |
| -834360 | -2^3 * 3 * 5 * 17 * 409 | C2 x C2 x C8 x C8 |
| -844440 | -2^3 * 3 * 5 * 31 * 227 | C2 x C2 x C8 x C8 |
| -850795 | -5 * 11 * 31 * 499 | C2 x C8 x C8 |
| -857220 | -2^2 * 3 * 5 * 7 * 13 * 157 | C2 x C2 x C2 x C4 x C8 |
| -876315 | -3 * 5 * 11 * 47 * 113 | C2 x C2 x C8 x C8 |
| -876435 | -3 * 5 * 7 * 17 * 491 | C2 x C2 x C8 x C8 |
| -894660 | -2^2 * 3 * 5 * 13 * 31 * 37 | C2 x C2 x C2 x C4 x C8 |
| -937560 | -2^3 * 3 * 5 * 13 * 601 | C2 x C2 x C8 x C8 |
| -959803 | -13 * 17 * 43 * 101 | C4 x C4 x C8 |
| -963235 | -5 * 7 * 13 * 29 * 73 | C2 x C2 x C4 x C8 |
| -980148 | -2^2 * 3 * 13 * 61 * 103 | C2 x C2 x C8 x C8 |
| -990964 | -2^2 * 13 * 17 * 19 * 59 | C2 x C2 x C8 x C8 |
| -1039795 | -5 * 29 * 71 * 101 | C2 x C8 x C8 |
| -1065540 | -2^2 * 3 * 5 * 7 * 43 * 59 | C2 x C2 x C2 x C4 x C8 |
| -1076712 | -2^3 * 3 * 7 * 13 * 17 * 29 | C2 x C2 x C2 x C4 x C8 |
| -1115268 | -2^2 * 3 * 7 * 11 * 17 * 71 | C2 x C2 x C2 x C4 x C8 |
| -1232340 | -2^2 * 3 * 5 * 19 * 23 * 47 | C2 x C2 x C2 x C4 x C8 |
| -1278552 | -2^3 * 3 * 11 * 29 * 167 | C2 x C2 x C8 x C8 |
| -1291620 | -2^2 * 3 * 5 * 11 * 19 * 103 | C2 x C2 x C2 x C4 x C8 |
| -1307523 | -3 * 7 * 19 * 29 * 113 | C2 x C2 x C8 x C8 |
| -1362760 | -2^3 * 5 * 7 * 31 * 157 | C2 x C2 x C8 x C8 |
| -1364808 | -2^3 * 3 * 19 * 41 * 73 | C2 x C2 x C8 x C8 |
| -1368840 | -2^3 * 3 * 5 * 11 * 17 * 61 | C2 x C2 x C2 x C4 x C8 |
| -1390180 | -2^2 * 5 * 11 * 71 * 89 | C2 x C2 x C8 x C8 |
| -1408740 | -2^2 * 3 * 5 * 53 * 443 | C2 x C2 x C8 x C8 |
| -1446907 | -7 * 11 * 19 * 23 * 43 | C2 x C2 x C4 x C8 |
| -1472115 | -3 * 5 * 17 * 23 * 251 | C2 x C2 x C8 x C8 |
| -1490952 | -2^3 * 3 * 23 * 37 * 73 | C2 x C2 x C8 x C8 |
| -1519960 | -2^3 * 5 * 13 * 37 * 79 | C2 x C2 x C8 x C8 |
| -1562484 | -2^2 * 3 * 7 * 11 * 19 * 89 | C2 x C2 x C2 x C8 x C8 |
| -1567720 | -2^3 * 5 * 7 * 11 * 509 | C2 x C2 x C8 x C8 |
| -1592115 | -3 * 5 * 7 * 59 * 257 | C2 x C2 x C8 x C8 |
| -1707288 | -2^3 * 3 * 11 * 29 * 223 | C2 x C2 x C8 x C8 |
| -1842715 | -5 * 7 * 17 * 19 * 163 | C2 x C2 x C8 x C8 |
| -1928595 | -3 * 5 * 19 * 67 * 101 | C2 x C2 x C8 x C8 |
| -1935507 | -3 * 7 * 37 * 47 * 53 | C2 x C2 x C8 x C8 |
| -1937635 | -5 * 7 * 23 * 29 * 83 | C2 x C2 x C8 x C8 |
| -2043195 | -3 * 5 * 7 * 11 * 29 * 61 | C2 x C2 x C2 x C4 x C8 |
| -2045323 | -7 * 37 * 53 * 149 | C4 x C4 x C8 |
| -2078440 | -2^3 * 5 * 7 * 13 * 571 | C2 x C2 x C8 x C8 |
| -2095060 | -2^2 * 5 * 11 * 89 * 107 | C2 x C2 x C8 x C8 |
| -2103220 | -2^2 * 5 * 7 * 83 * 181 | C2 x C2 x C8 x C8 |
| -2104707 | -3 * 11 * 23 * 47 * 59 | C2 x C2 x C8 x C8 |
| -2188920 | -2^3 * 3 * 5 * 17 * 29 * 37 | C2 x C2 x C4 x C4 x C8 |
| -2209467 | -3 * 13 * 181 * 313 | C4 x C8 x C8 |
| -2229123 | -3 * 13 * 61 * 937 | C4 x C8 x C8 |
| -2309307 | -3 * 7 * 11 * 13 * 769 | C2 x C2 x C8 x C8 |
| -2345595 | -3 * 5 * 7 * 89 * 251 | C2 x C2 x C8 x C8 |
| -2376660 | -2^2 * 3 * 5 * 11 * 13 * 277 | C2 x C2 x C2 x C8 x C8 |
| -2401867 | -13 * 23 * 29 * 277 | C4 x C8 x C8 |
| -2420635 | -5 * 7 * 23 * 31 * 97 | C2 x C2 x C8 x C8 |
| -2443155 | -3 * 5 * 11 * 13 * 17 * 67 | C2 x C2 x C2 x C4 x C8 |
| -2523928 | -2^3 * 11 * 23 * 29 * 43 | C2 x C2 x C8 x C8 |
| -2999560 | -2^3 * 5 * 31 * 41 * 59 | C2 x C2 x C8 x C8 |
| -3040888 | -2^3 * 41 * 73 * 127 | C4 x C8 x C8 |
| -3081540 | -2^2 * 3 * 5 * 7 * 11 * 23 * 29 | C2 x C2 x C2 x C2 x C4 x C8 |
| -3121035 | -3 * 5 * 19 * 47 * 233 | C2 x C2 x C8 x C8 |
| -3352020 | -2^2 * 3 * 5 * 7 * 23 * 347 | C2 x C2 x C2 x C8 x C8 |
| -3452020 | -2^2 * 5 * 11 * 13 * 17 * 71 | C2 x C2 x C2 x C8 x C8 |
| -3468595 | -5 * 13 * 17 * 43 * 73 | C2 x C2 x C8 x C8 |
| -3536260 | -2^2 * 5 * 7 * 13 * 29 * 67 | C2 x C2 x C2 x C8 x C8 |
| -3598980 | -2^2 * 3 * 5 * 7 * 11 * 19 * 41 | C2 x C2 x C2 x C2 x C4 x C8 |
| -3608760 | -2^3 * 3 * 5 * 17 * 29 * 61 | C2 x C2 x C2 x C8 x C8 |
| -4800772 | -2^2 * 41 * 73 * 401 | C4 x C8 x C8 |
| -4886995 | -5 * 31 * 41 * 769 | C4 x C8 x C8 |
| -4903395 | -3 * 5 * 7 * 17 * 41 * 67 | C2 x C2 x C2 x C8 x C8 |
| -5358340 | -2^2 * 5 * 13 * 37 * 557 | C2 x C4 x C8 x C8 |
| -5692440 | -2^3 * 3 * 5 * 13 * 41 * 89 | C2 x C2 x C4 x C8 x C8 |
| -6005748 | -2^2 * 3 * 7 * 19 * 53 * 71 | C2 x C2 x C2 x C8 x C8 |
| -6174168 | -2^3 * 3 * 7 * 11 * 13 * 257 | C2 x C2 x C2 x C8 x C8 |
| -6585987 | -3 * 17 * 29 * 61 * 73 | C2 x C2 x C8 x C8 |
| -7538388 | -2^2 * 3 * 11 * 13 * 23 * 191 | C2 x C2 x C2 x C8 x C8 |
| -11148180 | -2^2 * 3 * 5 * 29 * 43 * 149 | C2 x C2 x C4 x C8 x C8 |
| -12517428 | -2^2 * 3 * 7 * 11 * 19 * 23 * 31 | C2 x C2 x C2 x C4 x C4 x C8 |
| -15337315 | -5 * 7 * 17 * 149 * 173 | C2 x C4 x C8 x C8 |
| -15898740 | -2^2 * 3 * 5 * 11 * 13 * 17 * 109 | C2 x C2 x C2 x C2 x C8 x C8 |
| -17168515 | -5 * 7 * 13 * 97 * 389 | C2 x C4 x C8 x C8 |
| -28663635 | -3 * 5 * 7 * 11 * 13 * 23 * 83 | C2 x C2 x C2 x C2 x C8 x C8 |
| -29493555 | -3 * 5 * 7 * 13 * 17 * 31 * 41 | C2 x C2 x C2 x C2 x C8 x C8 |
| -31078723 | -13 * 43 * 53 * 1049 | C8 x C8 x C8 |
| -430950520 | -2^3 * 5 * 7 * 11 * 13 * 47 * 229 | C2 x C2 x C2 x C8 x C8 x C8 |