Ober­se­mi­nar "Num­ber Theo­ry and Arith­me­ti­cal Sta­ti­stics"

Wi­Se 2024/2025

Ort: Medienraum D2 314                                Uhrzeit: 14:00 - 15:30 Uhr

Das Seminar findet ab dem 09.10.2024 regelmäßig mittwochs statt.

Béran­ger Se­gu­in (Pa­der­born), Nil­po­tent Ar­tin-Schrei­er theo­ry

Ort: D2 314
Veranstalter: Prof. Dr. Jürgen Klüners

Title: Nilpotent Artin-Schreier theory

Abstract: In this talk, we review techniques used for parametrizing extensions of fields of characteristic p, and we show how these techniques specialize to known theories (Artin-Schreier-Witt theory, ϕ-modules, ...).
We then review the Lazard correspondence, which relates p-groups of nilpotency class smaller than p with Lie algebras. By combining these two ingredients, we obtain an glimpse of Abrashkin's nilpotent Artin-Schreier theory.
All required facts concerning Lie algebras will be recalled.

Béran­ger Se­gu­in (Pa­der­born), Nil­po­tent Ar­tin-Schrei­er theo­ry

Ort: D2 314
Veranstalter: Prof. Dr. Jürgen Klüners

Title: Nilpotent Artin-Schreier theory

Abstract: In this talk, we review techniques used for parametrizing extensions of fields of characteristic p, and we show how these techniques specialize to known theories (Artin-Schreier-Witt theory, ϕ-modules, ...).
We then review the Lazard correspondence, which relates p-groups of nilpotency class smaller than p with Lie algebras. By combining these two ingredients, we obtain an glimpse of Abrashkin's nilpotent Artin-Schreier theory.
All required facts concerning Lie algebras will be recalled.

Béran­ger Se­gu­in (Pa­der­born), Nil­po­tent Ar­tin-Schrei­er theo­ry

Ort: D2 314
Veranstalter: Prof. Dr. Jürgen Klüners

Title: Nilpotent Artin-Schreier theory

Abstract: In this talk, we review techniques used for parametrizing extensions of fields of characteristic p, and we show how these techniques specialize to known theories (Artin-Schreier-Witt theory, ϕ-modules, ...).
We then review the Lazard correspondence, which relates p-groups of nilpotency class smaller than p with Lie algebras. By combining these two ingredients, we obtain an glimpse of Abrashkin's nilpotent Artin-Schreier theory.
All required facts concerning Lie algebras will be recalled.