Imaginary triquadratic number fields with exponent 1,3,5.
The scientific content is given in the article:
J. Klüners, T. Komatsu, Imaginary multiquadratic number fields of exponent 3 and 5
Exponent 1
The following table contains all imaginary biquadratic fields of family 3a with exponent 1.
The results are proven without using any conjecture.
Discriminant | Factorization | Generators | Class group |
5308416 | 2^16 * 3^4 | -3, -4, -8 | C1 |
49787136 | 2^8 * 3^4 * 7^4 | -3, -4, -7 | C1 |
303595776 | 2^8 * 3^4 * 11^4 | -3, -4, -11 | C1 |
796594176 | 2^12 * 3^4 * 7^4 | -3, -7, -8 | C1 |
959512576 | 2^16 * 11^4 | -4, -8, -11 | C1 |
2702336256 | 2^8 * 3^4 * 19^4 | -3, -4, -19 | C1 |
80102584576 | 2^8 * 7^4 * 19^4 | -4, -7, -19 | C1 |
154550410641 | 3^4 * 11^4 * 19^4 | -3, -11, -19 | C1 |
The following table contains all imaginary biquadratic fields of family 3b with exponent 1. The results are proven without using any conjecture.
Discriminant | Factorization | Generators | Class group |
12960000 | 2^8 * 3^4 * 5^4 | -3, -4, 5 | C1 |
40960000 | 2^16 * 5^4 | -4, -8, 5 | C1 |
121550625 | 3^4 * 5^4 * 7^4 | -3, -7, 5 | C1 |
207360000 | 2^12 * 3^4 * 5^4 | -3, -8, 5 | C1 |
384160000 | 2^8 * 5^4 * 7^4 | -4, -7, 5 | C1 |
4857532416 | 2^12 * 3^4 * 11^4 | -3, -11, 8 | C1 |
6146560000 | 2^12 * 5^4 * 7^4 | -7, -8, 5 | C1 |
17555190016 | 2^8 * 7^4 * 13^4 | -4, -7, 13 | C1 |
99049307841 | 3^4 * 11^4 * 17^4 | -3, -11, 17 | C1 |
Exponent 3
The following table contains all imaginary triquadratic fields of family 3a with exponent 3. The results are proven using ERH for imaginary quadratic number fields.
Discriminant | Factorization | Generators | Class group |
2847396321 | 3^4 * 7^4 * 11^4 | -3, -7, -11 | C3 |
8540717056 | 2^16 * 19^4 | -4, -8, -19 | C3 |
19150131456 | 2^8 * 3^4 * 31^4 | -3, -4, -31 | C3 |
54423757521 | 3^4 * 7^4 * 23^4 | -3, -7, -23 | C3 |
70892257536 | 2^8 * 3^4 * 43^4 | -3, -4, -43 | C3 |
251265597696 | 2^8 * 3^4 * 59^4 | -3, -4, -59 | C3 |
306402103296 | 2^12 * 3^4 * 31^4 | -3, -8, -31 | C3 x C3 |
417853645056 | 2^8 * 3^4 * 67^4 | -3, -4, -67 | C3 |
794123370496 | 2^16 * 59^4 | -4, -8, -59 | C3 x C3 |
984095744256 | 2^8 * 3^4 * 83^4 | -3, -4, -83 | C3 x C3 |
1048870932736 | 2^8 * 11^4 * 23^4 | -4, -11, -23 | C3 |
4054427900721 | 3^4 * 11^4 * 43^4 | -3, -11, -43 | C3 x C3 |
7740770386176 | 2^8 * 3^4 * 139^4 | -3, -4, -139 | C3 x C3 |
8590432731136 | 2^16 * 107^4 | -4, -8, -107 | C3 x C3 |
12813994352896 | 2^8 * 11^4 * 43^4 | -4, -11, -43 | C3 x C3 |
32464571577361 | 7^4 * 11^4 * 31^4 | -7, -11, -31 | C3 x C3 |
55383125856256 | 2^12 * 11^4 * 31^4 | -8, -11, -31 | C3 x C3 |
119168138285056 | 2^12 * 7^4 * 59^4 | -7, -8, -59 | C3 x C3 |
177878343106816 | 2^8 * 11^4 * 83^4 | -4, -11, -83 | C3 x C3 |
229451724656896 | 2^8 * 7^4 * 139^4 | -4, -7, -139 | C3 x C3 |
248906913382656 | 2^8 * 3^4 * 331^4 | -3, -4, -331 | C3 x C3 x C3 |
442705543843761 | 3^4 * 11^4 * 139^4 | -3, -11, -139 | C3 x C3 |
466728668041216 | 2^12 * 7^4 * 83^4 | -7, -8, -83 | C3 x C3 |
491298928189696 | 2^8 * 11^4 * 107^4 | -4, -11, -107 | C3 x C3 |
2350637069590161 | 3^4 * 11^4 * 211^4 | -3, -11, -211 | C3 x C3 |
3918727948865536 | 2^12 * 23^4 * 43^4 | -8, -23, -43 | C3 x C3 |
13142294978742801 | 3^4 * 43^4 * 83^4 | -3, -43, -83 | C3 x C3 x C3 |
The following table contains all imaginary triquadratic fields of family 3b with exponent 5. The results are proven using ERH for imaginary quadratic number fields.
Discriminant | Factorization | Generators | Class group |
1871773696 | 2^16 * 13^4 | -4, -8, 13 | C3 |
14166950625 | 3^4 * 5^4 * 23^4 | -3, -23, 5 | C3 |
14666178816 | 2^8 * 3^4 * 29^4 | -3, -4, 29 | C3 x C3 |
43237380096 | 2^12 * 3^4 * 19^4 | -3, -19, 8 | C3 |
44774560000 | 2^8 * 5^4 * 23^4 | -4, -23, 5 | C3 |
46352367616 | 2^16 * 29^4 | -4, -8, 29 | C3 |
234658861056 | 2^12 * 3^4 * 29^4 | -3, -8, 29 | C3 |
280883040256 | 2^12 * 7^4 * 13^4 | -7, -8, 13 | C3 |
419936400625 | 5^4 * 7^4 * 23^4 | -7, -23, 5 | C3 |
517110562816 | 2^16 * 53^4 | -4, -8, 53 | C3 x C3 |
716392960000 | 2^12 * 5^4 * 23^4 | -8, -23, 5 | C3 |
952857108736 | 2^8 * 13^4 * 19^4 | -4, -19, 13 | C3 |
3351129310881 | 3^4 * 11^4 * 41^4 | -3, -11, 41 | C3 |
4020249563136 | 2^12 * 3^4 * 59^4 | -3, -59, 8 | C3 x C3 |
6752430919936 | 2^8 * 13^4 * 31^4 | -4, -31, 13 | C3 |
7815289901056 | 2^12 * 11^4 * 19^4 | -11, -19, 8 | C3 |
8510429245696 | 2^8 * 7^4 * 61^4 | -4, -7, 61 | C3 x C3 |
8936757492481 | 7^4 * 13^4 * 19^4 | -7, -19, 13 | C3 |
15245713739776 | 2^12 * 13^4 * 19^4 | -8, -19, 13 | C3 x C3 |
43489065701376 | 2^12 * 3^4 * 107^4 | -3, -107, 8 | C3 x C3 x C3 |
63330416557681 | 7^4 * 13^4 * 31^4 | -7, -31, 13 | C3 |
108038894718976 | 2^12 * 13^4 * 31^4 | -8, -31, 13 | C3 x C3 |
373448513433856 | 2^8 * 7^4 * 157^4 | -4, -7, 157 | C3 x C3 |
443091722465536 | 2^8 * 31^4 * 37^4 | -4, -31, 37 | C3 x C3 |
565268503941376 | 2^8 * 23^4 * 53^4 | -4, -23, 53 | C3 x C3 x C3 |
726672516714496 | 2^12 * 11^4 * 59^4 | -11, -59, 8 | C3 x C3 |
1023381597392896 | 2^12 * 7^4 * 101^4 | -7, -8, 101 | C3 x C3 |
3437435741863201 | 13^4 * 19^4 * 31^4 | -19, -31, 13 | C3 x C3 |
6468184485400576 | 2^12 * 19^4 * 59^4 | -19, -59, 8 | C3 x C3 x C3 |
7860782851035136 | 2^12 * 11^4 * 107^4 | -11, -107, 8 | C3 x C3 |
9044296063062016 | 2^12 * 23^4 * 53^4 | -8, -23, 53 | C3 x C3 x C3 |
69969611497148416 | 2^12 * 19^4 * 107^4 | -19, -107, 8 | C3 x C3 x C3 |
6505835909336928256 | 2^12 * 59^4 * 107^4 | -59, -107, 8 | C3 x C3 x C3 x C3 |
Exponent 5
The following table contains all imaginary triquadratic fields of family 3a with exponent 5. The results are proven using ERH for imaginary quadratic number fields.
Discriminant | Factorization | Generators | Class group |
224054542336 | 2^16 * 43^4 | -4, -8, -43 | C5 |
488455618816 | 2^8 * 11^4 * 19^4 | -4, -11, -19 | C5 |
1281641353216 | 2^12 * 7^4 * 19^4 | -7, -8, -19 | C5 |
5394359275776 | 2^8 * 3^4 * 127^4 | -3, -4, -127 | C5 x C5 |
12922702073856 | 2^12 * 3^4 * 79^4 | -3, -8, -79 | C5 x C5 |
14637786276096 | 2^8 * 3^4 * 163^4 | -3, -4, -163 | C5 |
55059011870976 | 2^8 * 3^4 * 227^4 | -3, -4, -227 | C5 x C5 |
75528336015616 | 2^8 * 11^4 * 67^4 | -4, -11, -67 | C5 |
181016143442176 | 2^8 * 7^4 * 131^4 | -4, -7, -131 | C5 x C5 |
672285245399296 | 2^8 * 19^4 * 67^4 | -4, -19, -67 | C5 |
950162376687616 | 2^16 * 347^4 | -4, -8, -347 | C5 x C5 |
2604748421533696 | 2^12 * 19^4 * 47^4 | -8, -19, -47 | C5 x C5 |
3044300929433856 | 2^8 * 3^4 * 619^4 | -3, -4, -619 | C5 x C5 |
3108741460575921 | 3^4 * 19^4 * 131^4 | -3, -19, -131 | C5 x C5 |
3847891608453376 | 2^8 * 11^4 * 179^4 | -4, -11, -179 | C5 x C5 |
4727561352765696 | 2^8 * 3^4 * 691^4 | -3, -4, -691 | C5 x C5 |
12187508427908401 | 7^4 * 19^4 * 79^4 | -7, -19, -79 | C5 x C5 |
26112925926363136 | 2^12 * 7^4 * 227^4 | -7, -8, -227 | C5 x C5 |
54341122488606976 | 2^8 * 11^4 * 347^4 | -4, -11, -347 | C5 x C5 |
102823251817101201 | 3^4 * 47^4 * 127^4 | -3, -47, -127 | C5 x C5 x C5 |
923878543897348081 | 7^4 * 43^4 * 103^4 | -7, -43, -103 | C5 x C5 |
The following table contains all imaginary triquadratic fields of family 3b with exponent 5. The results are proven using ERH for imaginary quadratic number fields.
Discriminant | Factorization | Generators | Class group |
16243247601 | 3^4 * 7^4 * 17^4 | -3, -7, 17 | C5 |
107049369856 | 2^8 * 11^4 * 13^4 | -4, -11, 13 | C5 |
122825015296 | 2^16 * 37^4 | -4, -8, 37 | C5 |
247033850625 | 3^4 * 5^4 * 47^4 | -3, -47, 5 | C5 |
1004006004001 | 7^4 * 11^4 * 13^4 | -7, -11, 13 | C5 |
1134276120576 | 2^12 * 3^4 * 43^4 | -3, -43, 8 | C5 |
2936017137361 | 7^4 * 11^4 * 17^4 | -7, -11, 17 | C5 |
7322571300625 | 5^4 * 7^4 * 47^4 | -7, -47, 5 | C5 |
12491983360000 | 2^12 * 5^4 * 47^4 | -8, -47, 5 | C5 |
13169822450625 | 3^4 * 5^4 * 127^4 | -3, -127, 5 | C5 x C5 |
29828735941761 | 3^4 * 19^4 * 41^4 | -3, -19, 41 | C5 |
35678353674496 | 2^8 * 13^4 * 47^4 | -4, -47, 13 | C5 x C5 |
41623142560000 | 2^8 * 5^4 * 127^4 | -4, -127, 5 | C5 x C5 |
42415313391616 | 2^12 * 11^4 * 29^4 | -8, -11, 29 | C5 |
98706291490816 | 2^16 * 197^4 | -4, -8, 197 | C5 x C5 |
136166867931136 | 2^12 * 7^4 * 61^4 | -7, -8, 61 | C5 |
334623934267441 | 7^4 * 13^4 * 47^4 | -7, -47, 13 | C5 x C5 |
390379551900625 | 5^4 * 7^4 * 127^4 | -7, -127, 5 | C5 x C5 |
2040495219329281 | 11^4 * 13^4 * 47^4 | -11, -47, 13 | C5 x C5 x C5 |
4810197031981056 | 2^12 * 3^4 * 347^4 | -3, -347, 8 | C5 x C5 |
17963217697171041 | 3^4 * 17^4 * 227^4 | -3, -227, 17 | C5 x C5 |
124309644679881441 | 3^4 * 11^4 * 569^4 | -3, -11, 569 | C5 x C5 |
607748470482582081 | 3^4 * 41^4 * 227^4 | -3, -227, 41 | C5 x C5 |
793389288712200625 | 5^4 * 47^4 * 127^4 | -47, -127, 5 | C5 x C5 x C5 |
864003980025204736 | 2^12 * 37^4 * 103^4 | -8, -103, 37 | C5 x C5 x C5 |
869457959817711616 | 2^12 * 11^4 * 347^4 | -11, -347, 8 | C5 x C5 |
2693876092569442561 | 11^4 * 29^4 * 127^4 | -11, -127, 29 | C5 x C5 x C5 x C5 |
3246907040793595201 | 11^4 * 17^4 * 227^4 | -11, -227, 17 | C5 x C5 |
203026005223874891776 | 2^12 * 43^4 * 347^4 | -43, -347, 8 | C5 x C5 x C5 |
977807264466179992321 | 19^4 * 41^4 * 227^4 | -19, -227, 41 | C5 x C5 x C5 |
C-Programs
The following two c-programs can be used to compute all imaginary quadratic number fields with exponent less or equal to 8 and discriminant bound 3.1·1020.
Julia Programs
The following file contains the Julia code. You need to install Julia including the Hecke and the Markdown package. The function M1 computes the imginary quadratic number fields of given exponent. The functions M2a, M2b, M3a, and M3b compute the corresponding families.
Download File