Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Info-Icon This content is not available in English
Show image information

Dr. Job Kuit

Contact

Reduktive Gruppen

Academic Councillor

Phone:
+49 5251 60-3898
Office:
D2.311
Web:
Visitor:
Warburger Str. 100
33098 Paderborn

Publications:

Preprints

The most continuous part of the Plancherel decomposition for a real spherical space (with Eitan Sayag)

On the little Weyl group of a real spherical space. (with Eitan Sayag)

Articles

A Paley-Wiener theorem for Harish-Chandra modules (with Heiko Gimperlein, Bernhard Krötz and Henrik Schlichtkrull) To be published in the Cambridge Journal of Mathematics

Discrete series representations with non-tempered embedding (with Bernhard Krötz and Henrik Schlichtkrull) To be published in Indagationes Mathematicae

Ellipticity and discrete series (with Bernhard Krötz, Eric Opdam and Henrik Schlichtkrull) J. reine angew. Math. 782 (2022), 109–119

The infinitesimal characters of discrete series for real spherical spaces. (with Bernhard Krötz, Eric Opdam and Henrik Schlichtkrull)  Geom. Funct. Anal. 30 (2020) 804–857.

K-invariant cusp forms for reductive symmetric spaces of split rank one.  (with Erik van den Ban and Henrik Schlichtkrull) Forum Math. 31 (2019), no. 2, 341–349.

Cuspidal integrals and subseries for SL(3)/Kε.  (with Mogens Flensted-Jensen) Indag. Math. (N.S.) 29 (2018), no. 5, 1235–1258.

Cusp forms for reductive symmetric spaces of split rank one. (with Erik van den Ban) Represent. Theory 21 (2017), 467–533.

The notion of cusp forms for a class of reductive symmetric spaces of split rank one. (with Erik van den Ban and Henrik Schlichtkrull) Kyoto J. Math. 59 (2019), no. 2, 471–513.

Normalizations of Eisenstein integrals for reductive symmetric spaces. (with Erik van den Ban) J. Funct. Anal. 272 (2017), no. 7, 2795–2864.

Radon transformation on reductive symmetric spaces: support theorems. Adv. Math. 240 (2013), 427–483.

Or see the arXiv.

Conferences:

Research group: Reductive groups

The University for the Information Society