SFB Kol­lo­qui­um 26.01.2024

 |  KolloquiumM-Nachrichten

Am 26. Januar 2024 findet am Institut für Mathematik das Kolloquium des SFB-TRR 358 statt. Die Vortragenden sind Prof. Jean-Philippe Anker (Orleans) und Prof. Olivier Schiffmann (Paris).

Programm:

14:00 - 15:00 Prof. Jean-Philippe Anker (Orleans)

15:00 - 15:30 Kaffee/ Tee

15:30 - 16:30 Prof. Olivier Schiffmann (Paris)

16:30 : Empfang/Buffet

Ort:

Die Vorträge finden im Hörsaal O1 statt, der sich im Erdgeschoss des Gebäudes O befindet. Die Kaffeepause und der Empfang werden im Raum O1.224 auf derselben Etage stattfinden.

Prof. Jean-Philippe Anker (Orleans):

Titel: Evolution equations on noncompact symmetric spaces
Abstract: In this talk, I will give a survey of three main evolution equations (the heat equation, the Schrödinger equation and the wave equation) on noncompact symmetric spaces, which I have studied over the past 35 years, in collaboration notably with Patrick Ostellari, Vittoria Pierfelice and Hong-Wei Zhang, and which will constitute the heart of a fortcoming book with Hong-Wei Zhang. For simplicity I will state and illustrate several results on hyperbolic spaces, although they hold more generally on Riemannian symmetric spaces of noncompact type. For instance striking non-Euclidean asymptotic phenomena for heat and wave propagations.

Prof. Olivier Schiffmann (Paris):

Titel: Lie algebras and enumerative geometry of vector bundles on curves
Abstract: A famous result of Kac dating back to the 80s states that the number of indecomposable representations of a quiver (i.e. an oriented graph) over a finite field F_q is polynomial in q. Thanks to a theorem of Hausel, the constant term of this polynomial has a direct interpretation in Lie theory (in terms of dimensions of root spaces of Kac-Moody algebras).
We will propose an analogue of this picture in which representations of quivers get replaced by vector bundles on smooth projective curves, and describe what we know about the (still partly conjectural) corresponding Lie algebras.