Ober­se­mi­nar "Geo­me­tri­sche und har­mo­ni­sche Ana­ly­sis": Quen­tin La­bri­et (Aa­r­hus)

Ort: digital

Titel: Convolution formulas for Jacobi polynomials and representation theory of sl(2).

Abstract: The goal of the talk is to present some convolutions formulas for Jacobi polynomials and how to obtain them using the representation theory of the Lie algebra sl(2). Doing so I will present some realizations of the so-called Hahn and Racah algebras. We will apply these formulas to prove identities involving the symmetry breaking operators involved in this problem called the Rankin-Cohen brackets. This is a joint work with L. Poulain d'Andecy from the university of Reims.