Back to the event list

CRC Colloquium 26.01.2024

On January 26th, the Colloquium of the CRC-TRR 358 will take place at the Department of Mathematics, Paderborn. The speakers are Prof. Jean-Philippe Anker (Orleans) and Prof. Olivier Schiffmann (Paris).


14:00 - 15:00 Prof. Jean-Philippe Anker (Orleans)

15:00 - 15:30 Coffee/Tea 

15:30 - 16:30 Prof. Olivier Schiffmann (Paris)

16:30: Reception/Buffet


The talks will be held in lecture room O1 (ground floor of building O), the coffee break and reception will take place in room O1.224 (on the same floor).

Prof. Jean-Philippe Anker (Orleans):

Titel: Evolution equations on noncompact symmetric spaces
Abstract: In this talk, I will give a survey of three main evolution equations (the heat equation, the Schrödinger equation and the wave equation) on noncompact symmetric spaces, which I have studied over the past 35 years, in collaboration notably with Patrick Ostellari, Vittoria Pierfelice and Hong-Wei Zhang, and which will constitute the heart of a fortcoming book with Hong-Wei Zhang. For simplicity I will state and illustrate several results on hyperbolic spaces, although they hold more generally on Riemannian symmetric spaces of noncompact type. For instance striking non-Euclidean asymptotic phenomena for heat and wave propagations.

Prof. Olivier Schiffmann (Paris):

Titel: Lie algebras and enumerative geometry of vector bundles on curves
Abstract: A famous result of Kac dating back to the 80s states that the number of indecomposable representations of a quiver (i.e. an oriented graph) over a finite field F_q is polynomial in q. Thanks to a theorem of Hausel, the constant term of this polynomial has a direct interpretation in Lie theory (in terms of dimensions of root spaces of Kac-Moody algebras).
We will propose an analogue of this picture in which representations of quivers get replaced by vector bundles on smooth projective curves, and describe what we know about the (still partly conjectural) corresponding Lie algebras.



[Translate to English:]
[Translate to English:]