25 September 2025 , Thursday, 14:15, in seminar room J2.138
Title:
Domain decompositions for non-autonomous parabolic equations on evolving domains
Abstract:
Parabolic equations on evolving domains model a multitude of applications including various industrial processes such as the molding of heated materials. These equations are numerically challenging as they require large-scale computations and the usage of parallel hardware. Domain decomposition is a common choice of numerical method for stationary domains, as it gives rise to parallel discretizations. In this talk, we introduce a variational framework that extends the use of such methods to evolving domains. In particular, we prove that transmission problems on evolving domains are well posed and equivalent to the corresponding parabolic problems. This in turn implies that the standard non-overlapping domain decompositions, including the Robin-Robin method, become well defined approximations. Furthermore, we prove the convergence of the Robin-Robin method. The framework is based on a generalization of fractional Sobolev-Bochner spaces on evolving domains, time-dependent Steklov-Poincaré operators, and elements of the approximation theory for monotone maps.
This is joint work with Amal Alphonse, Ana Djurdjevac, and Emil Engström.