Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Info-Icon This content is not available in English
Show image information
Wednesday, 16.06.2021 | 11.00 Uhr - 12.00 Uhr

Oberseminar Angewandte Mathematik

Titel: Kernel-based Approximation of Dynamical Systems and Quantum Problems

Abstract: Reproducing kernel Hilbert spaces (RKHS) are powerful model classes which have been applied to a wide range of problems. In this talk, I will present recent progress on the use of kernel-based methods for the approximation of evolution operators of dynamical systems based on ergodic sampling. In the limit of infinite data, the resulting method provides a Galerkin projection of evolution operators on (possibly infinite-dimensional) RKHSs. In the second part, I will recall the connection between a general class of differential operators and stochastic dynamical systems, and explain how data-driven methods can in principle be used to approximate a broad range of differential operators. This also includes the Schrödinger operator for electronic quantum systems. For this context, I will present recent results on incorporating the specific symmetries of quantum systems into kernel-based approximation schemes.


Die Informationen für den Zoom-Link gibt Prof. Dr. Michael Dellnitz gerne auf Anfrage weiter.

The University for the Information Society