Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Info-Icon This content is not available in English
Show image information
Tuesday, 15.06.2021 | 14.00 Uhr - 15.15 Uhr

Oberseminar Geometrische Analysis und Zahlentheorie

Speaker: Jean-Philippe Anker (Orleans)

Title: Bottom of the $L^2$ spectrum of the Laplacian on locally symmetric spaces


Let $X=G/K$ be a Riemannian symmetric space of noncompact type, let $\Gamma$ be a discrete torsion free subgroup of $G$, let $Y\!=\Gamma\backslash G/K$ be the associated locally symmetric space and let $\Delta$ be the Laplace-Beltrami operator on $Y$. In rank one, a celebrated result, due to Elstrodt, Patterson, Sullivan and Corlette, expresses the bottom of the $L^2$ spectrum of $-\Delta$ in terms of the critical exponent of the Poincar\'e series of $\Gamma$ on $X$. A less precise result was obtained later on by Leuzinger in higher rank.

We shall discuss in this talk higher rank analogs of the rank one result, which are obtained by considering suitable Poincar\'e series. This is joint work with Hong-Wei Zhang [arXiv:2006.06473].

The University for the Information Society