Back to the event list

Re­search sem­in­ar "Geo­­met­ric and Har­­mon­ic Ana­lys­is": Dr. Ben­jamin Delarue (Pader­born)

Title: Axiom A flows for projective Anosov subgroups

Abstract: Projective Anosov subgroups are higher rank generalizations of fundamental groups of convex cocompact hyperbolic manifolds. Key properties of these groups are closely related to the dynamical system given by the geodesic flow and in particular its restriction to its non-wandering set. In the projective Anosov case the latter dynamical system can be replaced by Sambarino's refraction flow (or a general Gromov geodesic flow). In my talk I will present recent joint work with Daniel Monclair and Andrew Sanders in which we show that every projective Anosov subgroup comes with an analytic contact Axiom A flow whose restriction to its non-wandering set becomes Sambarino's refraction flow. We deduce a general exponential mixing result and the existence of a discrete spectrum of Ruelle-Pollicott resonances with associated (co-)resonant states. If time allows, I will outline applications of our results to pseudo-Riemannian manifolds and Benoist subgroups.

Bei Interesse an einer online-Teilnahme (sei es regelmäßig oder auch nur an einem bestimmten Vortrag) bitten wir vorab mit Tobias Weich oder Benjamin Delarue Kontakt aufzunehmen, damit der Teilnahmelink geteilt werden kann.