Leo­pold u.a.: Ma­the­ma­tik - ein Stu­dien­buch für In­ge­ni­eu­re: Band 1

ISBN: 3-446-22583-8, 2. Auflage, 2004

  • Inhalt:
    • Grundlagen (Mengen, Gleichungen, Funktionen, Trigonometrie)
    • Komplexe Zahlen
    • Vektorrechung und analytische Geometrie
    • Lineare Algebra
    • Differentialrechnung für Funktionen mit einer unabhängigen Variablen
    • Integralrechnung für Funktionen mit einer unabhängigen Variablen
       
  • Pro's:
    • Inhalte sind sehr übersichtlich dargestellt (Merkkästen und viele Zeichnungen)
    • Zu jedem Kapitel gibt es diverse Aufgaben mit Lösungen
    • viele Beispiele
       
  • Contra's:
    • Beispiele und Aufgaben sind häufig ohne Anwendungsbezug
    • Die Aufgaben sind sehr knapp formuliert und es sind nur die Endlösungen angegeben, kein Rechenweg
       
  • gute Anwendungen:
    • Masse eines Gewölbes berechnen (Trigonometrie, S. 98)
    • Durchhängendes Leiterseil (Parabel, S. 183/184)
    • Arbeit bei der Ausdehnung einer Schraubenfeder (Integralrechnung, S. 514/515)
    • Ausdehnung eines Gases (Integralrechnung, S. 515/516)
    • Arbeit des Wechselstroms (Integralrechnung, S. 516/517)