Ober­se­mi­nar "Geo­me­tri­sche und har­mo­ni­sche Ana­ly­sis": An­drew San­ders (zoom talk), Uni­for­mi­za­ti­on of Lo­cal­ly Flag Ma­ni­folds

Title: Uniformization of Locally Flag Manifolds

Abstract: By the Poincare-Koebe uniformization theorem, every closed Riemann surface of negative Euler characteristic can be realized as a quotient of the upper half plane by a discrete subgroup of Mobius transformations.  Moving from the Riemann sphere to other complex homogeneous flag varieties F, the theory of Anosov subgroups gives rise to a vast array of compact complex manifolds uniformized by open domains in F.  In this talk, we aim to give an introduction through examples to the basic objects of the theory, discuss the (lack of a robust) function theory, and explain some results concerning the deformation theory of these objects.  No prior knowledge of Anosov subgroups will be assumed.  This is joint work with David Dumas (UIC).

Bei Interesse an einer online-Teilnahme (sei es regelmäßig oder auch nur an einem bestimmten Vortrag) bitten wir vorab mit Tobias Weich oder Benjamin Delarue Kontakt aufzunehmen, damit der Teilnahmelink geteilt werden kann.