Ter­min

Ober­se­mi­nar "Geo­me­tri­sche Ana­ly­sis und Zah­len­the­o­rie": Zhong­kai Tao (UC Ber­ke­ley) (on­line)

Veranstalter: Zoom

We prove the strong convergence of the spectrum of the kinetic Brownian motion to the spectrum of base Laplacian for locally symmetric spaces. This generalizes recent work of Kolb--Weich--Wolf on constant curvature surfaces in two aspects. First we give a construction of Casimir operators for a large family of locally homogeneous spaces, including all locally symmetric spaces. Second, we analyze the spectrum carefully using the Schur complement formula and prove a strong convergence by studying projections to the spherical harmonics. This is joint work with Qiuyu Ren.

Bei Interesse an einer online-Teilnahme den Teilnahmelink bitte bei Tobias Weich erfragen.