Date

Ober­sem­in­ar "Geo­met­rische Ana­lys­is und Zah­len­the­or­ie": Zhongkai Tao (UC Berke­ley) (on­line)

Organizer: Zoom

We prove the strong convergence of the spectrum of the kinetic Brownian motion to the spectrum of base Laplacian for locally symmetric spaces. This generalizes recent work of Kolb--Weich--Wolf on constant curvature surfaces in two aspects. First we give a construction of Casimir operators for a large family of locally homogeneous spaces, including all locally symmetric spaces. Second, we analyze the spectrum carefully using the Schur complement formula and prove a strong convergence by studying projections to the spherical harmonics. This is joint work with Qiuyu Ren.

Bei Interesse an einer online-Teilnahme den Teilnahmelink bitte bei Tobias Weich erfragen.